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Abstract. In this paper, we present a novel technique for identifying mosquitoes
that carry tropical diseases using Deep Learning and SHAP for model interpre-
tability. We propose an end-to-end deep (E2E) Convolutional Neural Network
(CNN) architecture that leverages mosquito wingbeat sounds to extract relevant
features. To achieve high-performance audio processing, we integrate Kapre,
an audio processing library optimized for GPU execution. Our approach also
incorporates SHAP to provide a transparent explanation of the model’s predic-
tions, enabling us to identify and characterize the time-frequency patterns that
the model emphasizes. Ultimately, our research aims to support disease con-
trol initiatives by providing an automated means of identifying disease-carrying
mosquito species, which has the potential to improve public health in tropical
regions.

1. Introduction
Mosquitoes are one of the world’s most severe health hazards, capable of transmitting
serious diseases such as: Malaria, Zika virus, Chikungunya, Yellow Fever, Dengue, West
Nile Virus, Lymphatic Filariasis, and many forms of encephalitis. It is estimated that
about 700 million people are infected annually, resulting in more than one million deaths
per year [Caraballo and King, 2014].

The most effective method for preventing vector-borne diseases is through the use
of insecticides. However, extensive monitoring and surveillance are necessary to ensure
their effectiveness. Some health security departments have implemented mosquito sur-
veillance and control programs based on trap monitoring [Lühken et al., 2014]. For these
programs to be successful, it is crucial to develop an accurate identification tool. Tra-
ditional methods of mosquito classification rely on labor-intensive and time-consuming
manual identification, which is susceptible to human error [Kampen et al., 2015]. The-
refore, there has been a recent surge of interest in using deep learning techniques and
machine learning models to automate this process. Such tools are critical for the effective
implementation of control and prevention strategies.

The most commonly used traps for capturing mosquitoes record the wingbeats of
the insects in an audio signal format. Thus, the mosquitoes are classified based on the



frequency of their wingbeats, a method that has been extensively researched in the field
of entomology. This is because each mosquito species has a unique acoustic signature
that can be used to identify them in the field. Traditional methods for mosquito classi-
fication based on wingbeat frequency have relied on signal processing techniques such
as Fourier Transform [Rohlf and Archie, 1984] and Mel Frequency Cepstral Coefficients
(MFCC) [Logan et al., 2000].

This paper presents a novel approach to classifying disease-carrying mosquitoes
using audio signals recorded by traps. Our proposed method is an end-to-end (E2E)
Deep Learning (DL) model based on Convolutional Neural Networks (CNNs). To pre-
pare the audio signals for input to the CNN model, we convert them into spectrogram
images, which provide a time-frequency representation. Our DL model is based on the
Biophony architecture, which has shown promising results in related bioacoustics classifi-
cation tasks [Fleishman et al., 2020]. By using this architecture, we aim to extract relevant
features from the audio signals that can accurately identify and classify disease-carrying
mosquitoes.

This approach has the potential to significantly improve mosquito identification
and classification, leading to more effective disease control and prevention measures. Our
results demonstrate the effectiveness of the proposed approach accurately classifying dif-
ferent species of mosquitoes. In addition to our proposed E2E model, we also employ
SHapley Additive exPlanations (SHAP) to interpret the model decisions. By gaining in-
sights into the important features learned by the CNN model, we can improve mosquito
identification and classification.

2. Related Works
Deep learning methods typically require a significant amount of labeled training data.
However, Ko et al. [2018] proposed a solution to this challenge by combining multiple
pre-trained convolutional neural networks (CNNs). This approach involves concatenating
features produced by the CNNs, followed by a dimensionality reduction using linear dis-
criminant analysis (LDA). The classification is then performed using an Support Vector
Machine (SVM). This method has been successfully used to classify sounds of anuran,
bird, and insect species, and outperformed other types of CNN architectures in terms of
overall accuracy.

Ntalampiras [2019] proposed a solution for insect species classification based on
the sounds of their wingbeats. Their method utilizes a Hidden Markov Models (HMM) – a
specific type of Directed Acyclic Graph (DAG) – for classification. This approach reduces
the amount of required training data, which is beneficial for small bioacoustic datasets. A
major advantage of this method is that it does not require model retraining when new in-
sect sounds are available, and its DAG structure allows for easy interpretability. Although
HMMs have shown good results in various applications, their accuracy is limited as they
rely on handcrafted features that need to be mapped to discrete alphabetic symbols. This
process can be time-consuming and may not capture all relevant information present in
the data.

Nolasco et al. [2019] proposed a machine learning solution to classify beehive
states using audio data obtained from the NU-Hive project, which aims to monitor be-
ehives’ conditions by analyzing the sounds bees make. The survival of bees is crucial



as they are the most important pollinators of food crops globally. The authors compare
the performance of SVM and CNNs for identifying the states of different beehives using
features based on Hilbert-Huang Transform (HHT) and Mel-Frequency Cepstral Coeffi-
cients (MFCC). Their findings indicate that SVM outperformed CNNs in generalizing to
new data. However, the method has limitations in handling signals of arbitrary size, and
pre-processing steps increase the demand for computing resources.

In recent years, mosquito wing-beat frequency capture techniques have evolved
significantly, moving away from the use of common microphones that forced mosquitoes
to stay close and behave in an unnatural way when compared to their behavior in the wild.
This caused machine learning models to be trained on unrealistic environment, leading to
biases in the results when transfer to a real scenario. To address this issue, an optical
capture device was developed by Potamitis and Rigakis [2015], thereby improving the
quality of the samples for training machine learning models.

Despite the advances in this research field, most of related works rely on methods
that use handcrafted feature extraction before a CNN, e.g. spectrogram generation. Also,
CNN are used as “black boxes”without providing much insight into how the model arrived
at a particular result. Therefore, our goal is to propose an end-to-end model and attempt
to explain how it arrived at a given outcome.

3. Material and Methods

3.1. Dataset

The Wingbeats dataset consists of recordings in the .wav format, which were captured
using optical devices. The dataset includes recordings from insectaries, each containing
one species of mosquitoes of both sexes. As the mosquitoes fly, their movement causes
oscillations in the captured light signal of the sensor, which is transformed into a pseudo-
acoustic signal. Each audio snippet in the dataset has a length of 5000 samples and a
sampling rate of 8KHz [Potamitis and Rigakis, 2015]. The total number of samples is
shown on Table 1.

Tabela 1. Data Distribution in the Wingbeats Dataset

Species number of samples
Ae. aegypti 85553
Ae. albopictus 20231
An. gambiae 49471
An. arabiensis 19297
Cu. pipiens 30415
Cu. quinquefasciatus 74599
Total 279566

In the data partitioning phase, we carefully split the dataset into training, testing,
and validation subsets to ensure a fair evaluation of the proposed CNN model. To increase
the diversity of data present in each set and prevent the same mosquito from appearing
in different sets, we selected different specimens records for each set. Moreover, we also
ensured that the dataset was balanced across different classes to avoid bias towards any



particular species. A detailed information on the partitioning of the Wingbeats dataset is
provided in Table 2.

Tabela 2. Distribution of data into train, test and validation sets.

Subset Ae. aegypti Ae. albopictus An. gambiae An. arabiensis C. pipiens C. quinquefasciatus Total
Train 14627 14175 14383 13684 14272 14539 85680
Test 5165 5001 5074 4824 5026 5137 30227
Validation 869 827 838 789 807 870 5000
Total Species 20661 20003 20295 19297 20105 20546 120907

3.2. Metrics

To evaluate the performance of our model, we utilized a confusion matrix, which is a
commonly used tool in machine learning to describe the results of the predictions made
by the model. A confusion matrix includes four components: True Positive (TP); True
Negative (TN); False Positive (FP); and False Negative (FN). With the confusion matrix,
it is possible to obtain commonly used metrics such as Precision (P), Recall (R), F1-score
(F1), and Accuracy (Acc). Precision measures the proportion of correct positive class
predictions in relation to the total number of samples classified as positive (Equation 1).
Recall measures the proportion of true positive samples that were correctly classified by
the model in relation to the total number of positive samples (all samples that should have
been classified as positive) (Equation 2). F1-score is a metric used to balance precision
and recall (Equation 3). Accuracy measures the proportion of correct predictions made
by the model in relation to the total number of samples (Equation 4).

P =
TP

TP + FP
(1) R =

TP

TP + FN
(2)

F1 =
2PR

P +R
(3) Acc =

TP + TN

TP + TN + FP + FN
(4)

3.3. Kapre layers

A Kapre layer1 is a simple and efficient way to process audio data with Keras. It serves
as the first layer of the model, standing between the input and convolution network, per-
forming time-to-frequency conversions, normalization, and data augmentation, all with a
focus on real-time execution on the GPU [Choi et al., 2017]. Figure 1 illustrates who it
was integrated into our E2E model.

1https://github.com/keunwoochoi/kapre



Figura 1. Implementation of the Kapre Layer

In our model we used the get melspectrogram layer()method that trans-
forms the audio input to a Mel spectrogram, which uses two 1-dimensional convolutions
initialized with real and imaginary part of discrete Fourier transform kernels respectively,
following the definition of discrete Fourier transform:

Xk =
N−1∑
n=0

xn · [cos(2πkn/N)− i · sin(2πkn/N)] (5)

where k ∈ [0, N − 1], N is the signal length, and xn are signal samples.
The complete E2E model is implemented with conv2d() layers of Keras back-
end, which means the Fourier transform kernels can be trained with backpro-
pagation. The get melspectrogram layer() is an extended conversion of
layerMelSpectrogram() based on Spectrogram() with a multiplication by a
mel-scale matrix from linear frequencies, which can be trained [Choi et al., 2017].

3.4. Shapley Additive Explanations

SHAP (Shapley Additive Explanations) is a model interpretation method proposed
by Lundberg and Lee [2017] that provides a theoretical approximation to explain the
reasoning behind a model’s prediction. This method is implemented by a library that can
be used to interpret different types of models, such as linear regression, logistic regres-
sion, decision trees, Neural Networks, among others. The goal of SHAP is to provide an
interpretable explanation for any machine learning model predictions, by presenting the
individual contribution of each feature in predicting a specific sample. To achieve the ex-
planation, it calculates Shapley values, which are based on cooperative game theory, for
each feature of the input, such as pixels of an image or attributes of a dataset. In summary,
SHAP has unique mathematical properties that ensure the importance of the explanations
and it is also a local method, meaning that it works for individual samples. The SHAP
equation is:

g(z′) = ϕ0 +
M∑
j=1

ϕjz
′
j, (6)

where g is the model explanation, z′ ∈ {0, 1}M the coalition vector, with M being the
maximum size of the coalition vector, and ϕj ∈ R representing the Shapley value assig-
ned to feature j. The coalition vector is a mathematical representation that captures the
contribution of each feature to the prediction of a specific instance. It is calculated using
the Shapley value theory, which provides a fair way of distributing the ”payment”(i.e.,



the prediction) among the features. An entry of 1 in the coalition vector indicates that the
feature is “present,”while 0 indicates that it is “absent” [Molnar, 2020].

The SHAP library offers various explainers for machine learning models. We
use the Gradient Explainer() method, which uses expected gradients. Expected
gradients combine the ideas of Integrated Gradients [Sundararajan et al., 2017], SHAP,
and SmoothGrad [Smilkov et al., 2017] into a single equation. This approach allows for
the use of the entire dataset as the reference distribution (instead of just one reference
value) and enables local smoothing. If we approximate the model using a linear function
between each reference data sample and the current input to be explained, assuming that
the inputs are independent, then expected gradients calculate approximate SHAP values.

4. Proposed Model
In our E2E model, we utilized as backbone the convolutional architecture of the Microsoft
Biophony model without incorporating any pre-trained weights2. To prevent overfitting,
each convolution layer was followed by a Max Pool operation and a 25% Dropout. Ad-
ditionally, we incorporated the Kapre layer, as discussed in Section 3.3. We modified
the last classification layer to accommodate our multi-class problem, which includes six
distinct classes.

Figura 2. CNN model architecture. The convolution layers are represented by the
abbreviation ”C”, the Max Pooling layers by ”M”, and the fully connected
layers by ”FC”(Fully Connected).

The main advantage of using an end-to-end model over a traditional task-oriented
method is that the former requires less expert knowledge, leading to faster and more effi-
cient training. As show by Chen et al. [2014] and Fanioudakis et al. [2018], task-oriented
methods involve manual feature engineering, which can be time-consuming, subjective
and can also introduce modeling bias. On the other hand, an end-to-end model learns
the features from the raw data itself, eliminating the need for manual feature enginee-
ring. This approach results in a more robust model that is less prone to over-fitting and
generalizes better to new data.

5. Experiments and Results
We trained the model using EarlyStopping() callback with a patience of five epochs
and a ∆ of 0.00001, which stop training when the validation loss has stopped improving.
Thus, resulting in 27 epochs of training. We observed in Figure 3a that the curves stabilize
during training, indicating that the model is learning the data correctly and not just fitting

2https://github.com/microsoft/acoustic-bird-detection



to the training set (overfitting). Figure 3b shows the confusion matrix generated by the
final CNN model and the classification report on the test set.

(a) Training and Validation Loss and accuracy Graphs.

(b) Confusion Matrix and metrics values.

Figura 3. Model training and test performance.

As depicted in Figure 3b, the model faced difficulty in distinguishing between
An. gambiae and An. arabiensis, with incorrect predictions made 1156 times. A similar
confusion occurred between Ae. aegypti and Ae. albopitcus. However, this is not a
significant issue when it comes to identifying the spread of a particular disease transmitted
by mosquitoes. These pairs of mosquitoes transmit the same disease, which is why they
are colored green in Figure 3b. Our concerns lie in the predictions that fall outside this
category, such as the confusion between Ae. aegypti and C. pipiens, due to the fact that
they are vectors of different diseases.

The distinctive methodology of this work lies in its attempt to offer an explanation
for the CNN’s decision-making process and why the model is struggling with certain
classes. To achieve this, the Gradient Explainer method of SHAP is employed, with the
outputs displayed in the following figures 4a, 4b and 4c. The focus is on the inputs and
true labels for the class “Ae. aegypti”to interpret the model’s decision-making process,
instead of mere speculation. The primary objective is to unravel the model’s workings
and avoid it being labeled as an opaque black box. In summary, this methodology aims to
shed light on the model’s decision-making process.



(a) A correctly classified spectrogram of Ae. aegypti and its SHAP values.

(b) An incorrectly classified spectrogram of Ae. aegypti and its SHAP values.

(c) An incorrectly classified spectrogram of Ae. aegypti missclassified as Cu. pipiens. This SHAP
values belongs to the Cu. pipiens.

Figura 4. Three Ae. aegypti spectrograms generated by the Kapre layer and its
feature importance obtained with SHAP.

Upon analyzing Figures 4a and 4b, a significant difference can be observed. The
main distinction is that Figure 4a exhibits a substantial concentration of frequency energy
in a short period of time. This pattern played an important role in the model classifying
the input as belonging to the class Ae. aegypti. On the other hand, Figure 4b lacks this
time-frequency pattern, which caused the model to misclassify the input as a Cu. pipi-
ens. We can also observe that Figure 4c is essentially the inverse of Figure 4b, where all
the important pixels are inverted. The area present in Figure 4c is of utmost importance
to classify correctly. This is probably due to the method in which the audio was captu-
red. Although it presented activities of the wingbeat, they were extremely short, which
confused the CNN.

6. Conclusion and Future Research
Our E2E CNN model has demonstrated high accuracy in classifying mosquitoes based on
their wingbeat sounds, which is a promising achievement. The ability to accurately iden-
tify different mosquito species has significant implications for public health, as it can aid
in mosquito control efforts and prevent the spread of mosquito-borne diseases. By using
this model, researchers and public health professionals can quickly and accurately identify
mosquito species, allowing them to develop effective prevention and control measures. In
addition, this technology could be used to detect new or emerging mosquito species, al-
lowing for early intervention and control. Overall, the potential impact of this model on
public health is substantial, making it a valuable tool in the fight against mosquito-borne
diseases.



In this paper, we extend the Biophony model by incorporating a Kapre layer to
enhance feature extraction compared to traditional handcrafted features. We also intro-
duce the use of SHAP and its Gradient Explainer method for interpreting our machine
learning model. Our findings demonstrate that SHAP enables clear visualization of the
time-frequency patterns learned by the CNN model for certain mosquito species. To the
best of our knowledge, our work is the first to apply SHAP to explain model decisions in
bioacoustics research, despite its simple and intuitive interface in image analysis.

In future work, we plan to improve the efficiency of our model by implementing
the Keras method flow from directory(), which will allow us to avoid RAM li-
mitations and handle larger datasets. We also aim to optimize the model for deployment
on low-resource hardware, with the ultimate goal of developing an efficient trap device
for mosquito control. Additionally, we will explore other model interpretation methods,
such as Local Interpretable Model-Agnostic Explanations (LIME) proposed by [Ribeiro
et al., 2016] and Gradient-weighted Class Activation Mapping (grad-CAM) introduced
by [Selvaraju et al., 2017], and compare their performance with SHAP.
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