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Abstract. Electronic Health Records data are rich and contain different types
of variables, including structured data (e.g., demographics), free text (e.g., me-
dical notes), and time series data. In this work, we explore the use of these
different types of data for the task of in-hospital mortality prediction, which se-
eks to predict the outcome of death for patients admitted to the hospital. We
build base learning models for the different data types and combine them in
a heterogeneous ensemble model. In these models, we apply state-of-the-art
classification algorithms based on deep learning. Our experiments on a set of
20K ICU patients from the MIMIC-III dataset showed that the ensemble method
brings improvements of 3 percentage points, achieving an AUROC of 0.853.

1. Introduction
Electronic Health Records (EHR) data have extensively been used in the development
of machine learning models for several tasks within the medical field and pose a set of
challenges for the machine learning area. These challenges stem from various reasons,
including the temporal and sparse nature of the data, and the heterogeneity of data types
that are generated by a patient’s hospital admission. Data about a patient can be structured
text (e.g., demographics), free text (e.g., a description of the patient’s evolution), nume-
rical (e.g., vital signs), or even sound, image, and video. The volume and complexity of
the data increase even more if the patient needs to be admitted into an Intensive Care Unit
(ICU). These different types of data can be used to help understand the patient’s current
condition and create means to foresee the most likely outcomes for the patient.

In this work, we explore in-hospital mortality prediction, i.e., the task of assessing
whether a patient is likely to die during the course of a hospital stay. Such a prediction
should be made preferably using the data from the first hours of the patient’s admission
into the hospital or ICU. Predicting a possible outcome of a patient in the early stages of
admission is important to give the health professionals time to take an adequate course of
action to treat the patient properly – thus our prediction is based on data available in the
first 48 hours since the time that patients were admitted. More specifically, our analysis is
on mortality prediction of ICU patients. We model this problem as a binary classification
task, and the solution relies on supervised learning algorithms.

Our methodology was applied to 20K ICU stays from the Medical Information
Mart for Intensive Care (MIMIC-III) [Johnson et al., 2016] database. We explored the
diversity of patient data in MIMIC-III, including medical notes and vitals, to generate
accurate predictions. We grouped the patient’s features into structured data, structured
time series data, and textual time series data. Our analysis considered each data both



separately and combined using ensemble learning. Our goal was to assess the contribution
of different types of data combined in an ensemble and whether such a combination can
improve in-hospital mortality prediction.

The results obtained by the ensemble were 0.853 (95% CI [0.846, 0.861]) in terms
of the area under the receiver operating curve and 80% of true positive rate. This repre-
sents an increase of three percentage points compared to the best experimental run using
a single data type.

2. Background

In this section, we introduce the underlying concepts and techniques related to our metho-
dology for predicting in-hospital mortality.

2.1. Text Representations.

Because free text does not have a structure, machine learning methods cannot directly ex-
tract information from its raw format. As a result, we need to find a way to represent this
type of data so it can be fed into a machine learning algorithm. Representation Learning
is the field of Machine Learning that allows systems to learn and transform data into a re-
presentation that differs from its original format. The performance of Machine Learning
algorithms is directly affected by the data representation, and the process of hand engine-
ering a representation is laborious and requires domain knowledge. A popular method for
generating a continuous representation of a sentence is Doc2Vec [Le and Mikolov, 2014].
Doc2Vec can be used to generate a real-valued vector representation of the medical notes
associated with the patients. The new representation generated for an input text is able
to represent the semantic information from this text and can be used as input to a neural
network directly.

2.2. Deep Learning Algorithms.

Deep learning algorithms have shown impressive results in many classification tasks and
quickly became state-of-the-art. A key aspect is that these algorithms do not require
feature engineering, which is a time-consuming step in the classical machine learning
background. Recurrent Neural Networks (RNN) are Neural Networks that have the ability
to process sequential data, learning a probabilistic distribution over the sequence.

The Long Short Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997] is an
RNN architecture that uses a sophisticated, non-linear network activation function, based
on specialized units called gates to capture long-term dependencies in the data. An LSTM
model is composed of multiple gates that act on the gradient, controlling the gradient va-
lue inside each memory unit that builds the network. LSTMs can deal with time-series
data and are widely used in a diversity of classification problems for this capability. Here
we use it as one of our base-models. Convolutional Neural Networks (CNN) [Lecun
et al., 1998] are capable of extracting spatial or temporal features, using two different
operations, convolution and pooling. With these operations, CNNs output a smaller, more
meaningful representation that is fed to a highly connected network. Temporal Convolu-
tional Neural Network (TCN) is a modification to CNN, creating constraints to pooling
and convolution to transform sequential data without future data leaking to the past.



2.3. Ensemble Learning

An ensemble learning algorithm is a method of combining multiple models or generalizers
into a single model with better predictive performance. Usually, the models that compose
an ensemble reflect subspaces of the entire hypothesis space reflected by the data used.
One method to create and combine multiple models is Stacked Generalization, or Stacking
[Wolpert, 1992].

Given a set D = {(xn, yn), n = 1, ..., N}, with xn being the values of the fe-
atures for the data instance n and yn being the class of this instance, let us denote Dj

and D−j = D −Dj as the test and training set, respectively, of a j-fold cross-validation
over the dataset D. Now let us define a set of k learning algorithms, which we call base-
models, chosen to train over this data to generate a set of base-models M−j

k . For each
instance xn in Dj , we use the predictions zkn generated by each model M−j

k as the new
representation for xn. At the end of the cross-validation process, data is represented by
DCV = {(yn, z1n, ..., zkn), n = 1, ..., N} and is used to train a new model, which is called
meta-model [Ting and Witten, 1999].

3. Related Work
In medical sciences, an early prediction of the patient’s outcome is beneficial to improve
the quality of treatment and reduce costs. Thus, there is a significant body of research
aimed at early detection which relies on medical scores and/or machine learning.

3.1. Mortality Prediction using SOFA

The Sequential Organ Failure Assessment (SOFA) score [Vincent et al., 1996] provides
means for the identification of multiple organ failures. SOFA uses a numeric scale from
0 to 4, in which higher values mean a more significant organ dysfunction. Although it
was not designed for mortality prediction, some studies established a correlation between
the SOFA score (measured at the patient’s admission) and mortality [Jentzer et al., 2018,
Mbongo et al., 2009, Ho et al., 2007].

A systematic review [Minne et al., 2008] surveyed 18 studies that evaluated the
performance of SOFA for mortality prediction of ICU patients. The AUROC scores repor-
ted in these studies range from 0.61 to 0.87. Subsequently, Mbongo et al. [2009] analyzed
864 patients, with a mortality rate of 8.2%, and found that SOFA achieved an AUROC
of 0.846 when discriminating survivors vs. non-survivors. More recently, Jentzer et al.
[2018] analyzed 9,961 ICU patients with 893 (9%) of those having died in-hospital. The
SOFA score calculated on the first day predicted mortality with an AUROC of 0.828.

3.2. Mortality prediction using machine learning

Harutyunyan et al. [2019] presented a benchmark of several tasks in the medical field
using the MIMIC-III database [Johnson et al., 2016]. The authors trained several LSTM
architectures in different tasks in the medical domain. The goal was to use multitask
learning to extract certain useful information from the input sequence that single-task
models could not leverage. Instead, the authors created a single model that was trained
using all of the evaluated tasks. The results achieved a higher AUROC in all the tasks
in comparison with the metrics and the individual task models. For in-hospital mortality
prediction, the AUROC was 0.87 (95% CI [0.852,0.887]).



Pirracchio et al. [2015] compared medical scores for severity assessment with
machine learning algorithms. A Super Learner algorithm was trained on data from 24,508
patients from the MIMIC-II database Saeed et al. [2011] for in-hospital mortality using
the first 24h of data following the ICU admission. The AUROC results were 0.88 (95%
CI [0.87, 0.89]) outperforming APACHE-II, SAPS-II, and SOFA scores.

Sushil et al. [2018] used clinical notes from the MIMIC-III dataset to train classi-
fication algorithms for mortality prediction (in-hospital, post-30 days discharge mortality,
post-one-year discharge mortality). Using Stacked denoising autoencoder (SDAE) and
Doc2Vec to generate new representations for the concatenation of all clinical notes as-
sociated with the patient. The work achieved the highest AUROC of 0.9457 by feeding
only a bag-of-words representation into a feedfoward neural network for the in-hospital
mortality task.

Specifically, on the topic of ICU mortality prediction using different types of data,
there are two closely related works, which also used MIMIC-III [Weissman et al., 2018,
Hashir and Sawhney, 2020]. Weissman et al. [2018] used structured data from lab results
and bedside measurements and unstructured data from the medical notes. By employing
two approaches to add unstructured data to the machine learning model, the authors found
that adding unstructured data yields an improvement of 0.06 to 0.09 points in AUROC,
reaching 0.89 (95% CI [0.88, 0.90]).

Hashir and Sawhney [2020] uses hierarchical CNN-RNN to model multiple notes.
The experiments used around 35K ICU stays, and achieved the best results when a joint
model of notes and structured clinical time series was applied. This configuration scored
0.902 (95%CI [0.898, 0.906]) in terms of AUROC using data from the first 48h of the
patient’s stay.

The main aspects that differentiate this work from the works listed in this section
are as follows. The work by [Weissman et al., 2018] uses medical notes but it ignores
the time-changing information aspect of the patient state when there is a decision to con-
catenate all medical notes associated with each patient. In our work, we maintain the
time-varying aspect of data and make use of Deep Learning and representation learning
techniques that can handle time series as input. By maintaining the time aspect of the
data, we make use of the information present in the patient’s evolution during the ICU
stay, which could be favorable to our final predictor. In relation to the work by [Hashir
and Sawhney, 2020], we point to two main differences: (i) besides considering time-series
data, we also consider static structured data, and (ii) while their multimodal approach uses
joint training, ours relies on an ensemble of independent base-models.

4. Data preparation

Our data comes from the MIMIC-III database [Johnson et al., 2016], which has data for
patients admitted at the Israel Deaconess Medical Center ICU, in Boston. Each patient
has one or more hospital admissions in the database, and each hospital admission could
have one or more ICU stays.

During a stay, medical staff visits the patient several times to perform observati-
ons, take measurements, or administer treatments. Each of these is called an event, i.e.,
a categorical or numerical value measured at a specific point in time. Several events



could be created for a patient in a single visit. MIMIC-III has a total of 61,532 ICU
admissions. Our data selection for in-hospital mortality employed the same procedure
adopted by Harutyunyan et al. [2019]. The following stays were discarded:

• Multiple stays. Hospital admissions that had multiple ICU stays or had any trans-
fers between ICU units or wards during the period of hospitalization. The reason
is that the multiple ICU stays would be correlated as they belong to the same in-
dividual and a survival outcome may be followed by a death adding noise to the
model. These admissions correspond to 11,346 records.

• Patients under 18 years old were also removed due to differences between adult
and pediatric physiology. This step removed 7,910 ICU stays.

• Short stays. ICU stays of less than 48 hours are not relevant to this study since our
goal is to use the first 48 hours to predict the outcome. This filter removed 20,974
ICU stays.

• Stays without medical notes. All ICU stays that had no recorded medical notes in
the first 48h of stay were also removed. The reason for this is that it would create
an inconsistency in the comparison between the models generated with structured
temporal data and textual temporal data since missing values would affect the final
ensemble model.

Our final dataset has a total of 20,083 stays. Of those, 17,359 patients were dis-
charged alive from the ICU (negative instances) and 2,724 patients died (positive ins-
tances), making that an unbalanced dataset. From the selected ICU stays, we extracted
the events that are relevant to our classification problem. The values of each feature are
aggregated by hour, starting at the time of admission in the ICU, until the 48th hour. If
more than one measurement was made in this one-hour bucket, we calculate the mean.
To handle missing data, we filled each value with the last measurement, and in case no
measurement was taken, we use the mean value extracted from the entire dataset. For
clinical notes, we aggregated them by the concatenation of the notes.

5. Predicting In-hospital Mortality
We model the task as a binary classification problem in which the positive class is the
death outcome. We rely solely on data generated during the first 48 hours of the ICU
stay. Data about a patient can be divided into three types: (i) structured data (e.g., weight,
height, and sex); (ii) structured time-series data (e.g., results of exams and vital signs);
and (iii) textual time series (medical notes taken through the ICU stay).

We approached model creation using a stacking algorithm to create an ensemble
using multiple models trained on the different types of data. In addition, solutions for
tackling the class imbalance problem were employed both in the base- and meta-models.

5.1. Data Types

Each data type requires specific methods to allow its use in training a machine learning
algorithm.

Structured Data (SD). Our structured data consists of information that does not change
over time or data for which changes are not substantial. The purpose of the structured
data is to give contextualized information about the patient. The features in this category



are weight and height at admission, age, and sex. The weight and height variables were
extracted from the admission notes for each ICU stay, and the other values were extracted
from the admission data recorded for each stay.

Structured Time-Series (STS). data are generated by measuring patients’ vital signs and
recording the results of their laboratory exams performed during the patient’s ICU stay.
It consists of numerical and categorical data measured at a specific point in time by a
healthcare provider. Our STS features are Glasgow Comma Score, Systolic Blood Pres-
sure, Diastolic Blood Pressure, Mean Blood Pressure, Central Venous Pressure, Heart
Rate, Respiratory Rate, Blood Oxygen Saturation, Body Temperature, Hemoglobin, He-
matocrit, WBC, Platelets, Arterial pH, PaO2, FiO2, PaCO2, Lactate, Creatinine, BUN,
Bilirubin, Potassium, and Glucose. These features were selected by a physician and re-
flect the health state in which the patient’s physiological systems are at the moment. Data
from an ICU poses a diversity of challenges since their generation is a product of me-
asurements made by a team composed of different professionals and the nature of the
patient’s disease and condition. As a consequence, measurements are spread through
time at a variable rate, sometimes having hours between measurements and sometimes
minutes or days. One of the problems created by the irregular measurement of features is
missing values. For each feature, we have a total of 960,219 events; from those, 126,987
events come from patients who died in the ICU, and 833,232 from patients who survived.
During our experiments, the missing values were replaced by the previous measurement
or the mean value obtained by adding all events for each feature. To deal with the STS
data, the method needs to be able to process and extract meaningful patterns through time
and to deal with large volumes of high-dimensional data. For the purpose of classifying
STS data, we train LSTM and TCN models as these architectures have good performan-
ces dealing with temporal data, without the need for dimensionality reduction or feature
extraction. The training process for the model follows a process of hyperparameter tu-
ning on a subset separated from the training data, and the use of k-fold cross-validation
as training process.

Textual Time-Series (TTS). As measuring vitals and performing exams on patients ge-
nerates structured temporal data, a visit of a healthcare provider or a health exam can also
produce textual data describing the information that is important to understanding the
patient’s history and condition. Along with the challenges of dealing with textual data,
these texts are distributed through time, which adds another layer of complexity. Here,
the problem of missing data is yet more prevalent than on STS data. To be precise, the
total number of events in the extracted dataset is 143,970, with positive instances having
21,552 events and negative instances having 122,418. To be able to use textual data as
input to a machine learning model, we adopted the sentence embedding method using
Doc2Vec (discussed in Section 2.1) to transform the raw text into a real-valued vector.
This is done for each text associated with each patient, and in that manner, we preserve
the temporal aspect of the data, differently from the approach adopted by Weissman et al.
[2018] discussed in Section 3. To train the Doc2Vec model, we used all text available in
the MIMIC-III database, and not just the texts in our sample. Having large volumes of
text is important to yield good-quality representations. Since Doc2Vec is an unsupervised
method, it does not take the class we wish to predict into consideration. Thus, it does not
introduce bias over our classification model. After generating the representation model
and transforming the texts of our dataset to the new representation, we followed the same



Figura 1. The model training and evaluation pipeline.

steps taken for the STS data. It is important to notice that both models trained on STS and
TTS data used the same samples of patients and folds.

5.2. Balancing the Training Data

As discussed in Section 4, our dataset is very unbalanced, with the positive instances cor-
responding to 13.5% of the total. This distribution of data between classes can be harmful
to the final performance of the classification model since it could be biased towards the
negative class, which is more prevalent. To deal with this issue, we applied a random
undersample of the training data, and consequently the optimization data, by a rate of 1:1,
while maintaining the same distribution between classes in the test set

5.3. Ensemble Model Creation

As discussed in Section 2.3, ensemble classifiers usually have better predictive perfor-
mance since they combine more sources of evidence from the data. Our meta-models
combine the predictions of the base-models that were trained using data from a single
data type. There are four base-models (i) LSTM trained on the STS data, (ii) TCN trai-
ned on the STS data, (iii) LSTM trained on TTS, and (iv) TCN trained on TTS. The
classification results yielded by the models trained solely using SD were unsatisfactory



(i.e., around 0.6 in terms of AUROC). Thus, the class predictions made using SD were
not directly fed into the ensemble model. Instead, we concatenated the raw SD into the
predictions generated with STS and TTS data to compose the meta-model training and
test data. The rationale was to test whether, despite not yielding good predictions on its
own, SD could still be useful when combined with other patient data that could potentially
provide more context.

Figure 1 illustrates the pipeline used to train our classification models. In (1), the
dataset is split into hyperparameter tuning and model evaluation with each subset accoun-
ting for 85/15% of the instances, respectively. The split was stratified to maintain the
same class distribution in each partition. Hyperparameter tuning (2) takes the tuning par-
tition and runs the hyperparameter search algorithm for each of the base-models. Then,
with these selected hyperparameters, in (3) we execute the leraning process for each clas-
sification algorithms, using k-fold cross-validation.

In step (4), the predictions (i.e., class probabilities) from the trained base-models
are used as training data for the meta-model. To avoid data leakage, the training folds
is split into p-1 training folds to generate the probabilities for the remaining fold. This
process is repeated p times, and at the end of this process, we have the predictions for all
instances for the first training folds. In (5) we generate the test data for the meta-models
by training the base-algorithms on the training folds and generating the predictions on the
test fold. In (6) and (7) the base- and meta-models evaluation metrics are computed on
the test-folds.

6. Experiments
In this section, we describe the experimental evaluation that we performed aiming at
answering the following questions: (i) What type of data provides the best classification
performance? and (ii) Does combining different types of data in a heterogeneous ensem-
ble model improve the results of in-hospital mortality prediction?

6.1. Materials and Methods
Our experiments were done in Python. Keras was used for training the models, and Pan-
das was used to manipulate and process the dataset. Scikit Learn was used to compute
the evaluation metrics and to generate the meta-models. Hyperparameter tuning was done
using the Hyperband method [Li et al., 2017] in the Keras Tuner library. For each hyper-
parameter optmized, we define a min and max value to use as range for the Hyperband to
search on. The hyperparameters and their values are: number of hidden layers between
one and four; the units for each layer between eight and 256. For TCN specifically, we
varied the kernel size between three and five, the number of dilations between one and
four. The use of a dropout was conditioned randomly for each layer and varied between
0.2 and 0.5. We set the loss function to Binary Crossentropy, the hidden layer activation
as LeakyRelu, the training optimizer as Adam, and the activation as the Sigmoid function.

The training process follows the Stacking algorithm. The base-models were trai-
ned using 5-fold cross-validation and, for each loop, the network output for each instance
in each testing fold was concatenated with its respective structured features and to the
meta-model. After generating the training data, we create the data that will be used
to evaluate the meta-models by training each classification algorithm used in the base-
models in the entire training dataset, generating their predictions and concatenating them



with the structured features for the ensemble evaluation dataset. For the meta-models, we
employed Support Vector Machine with linear kernel and Logistic Regression.

Our results were scored according to six widely used classification metrics, na-
mely Precision, Recall, TP Rate, AUROC, and F-Score. Since our data is unbalanced, we
looked at F-Score in two ways – assigning equal weights to the instances (W F-Score) and
assigning equal weights to the classes (U F-Score). Using different metrics is important
to allow interpreting the results from different perspectives.

6.2. Results

Base-models. Table 1a shows the results of the evaluation metrics calculated using 5-fold
cross-validation for all base-models. Lines 1 and 2 show the scores for models trained
only on SD data. We observe a high TP Rate and a low Recall, which shows that these
models sacrificed the ability to classify negative instances to be able to classify positive
instances. Between the algorithms, the highest TP Rate was obtained by SVM (line 1).
SVM is the best-performing model for classifying positive instances, however, its low Re-
call is a result of a high number of false positives. STS data type had a better performance
with TCN (line 4), achieving the best score for Precision, W F-Score, U F-Score, and AU-
ROC. This algorithm had a better TP Rate than the LSTM (line 3). The TTS data type
results have a particular case. Both TCN and LSTM (lines 5 and 6) have similar scores in
AUROC. LSTM had a better performance classifying negative instances and TCN had a
better performance classifying positive instances. This can be seen by LSTM’s lower TP
Rate and higher Recall.

By analyzing all results obtained using each data type, STS clearly had a better
classification performance compared to the other data types. Thus, we conclude that the
answer to our first question is that STS is the data type with the best predictive power.

Finally, our results show that no single algorithm or data type was able to achieve
good results in all evaluation metrics. In this sense, the choice of the best model depends
on the goals of the task at hand.

Meta-Models. The results of the experimental runs using a combination of data types
are in Table 1b. The best experimental run is the one in which all types of data were
combined, i.e., SD+STS+TTS using LR (line 8). It had the best results in terms of Recall,
W F-Score, U F-Score, and AUROC, while maintaining a high performance in TP Rate
and Precision.

Comparing the results of the different classification algorithms on the ensembles,
we see that SVM is still associated with the highest TP Rate (line 13) and the lowest
Recall (line 11), U F-Score, and W F-Score. LR had more stable results. By analyzing the
performances, we conclude that if the goal is to prioritize the identification of the positive
class, the SVM algorithm is the best, but at cost of the performance on the negative class,
which produces a high number of false positives. However, if the goal is to maintain a
good balance between the performance in positive and negative classes, the LR algorithm
is the best option.

Figure 2 shows the results for each data type used on their own and in heterogene-
ous combinations (the best run for each data type/combination was selected for compari-
son). We use primary/secondary colors to denote the data types and their combinations,



Tabela 1. Results for the experimental runs. Best scores in bold

(a) Results for the base-models using 5-fold cross-validation.

Data Type Algorithm Precision Recall W F-Score U F-Score TP Rate AUROC

1 SD SVM 0.807 0.314 0.296 0.276 0.830 0.582
2 SD LR 0.801 0.551 0.620 0.473 0.616 0.612
3 STS LSTM 0.854 0.730 0.769 0.621 0.710 0.790
4 STS TCN 0.869 0.728 0.769 0.631 0.794 0.824
5 TTS LSTM 0.831 0.639 0.693 0.542 0.670 0.712
6 TTS TCN 0.840 0.578 0.639 0.508 0.757 0.714

(b) Results for the heterogeneous ensemble models.

Data Types Algorithm Precision Recall W F-Score U F-Score TP Rate AUROC

7 STS+TTS SVM 0.874 0.739 0.778 0.643 0.813 0.844
8 STS+TTS LR 0.873 0.755 0.790 0.654 0.788 0.844
9 SD+STS SVM 0.875 0.666 0.718 0.591 0.869 0.841
10 SD+STS LR 0.872 0.761 0.795 0.657 0.775 0.841
11 SD+TTS SVM 0.864 0.466 0.522 0.436 0.911 0.759
12 SD+TTS LR 0.850 0.650 0.704 0.564 0.759 0.761
13 SD+STS+TTS SVM 0.881 0.573 0.615 0.518 0.927 0.852
14 SD+STS+TTS LR 0.876 0.761 0.795 0.661 0.800 0.853

Figura 2. Results for different data types and heterogeneous combinations

i.e., the individual data types are represented by blue (SD), yellow (STS), and red (TTS);
the combination of SD and STS is in green, and so on. We found that despite SD having
the lowest results, if used in combination with other data types, the results improve. This
can be seen comparing, for example, lines 3 and 10 in which SD+STS is better than any
of these data types used in isolation. In Figure 2, the green bar is consistently higher than
the blue and yellow bars. We can conclude that the answer to our second question – Does
combining different types of data in a heterogeneous ensemble model improve the results
of in-hospital mortality prediction? is yes. We see a clear improvement when all data
types are combined using LR algorithm.

Comparison with a Baseline. The intuition for using SOFA as a baseline is to obtain
a classification model based on a popular score that is widely applied in predicting the
clinical outcomes of critically ill patients. To be comparable with our experimental runs,
in which only the first 48 hours of data are considered, our baseline used the hourly SOFA



scores for this time window. With the hourly SOFA scores for each patient, we extracted
time-series features for SOFA values for each ICU stay using the Python package tsfresh
[Christ et al., 2018]. Then, the same package was used to select the relevant features.
Next, we ran a Logistic Regression classifier on these features.

The heterogeneous ensemble used in the comparisons in this section combines
all three data types using a LR classifier. Its details are in line 8 in Table 1b. We also
calculated AUROC for the SOFA baseline. The result was 0.755 (95% CI [0.744 0.767]),
being outperformed by our ensemble model which had an AUROC of 0.853 (95% CI
[0.846, 0.861]). As reported in Section 3.1, previous works using SOFA for mortality
prediction have identified AUROC results ranging from 0.61 to 0.87. Our scores are
within that range. In relation to the work by [Jentzer et al., 2018], the lower scores found
here can be explained by our larger number of instances (we use twice as many patients)
and the fact that the patients in the aforementioned work were from a single cardiac ICU
and here the patients come from five different ICUs and from a wider spectrum.

Finally, we inspected the confusion matrices generated for the SOFA model and
for the same heterogeneous ensemble (LR-SD+STS+TTS). The heterogeneous ensemble
was able to correctly classify an additional 368 patients into the positive class (an increase
of 25%) and 169 into the negative class.

7. Conclusion
We investigated the use of ensemble models built using heterogeneous types of data
(structured, text, and time series) for in-hospital mortality prediction. We carried out a
series of experiments using data for 20K hospital stays from MIMIC-III. We designed a
methodology to process each type of data. First, base-models were created for each type
on its own and then the different data types were combined in meta-models using ensem-
ble learning with the stacking strategy. Our results were evaluated using six classification
quality metrics.

Looking at the results of the base-models, we concluded that, among the indivi-
dual data types, structured time series provided the best classification models. When the
heterogeneous meta-models were considered, we verified that the use of different types
of data brings increases the classification performance.

The results obtained in this work can be used as a base for future studies using
heterogeneous data types. Here we applied an ensemble methodology, in which models
could be trained with specific types of data without influencing each other, and achie-
ved an increase in performance with the meta-model. This leaves an open question as to
whether it is possible to obtain performance improvements by combining the heterogene-
ous data types in some other manner, e.g., in a joint training method [Hashir and Sawhney,
2020].
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