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Abstract. In recent years, automatic computer techniques have been proven to
be a great tool for the rapid detection and disease diagnosis. The core of those
diagnostic systems are usually artificial intelligent algorithms like convoluti-
onal neural networks, in which thousands of images are needed for training.
However, the available datasets of biomedical images, specially for X-ray an-
giography, are scarce. Therefore, we propose a toolbox for X-ray angiography
images simulation to increase the number of available images as an alterna-
tive to data augmentation method for training artificial intelligence algorithms.
The toolbox was developed with a set of functions to simulate complex vessel
structures, as well as stenosis and aneurysms, in X-ray angiography images.

1. Introduction

Angiography is a procedure that, through radiography, captures the image of vessels that
present contrast in the subject´s circulation system. Among the applications of angio-
graphic images are the examination of the kidneys, lungs and brain, however, heart analy-
sis is possibly the most known usage of this procedure. In the heart case, the contrast
is inserted into the vessel from an intravenous injection through the main coronary ar-
tery [Vijayalakshmi 2015]. Angiography images are used to analyse stenosis or abnormal
aneurysms in the vessel wall, which may indicate the presence of a serious injury or a
heart disease. This radiographic image is captured from an angle at an specific point of
view, and it is often necessary to capture this event from different angles for a complete
analysis of the vessel. As the contrast is injected and travels through the coronary vessel
within a specific time frame, a video is recorded of that contrast flowing through the ar-
terial system. Therefore, the angiography needs to be visually analysed by a professional
in the field of cardiology. Coronary angiography is considered the gold standard for the
final diagnosis of arterial diseases through the visual analysis [Ramasamy et al. 2020].

Cardiovascular diseases (CVDs) are a group of disorders that impact the he-
alth of the circulatory system and are normally caused by the accumulation of fat cho-
lesterol in the inner walls of arteries in a process called atherosclerosis. According
to the World Health Organisation, CVDs are the main causes of death in the world,
having affected 17.9 million people in 2019, which represents 32% of global deaths
[World Health Organization 2021]. The severity of this problem makes early detection
and correct diagnosis two of the most important factors in the treatment of CVDs.



Automatic computer detection or diagnostic systems have risen as a way to assist
radiologists in identifying anomalies, providing a second opinion without increasing the
workload of the professional [Castellino 2005]. Among the technology systems, machine
learning and convolutional neural networks (CNN) stand out as the main ones. CNNs,
specially, have been attracting the attention of researchers for their learning capacity ad-
ded to the automatic extraction of image features.

In a clinical context, diagnostic systems are powered by a digital dataset of images
and their efficiency can be weighted by the impact caused on the performance of evalu-
ators. As a rule, the absence of diagnostic systems markings should not eliminate heart
lesions identified by the physician, while the presence of unidentified markings should
lead to a deeper assessment, therefore, the specialist retains the final word on the diagno-
sis [Castellino 2005]. The accuracy of detection algorithms or their ability to characterize
lesions correctly is linked to the quality of the dataset used for its training and validation.

Jia et al [Jia and Zhuang 2021] made a great research over algorithms for vessel
tracking. At their work, several public angiography datasets were presented and what
is noticeable is the low quantity of images in each one. This issue was also pointed
out by Freitas et al [Freitas et al. 2021]. These public databases provide in the order
of dozens of angiographic images, which makes it difficult to develop deep learning al-
gorithms, specially for convolutional neural networks. As an example, studies indicate
a minimum of 1500 images per class for classification CNN applications, as well as
the requirement for a balanced number of samples between classes [Ponti et al. 2021].
Thus, limited datasets can be the bottleneck for computer-aided diagnosis improvement
[Shin et al. 2016]. The limitation of public datasets was also detected in breast radio-
graphic imaging [Dar et al. 2022]. An important direction would be the construction of
larger publicly available datasets for medical images [Shen et al. 2017]. Another appro-
ach is to train models for automatic data annotation [Kim et al. 2022], lightening the work
of specialists and helping to balance the datasets. One explanation to the low quantity of
available medical images in datasets may be their approval by ethics committees entities,
which is an important and necessary protocol to protect patient privacy.

To mitigate this difficulty, data augmentation is usually used. Data augmenta-
tion is an image transformation approach that uses rotations, scale changes and mirroring
[Jia and Zhuang 2021] to increase the number of data and is an essential tool to obtain
good results in natural images objects recognition CNNs when trained with small datasets.
Thus, the data augmentation has its effectiveness verified, increasing the accuracy and
sensitivity of CNN algorithms [Lin et al. 2018]. However, if the dataset chosen is poorly
represented, the application of data augmentation will also be limited [Ponti et al. 2021]
due to the fact that the new images are just modified images from the original dataset.

An alternative to data augmentation is the creation of artificial images through the
construction of images that mimic the appearance of vessel elements. Partially synthe-
sised data proved to be useful in improving accuracy in machine learning classifiers
[Aljaaf et al. 2016]. The advantage of using artificial images such as those generated by
Antczak et al. [Antczak and Liberadzki 2018] for simulating vessels in angiographies is
the fact that they are not related to the original dataset. Consequently, the artificial gene-
ration of angiographic images provides independent images to be used in training stenosis
or aneurysm detection algorithms. Although Antczak´s simulation of angiographic ima-



ges was used by other authors presenting good results [Freitas et al. 2022], it was limited
to the Bézier function [Ovalle-Magallanes et al. 2022]. Other reports in literature also
proposed algorithms for angiogram simulation [Song et al. 2016], and creation of synthe-
tic X-ray images with good results, though they were based on a previously generated 3D
model of the organ of interest [Babaee and Nilchi 2014] [Kengyelics et al. 2018]. The
same approach was used for dental implant recognition [Kohlakala et al. 2022]. The need
of several 3D models may interfere with the creation of larger datasets. Another ap-
proach was the use of Generative Adversarial Networks (GAN) to generate new X-Ray
images of chest [Morı́s et al. 2021] [Shah et al. 2022] [Srivastav et al. 2021] and stomach
[Togo et al. 2019]. GAN algorithms have good results with data augmentation, however
the user may loose control of the vessel form in the case of angiographic X-ray images.

Hence, in this work we propose a toolbox for vessel angiography image simulation
based on five analytical functions, which allows the generation of datasets with complex
vessel structure images while giving the user complete control over the vessel construc-
tion, a novelty in literature. Here we also aim to demonstrate how different vessel formats,
as well as functions to simulate stenosis and aneurysms, can provide diverse synthetic
angiography images by applying random variables to such functions. The toolbox is
open source and it is available on GitHub (https://github.com/jeanschmith/
vessel_simulator) as well as an example code and a dataset of right coronary ima-
ges created with the toolbox.

2. Methods
The proposed method for angiography image simulation was based on mathematical
equations to draw the vessels. Let an image be represented by a Cartesian’s plane in
which the width is the x axis and height is the y axis. With this definition in mind, we
developed five types of vessel trajectories based on equations: line, second degree, sine,
Bézier and a special model that we called end of vessel. The points of the plotted equa-
tions were approximated to ellipses to manipulate the thickness of the vessels. The user
should choose the size of the image in the first place, then select points on the image and
choose a vessel trajectory equation to establish its path. After, another set of equations
lines can be draw in that same image to represent a group of vessels. We also developed a
function for stenosis and aneurysm simulations. Finally, the user can choose the level of
background gradient and white noise in order to simulate images similar to real ones.

This simulator was developed in Python programming with PIL [Clark 2015],
NumPy [Harris et al. 2020] and Matplotlib [Hunter 2007] libraries. The functions of the
toolbox are explained in detail in the following subsections.

2.1. Line
Although long vessels rarely have the aspect of a straight line, for small segments to
connect larger structures this approximation proved to be useful. This is the simplest
vessel approximation. The user has two choices for this vessel drawing: providing the
start and end points of the line, or the parameters a and b for the equation 1.

y = ax+ b. (1)

Where y represents the height and x the width of a computed P (x, y) point in the



Figura 1. Five types of vessel approximation provided by the toolbox: (a) Line;
(b) Second degree; (c) Sine; (d) End of vessel; (e) Bézier.

image. An example of this type of vessel drawing is presented in Figure 1 with the label
a.

2.2. Second degree

The second degree approach aims to provide a curvature to the vessel. Similarly to equa-
tion 1, the second degree function presented in equation 2 can also be calculated using
either points or the c, d and e coefficients.

y = cx2 + dx+ e. (2)

However, providing values for the parable coefficients is not visually as intuitive
as it would be for a line. This considered, the user shall provide three P (x, y) points for
the computation of the parameters c, d and e by the algorithm. An example of the second
degree type of vessel is shown in Figure 1 twith the label b.

2.3. Sine

The sine approach intents to add an sinusoidal aspect to the vessel approximating it, for
example, to some coronary vessels. The user provides the first and the last point, the
amplitude A and frequency f to draw the vessel. The phase ϕ is optional and the default
value is zero. Next, the algorithm computes the width W the vessel should occupy in the
image by calculating the difference between the start and end x points coordinates. The
time vector t is then computed by making an arrangement between 0 and 1 with the step
of 1/W . The amplitude A and the t vector are applied directly to the equation 3.

f1(t) = A(sin(2πft+ ϕ)). (3)

Finally, the points computed by the equation 3 are added to a line computed in
equation 1, providing an inclination to the vessel in the image. An example of this kind
of vessel is presented in Figure 1 with the label c.



2.4. End of vessel

The aforementioned equations are good approximations to vessels structures and connec-
tion between them. However there are cases when the vessel presents more than one
function to determine the trajectory behaviour. Therefore, we decided to implement a
function called end of vessel. This formulation treats the cases when the vessel is attached
to a tissue and is not connected to other vessels in both extremities.

To use this function, the user provides the first and the last point to draw the vessel
with an amplitude A. Next, the algorithm computes the width W and the time vector t the
same way it was computed for the sine function as previously mentioned. The amplitude
A and the t vector are applied to equation 4.

f2(t) = A
(
sin(2πft) + 2sin

(
2π

1

2
t
))

e−αt. (4)

One might note that the equation 4 is a sum of two different sine signals with a
relation of double the amplitude and half the frequency. This formulation gives an aspect
in the vessel drawing more similar to variations in real images. Finally, a decay is applied
to the sinusoidal functions to decrease the amplitude of signal smoothly. The default value
of the decay is α = −2 while the frequency f was defined as a random number between
2 and 4 hertz. These parameters can be altered by the user at any time. Finally, the points
computed by equation 4 are added to a line computed in equation 1 to give the slope of
the vessel in the image. The vessel labeled d in Figure 1 exemplifies an application of the
end of vessel function.

2.5. Bézier

The Bézier curve used was the same function as the one in the Antczak et al.
[Antczak and Liberadzki 2018] work. They designed a line in the image based on the
third order of Bézier lines, the cubic Bézier curve, presented in equation 5.

B(t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3. (5)

The image created with this equation is a polygon that connects it´s four control
points, starting and ending at the first and last point and whose shape is determined by
the position of the control points remaining, without necessarily passing through these
points. In this case, the control points P0(x, y), P1(x, y), P2(x, y) and P3(x, y) should
be provided by the user and the vector t is automatically computed by the algorithm. An
example is presented in Figure 1 by the vessel labeled e.

2.6. Normal, stenosis and aneurysm

Once the vessel trajectory equation is computed, these points shall pass through a process
to give the vessel width Vw. For the normal situation, each point is transformed into an
ellipse. We defined a bounding box where the ellipses are drawn and its definition for
each point P (x, y) is Pa(x− Vw, y− Vw) and Pb(x+ Vw, y + Vw). Furthermore, an array
of bounding boxes for the ellipses drawing process using PIL is generated. All vessels in
Figure 1 are presented with the normal width process which means they have no stenosis
or aneurysms.



The developed toolbox provides an option to include stenosis in the vessels. From
the points computed by equations 1, 2, 3, 4 and 5, the user shall provide the position, the
grade Sg and length Sl of the stenosis in the vessel. In this function the bounding boxes are
also computed to draw the ellipses, but their sizes were in respect to the stenosis equation
6.

Sf (t) = cos
(
2π

1

Sl

t
)

(6)

The time vector t is computed to envelop exactly one period of the cosine function
with respect to Sl, and the frequency is 1/Sl. For a better understanding of the stenosis
equation, please refer to Figure 2a for a normalised case. We defined that the stenosis
should follow the form of a cosine. After the computation of the equation 6 the output
values of Sf (t) are mapped from the limits of (−1, 1) to (1 − Sg, 1). Next, the mapped
version of Sf (t) is multiplied by Vw to get the stenosis effect on the original height of the
vessel. Note that this process will produce the ellipses bounding boxes with respect to
equation 6 form. This process occurs only at the position provided by the user until the
stenosis length Sl. The normal case is applied to the rest of the vessel.

The same process applied to stenosis was used in the case of aneurysm simulation.
The only difference was in the mapping of the limits, adjusting it to (−1, 1) to (1+Sg, 1).
An example of two vessels with stenosis and aneurysm respectively are illustrated in
Figure 2b.
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Figura 2. Stenosis schematic using equation 6 (a). Examples of stenosis (upper
vessel) and aneurysm (lower vessel) simulations. In those vessels it was
also applied a thickness manipulation, meaning in the left side the vessels
begin with a certain width that decreases as the flow reaches the right side
of the image (b).

2.7. Thick manipulation

Vessels located at extremities of larger structures, specially those attached to tissues, have
their thickness altered so by the end they appear thinner. In this case, to get these si-
mulations closer to what would be expected in a real vessel, the thick manipulation was
developed.



The thick manipulation is done using the vector of ellipses already computed in
the normal, stenosis or aneurysm functions and a thickness factor provided by the user.
This factor can vary from 0 to 1 according to the position in which the equation 7 is
going to start being applied. The change in factor gives the possibility of choosing the
desired thickness of the end vessel, with factor 1 meaning that the whole vessel will have
it’s ellipses size modified and, consequently, factor 0 means the vessel won’t receive any
change.

T (t) = eαt. (7)

Here, the decay α received a default value of 1 and t representing the length of the
vessel was computed by the algorithm. This function results in a new definition for the
bounding boxes for each point P (x, y) and the radius of the ellipses are decreased with
respect to equation 7. An example of thick manipulation is presented in Figure 2b.

2.8. Gradient

The gradient function was also the same as presented by the Antczak et al.
[Antczak and Liberadzki 2018] work, in which the function is responsible for the gray
scale background of the image. First, the background has it’s centre position defined ran-
domly based on the image’s size. Looping through all the pixels in the image, a distance
to the centre is calculated for every pixel through equation 8, where xc and yc are the
center’s coordinates.

d(x, y) =
√
(x− xc)2 + (y − yc)2. (8)

Finally, a colour is assigned to each pixel taking into account the distance. The
pixels closer to the centre will receive darker shades of gray while the ones farther away
from the centre will be lighter.

2.9. White noise

By the end of the process, white noise is added to the images to create imperfections closer
to the noise presented in real ones. Similar to the previous section, all the pixels had their
values changed. A variable was randomly generated ranging from −δ to δ, dependant on
the image’s height to represent the white noise for each pixel. The noise grade is defined
by user from 0 to 1. The white noise with respect to the defined grade is added to each
pixel and latter a Gaussian blur is applied to the image.

3. Results
The toolbox provided good results in simulating complex image structures. As an exam-
ple, in Figure 3a is presented a left coronary angiography image simulation. To construct
this image all the trajectory functions were used. Furthermore, an stenosis can be obser-
ved in one of the vessels. One might note the gradient effect in the background and the
white noise addition.

As an second example, in Figure 3b is presented a retinal vessel structure to simu-
late a fluorescein angiography image. Again, to simulate this complex vessel structure all



functions of the toolbox were used. Naturally, the number of vessels and the complexity
of the image is up to the user. After the construction of the vessel structure, the resulting
image was additionally modified, in this case, a round border was added with a simple
mask. Moreover, a round and lighter mask was added to represent the optic nerve region.
One might also observe that this image has more noise than the left coronary one.

(a) (b)

Figura 3. (a) Example of left coronary angiography with stenosis image simu-
lation. In this example all trajectory functions presented in this work were
used. This example also presents thick manipulation, gradient background
and white noise applications. (b) Example of a retinal vessel structure to
simulate a fluorescein angiography image. All functions of the toolbox
were used. Further image transformations were applied after the simula-
tion by the toolbox was complete, like the round border (using a simple
mask) and the round lighter mask used to represent the optic nerve region
in the image.

As aforementioned, the toolbox is open source and available on GitHub, where we
also provided a right coronary image dataset constructed with the toolbox. The dataset is
composed by a hundred images of normal right coronary, a hundred images with varying
degrees of stenosis in the right coronary and a hundred images with varying degrees of
aneurysms in the right coronary. In Figure 4a a template to start drawing vessels was
established. Between the points A, B and C the Bézier function was used. Between the
points B to D, and D to F, again the Bézier function was used. Finally, between the points
D and E the end of vessel was used. All the points from the template had slightly random
variations in their positions to create different structures. The parameters were chosen
randomly with respect to configured limits, as well. The vessel positions, based on the
points A,B,C,D and E, had a limit in the random choice to keep the right coronary aspect,
the vessel width was limited from 20 to 35, the position of stenosis or aneurysm was
limited to be placed from the beginning until the bifurcation, the grade was limited from
0.4 to 0.8 and the length was limited from 40 to 80. Figure 4b presents an example of a
normal right coronary extracted from the dataset. Figure 4c presents an example of a right
coronary with stenosis extracted from the dataset. The configured stenosis grade was 0.8
and length of 49. Figure 4d presents an example of a right coronary with aneurysm. The
configured aneurysm grade was 0.7 and length of 54.
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Figura 4. Examples of images from the dataset created with the toolbox. The
images have the size of 1920x1920 pixels. (a) A template to start drawing
different vessel structures was defined. A normal right coronary (a), a ste-
nosis with grade of 0.8 and length of 49 was added to the right coronary
(b) and an aneurysm with grade of 0.7 and length of 54 was added to the
right coronary (c).

4. Discussion

As presented in literature, simple Bézier functions to provide synthetic stenosis ves-
sel images proved to increase the results in CNN implementations [Freitas et al. 2022]
[Ovalle-Magallanes et al. 2022]. Therefore, we have the conviction that the images simu-
lated by the toolbox presented in this work are suitable for learning algorithms training
and help to fill the lack of natural images problem. Moreover, the toolbox can provide
images that the Bézier approximations have difficulties making (bifurcations, for exam-
ple), besides being able to help train more general CNNs.



Although the examples presented in Figure 3a and 3b are clear simulations of the
real images, this is the closer approximations to real images presented in the literature
for the best knowledge of the authors since other studies used only the Bézier functi-
ons [Freitas et al. 2022] [Ovalle-Magallanes et al. 2022] [Antczak and Liberadzki 2018].
The novelty is in having more than one trajectory analytical function and the potential to
simulate complex structures of angiography images. Also, the severity of stenosis and
aneurysms in synthetic vessel images is up to user. Therefore, the presented toolbox pro-
vide the possibility of any angiographyc image simulation.

In addition, in this discussion we aimed to provide an alternative to the lack of
datasets for leaning algorithms, but another usage of simulated X-ray images is for aca-
demical purposes [Kengyelics et al. 2018]. The real X-ray angiographic images might be
rare, and therefore, any specific situation can be simulated for educational improvements,
or even, to emulate some particular cardiovascular disease.

The advantage of using the proposed toolbox is that there is no need of
training processes like in GAN methods. Moreover, GAN methods demand previ-
ous real images for training [Morı́s et al. 2021] [Shah et al. 2022][Srivastav et al. 2021]
[Togo et al. 2019], but in the case of angiographic X-ray the freely available images are
scarce and the user may also loose control of the vessel form in this specific case.

3D methods produced excellent results [Song et al. 2016], though the model
should be previously computed. For dataset building, creating several 3D models may
be a laborious task and time consuming. Naturally, the toolbox needs improvements. In
the future, new trajectory equations might be added to the toolbox portfolio.

5. Conclusion

In this work we presented an alternative to traditional data augmentation methods, con-
sisting in a toolbox for X-ray angiography image simulations through vessel trajectory
drawing with stenosis and aneurysms mimicking functions. The variability and realness
of synthetic images are provided not only by the addition of random variables, but also
through background gradient and white noise functions. Simulated images have been
proved useful for building datasets or balancing data classes for any computational algo-
rithm implementation that suffer from the low availability of real medical images, such as
CNN learning algorithms, which may require thousands of images for accurate training.
Future works include the evaluation of a CNN model performance when trained with our
synthetic data. The toolbox is open source and available on GitHub along with an exam-
ple code and a dataset of right coronary images created with the toolbox. Improvement
contributions are most welcome.
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