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Abstract. This paper proposes a computational method for automatically de-
tecting suspected regions of COVID-19 from CT scans. COVID-19 has spread
rapidly worldwide, infecting over 462 million people and causing over 6 mil-
lion deaths. There are various methods to diagnose COVID-19, including ima-
ging. The proposed method has five stages, including image acquisition, pre-
processing, lung extraction, segmentation of suspected regions using U-Net
2.5D and Pix2Pix architectures, and result validation. The method achieved
promising results, with 92% Dice for lung parenchyma segmentation, 82% Dice
for suspected region segmentation using U-Net, and 71% Dice using Pix2Pix. It
could potentially be integrated into clinical environments as a real aid system.

1. Introduction
On March 11, 2020, the World Health Organization declared the outbreak of the novel
coronavirus as a pandemic. According to the COVID-19 Dashboard tool developed and
maintained by Johns Hopkins University (JHU) [JHU 2021], COVID-19, the disease cau-
sed by the virus, has caused over 6.4 million deaths and infected more than 578 million
people worldwide as of March 2022 [JHU 2021].

Vaccines for COVID-19 are currently limited to countries with financial resour-
ces, resulting in low vaccine coverage in many countries. While Brazil has shown sig-
nificant decreases in pandemic numbers due to vaccination, expanding vaccine coverage
worldwide is necessary to return to normality, as insufficient coverage may lead to the
emergence of new virus variants [Ramos et al. 2022]. Rapid tests and RT-PCR tests are
encouraged for diagnosis and fighting against COVID-19 [Bastos et al. 2020]. However,



RT-PCR tests are primarily available through private clinics and pharmacies, making it
difficult for low-income populations to access them.

In addition to tests, the diagnosis of COVID-19 can be made by image
exams such as chest X-ray [Freire et al. 2022] and Computerized Tomography
(CT) [Costa et al. 2021]. X-ray exams are more affordable because they require more
popular equipment. However, CT exams produce images with more detail, which ma-
kes the diagnosis more efficient. Since it was declared a global pandemic affected by
COVID-19, scientists worldwide have been creating methods and tools that can help
in the segmentation and classification of lesions caused by Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2), especially in imaging tests [Silva et al. 2023,
de Sousa Filho et al. 2022, Silva et al. 2021].

This research explores classic image processing techniques in conjunction with
machine learning to provide an automatic and efficient mechanism for detecting lesi-
ons caused by SARS-CoV-2 infection from CT analysis. We propose a fully automated
method for detecting COVID-19 lesions from CT images using two deep learning archi-
tectures: U-Net and Pix2Pix.

Our research presents three main contributions: 1) an automatic and efficient
method for lung parenchyma segmentation; 2) an automatic method for detecting regions
affected by COVID-19 using U-Net 2.5D and adversary networks (Pix2Pix) to provide
specialists with a more detailed clinical analysis of each detected region; and 3) a compa-
rative study of deep learning architectures for lung region segmentation in the context of
COVID-19.

The remainder of this research is divided into the following sections: Section 2
summarizes related works, Section 3 describes our methodology, Section 4 presents our
qualitative and quantitative results, comparisons, and discussions of our method, and Sec-
tion 5 outlines our conclusions and future work.

2. Related works
This section presents the works related to this research that segment COVID-19 lesions
and lung parenchyma in CT exams. Studies on the subject have been published worldwide
in search of solutions that help computer-assisted detection of COVID-19. The researches
above are a sample of recent publications developed to target injuries caused by COVID-
19. Table 1 presents a summary of the most relevant aspects of each work.

Table 1. Summary of related works.

Author(s) Database DSC (%) Type Architecture
Wang et al. [Wang et al. 2020] private 80,72 automatic COPLE-Net

Ouyang et al. [Ouyang et al. 2020] private - automatic VB-Net
Oulefki et al. [Oulefki et al. 2021] COVID-CT 71 automatic Limiar

Hasanzadeh et al. [Hasanzadeh et al. 2020] private 77 automatic U-Net
Müller et al. [Müller et al. 2020] COVID-19 CT Ma et al. 76 automatic U-Net 3D

Xu et al. [Xu et al. 2020] COVID-19 CT JUN et al. 76 automatic GAN
Fang et al. [Fang et al. 2021] private 74 automatic Cycle-GAN

All works analyzed, with the exception of Wang et al. [Wang et al. 2020], Ha-



sanzadeh et al. [Hasanzadeh et al. 2020] and Xu et al. [Xu et al. 2020], perform a seg-
mentation step of the lung parenchyma. Ouyang et al. [Ouyang et al. 2020], Müller et
al. [Müller et al. 2020] and Fang et al. [Fang et al. 2021] use masks of the lung region
generated by the architectures proposed by them, as well as in the method proposed by
this work.

Although many studies already use deep learning approaches in their conception,
the proposed study intends, in more detail, to:

• Develop an automatic strategy for extracting the lung parenchyma to reduce the
specialist’s intervention and delimit the analysis regions for later steps;

• Carry out a study that enables the analysis of the deep learning architectures stu-
died in this research; and,

• Investigate the effectiveness of changing architectures for analyzing the problem
under study.

3. Method

In this section, we present the five steps of the proposed methodology for detecting
COVID-19 lesions, which are as follows: i) Acquiring the image databases containing
the CT exams; ii) Performing the pre-processing stage, which involves standardizing the
input images; iii) Extracting the lungs to remove other structures that are not of interest;
iv) Segmenting suspected regions affected by COVID-19 using U-Net and GAN architec-
tures; and, v) Evaluating the results.

Figure 1 provides a summary of these steps.

Figure 1. Proposed method.

3.1. Image acquisition

The present work uses two datasets of lung CT images obtained from public repositories
in its experiments.



• Dataset 1: COVID-19 CT Lung and Infection Segmentation Dataset - this work
uses exams from the image source Coronacases, composed of 10 exams and 10
lung and lesion masks. The images in this dataset have dimensions of 512x512
pixels, with up to 12bits of resolution and varying depths. In total, this dataset has
2581 images. CTs are scored by two radiologists and verified by a third radiolo-
gist [Jun et al. 2020].

• Dataset 2: COVID-19 CT Segmentation Dataset - has 9 exams, each exam has
630x630 pixels resolution, with different depths and up to 12bits of resolution.
Altogether, this database contains 829 sections evaluated by a radiologist as posi-
tive or negative for COVID-19 and with lesions duly noted [MedSeg 2020].

Both datasets used have the markings of lesions and lungs. Understanding that
only the region of the lung parenchyma presents the regions with lesions, we propose a
sequence of steps to generate automatic masks for the parenchyma. Thus, we are conside-
ring the application of the method to bases that do not have lung markings. This process
is described in Section 3.3.

3.2. Pre-processing
Each dataset has different dimensions for their exams. As our method used U-Net Archi-
tecture [Ronneberger et al. 2015] and to meet the various configurations of experiments
that we performed, the images went through a process to adjust dimensions, that is, height
and width. Square images avoid distortion.

Initially, we defaulted all exams to 640 x 640. For this process, we created a new
volume with new dimensions (640 x 640). This volume has values 0 (zero). After that, we
move the original volume to the center of the new volume. It is important to note that we
have only standardized the height and width of the exam, i.e., we have not modified the
depth. After, a normalization was applied to the resulting images so that they all started
to have only positive pixel values, since the original images are measured in Hounsfield
Units, and this one has negative and positive values.

Thus, at the end of the pre-processing stage, we obtained two datasets with dimen-
sions of 640 x 640 pixels with images with only positive values. These new datasets were
used as input to the architectures studied for the segmentation of lung parenchyma for the
segmentation of COVID-19 lesions.

3.3. Lung parenchyma extraction
After standardizing the datasets, we developed a preliminary lung parenchyma extraction
step. We chose to do this as it drastically reduces the search space for segmentation
techniques in regions suspected of being affected by COVID-19. For lung extraction, the
following steps were applied:

1. Initially, we applied the Otsu algorithm to the input image, so that the lung was
separated from the other structures (Figure 2(b));

2. Next, we perform a vertical cut in the center of the image resulting from the Otsu
algorithm, generating two new images (Figure 2(c));

3. For each new resulting image, the second largest region was selected, and the two
extracted segments were recombined forming a new image that contains only the
region of each lung, that is, the lung parenchyma (Figure 2(d));



4. After that, we apply a closing process using morphological operations to eliminate
gaps present in the segmentation and edge corrections. In this step, a structuring
element in the shape of a sphere was used, with radius 3 (Figure 2(e));

Figure 2. Sequence of steps for lung parenchyma extraction. (a) CT image; (b)
Threshold with Otsu; (c) Vertical cut in the center of the image resulting
from the Otsu algorithm, generating two new images; (d) Selection of the
second largest region in the two images generated in the previous step;
(e) Result after application of morphological operations.

The result of this processing are the images that are passed as input to the neural
networks.

After generating the masks, to reduce the need for computational power, we chose
to identify, from the lung masks, the largest existing bounding box between the two da-
tasets. All images from both datasets were cut using this identified bounding box as a
reference. After the end of this process, the dimensions for the two datasets became 544
x 544 pixels, smaller than the original ones for the two datasets. This reduction in dimen-
sions contributes to reducing processing consumption and, consequently, optimizing the
training time of neural networks.

3.4. Segmentation

After applying the pre-processing and lung extraction steps, this work proposes the seg-
mentation of COVID-19 lesions. In CT, the most common lesions are ground-glass
opacities, mosaic paving, consolidations, reticular opacities, subpleural lines, inverted
halo sign, and pleural thickening [DE CARVALHO BRITO et al. 2021]. The proposed
method explores two CNN architectures U-Net and Generative Adversarial Network
(GAN).

3.4.1. U-Net

The architecture of CNN U-Net was proposed by Ronneberger et
al. [Ronneberger et al. 2015] for semantic segmentation purposes. The original
construction of this network consists of 23 convolutional layers interleaved by ReLU and
maximum pooling operations. The architecture gets its name because it was conceived in
a structure that resembles the letter U. The descent is a path of contraction, and the ascent
is a path of expansion.

The hiring path follows the typical architecture of a convolutional network. It
consists of the repeated application of two 3x3 convolutions (unfilled convolutions), each
followed by a ReLU and a maximum 2x2 pooling operation with step 2 for downsampling.



Each step in the expansive path consists of an increase in the resolution of
the feature map followed by a 2x2 convolution (up convolution) that halves the num-
ber of feature channels, a concatenation with the feature map correspondingly clip-
ped from the contracting, and two 3x3 convolutions, followed by an activation layer
ReLU [Ronneberger et al. 2015].

The model used in this work differs from the original as it uses a 2.5D approach.
This approach consists of a stack of adjacent slices and producing a prediction for at least
the central slice. The approach gives the network the possibility to capture 3D spatial
information [Vu et al. 2020].

The U-Net is trained with slices of CT from the axial plane at a size of 544 x 544
pixels. The network takes as input a central slice and its front and back slices, i.e., three
axial slices. The output of the U-Net is the segmentation mask of the central slice. The
network receives an image of the CT and the mask of the specialist as input. The network
train to optimize the Dice Loss function.

3.4.2. Generative Adversarial Networks

GAN is a type of architecture proposed by GOODFELLOW et
al. [GOODFELLOW et al. 2014]. The principle of this network is to train two
networks simultaneously. A generator G and a discriminator D where the weights of the
generator and the discriminator are updated simultaneously.

The G network has the function of generating new data samples based on the dis-
tribution of the real training data. The D discriminator network estimates the probability
that the sample came from the separated data for training instead of having been generated
by G [GOODFELLOW et al. 2014].

In this research, we used the Pix2pix network, an architecture based on GAN
concepts originally proposed by [Isola et al. 2017]. The Pix2Pix architecture is composed
of two networks. The first is a generator G, which is built based on the U-Net conception
where jump connections were added, following the general form of a U-Net. Specifically,
the connections between each i layer and the n− i layer are ignored, where n is the total
number of layers. Each jump connection simply concatenates all channels in the layer
with that layer n− i [Isola et al. 2017]. The generating network of this work differs from
the original one as it was altered by the original U-Net, described in Subsection 3.4.1.

Training together with the generator, there is too, a discriminator D, composed
of a Convolutional Neural Network called PatchGAN, which consists of a Convolutional
Neural Network without dense layers. This discriminator tries to classify whether each
patch N × N in an image is real or fake. Run the discriminator by convolution on the
image, averaging all responses to give the final output [Isola et al. 2017].

The Pix2Pix [GOODFELLOW et al. 2014], where a generator network G and a
discriminator network D compete in a minimax game [GOODFELLOW et al. 2014]. The
original network G has been changed to U-Net 2.5D described in Subsection 3.4.1.

Network D was kept the same as the original architecture and is composed of a
Convolutional Neural Network of the PatchGAN type, described in Subsection 3.4.2.



3.4.3. Training

It is important to note that, for the network architectures to learn the behavior of COVID-
19 lesions, only the CT images containing the lesions and their respective masks are given
as input. Table 2 presents the configurations of the training stage for both architectures.

Table 2. Training settings

Architec. Epochs Opt. Batch site Error Func. Learning Rate
U-Net 150 Adam 1 Dice loss 0.00001

Pix2pix 150 Adam 1 Dice loss 0.0002

At the end of each training, the best model (defined from the result of maximizing
the evaluation metric Dice) was saved. This model was used in the prediction stage of the
test sets exams to validate the proposed method.

3.5. Validation of results

The results were validated using the indicators: Dice coefficient (Dice), Intersection Over
Union index (IoU), Sensitivity (SEN), Specificity (SPE), Accuracy (AC), Area Under the
ROC Curve (AUC), Precision (Prec) and F-Score (FS). These indicators are calculated
based on the prediction of the segmentation architecture and the tagging done by the
expert.

4. Results and Discussion

This section presents and discusses the results obtained by the proposed method to seg-
ment the lung parenchyma and detect COVID-19 on CT scans. The experiments were
performed on a machine with a 2.10 GHz Intel Xeon E5-2683 v4 processor, 128 GB of
RAM, and an Ubuntu 18.04 LTS operating system.

4.1. Extraction of lung parenchyma

Before carrying out the experiments, the Datasets went through a pre-processing step
(Section 3.2). Fallowing, we performed the extraction step of the lung regions. Table 3
presents the results obtained with the set of techniques proposed here.

The results observed for the segmentation of the lungs, make the proposed method
a good alternative for application in image Datasets that do not have specialist masks
for the lung parenchyma. It is possible to notice that the proposed method obtained an
average DICE of 92%. Thus, the set of techniques for parenchyma extraction was selected
to compose the proposed method. In addition to showing better results, it has a lower
computational cost as it does not require a training process.

4.2. Segmentation of lesions

This section presents the results of the segmentation step of COVID-19 lesions on CT
images. For this step, two architectures of CNNs previously described were used. The
training settings used were described in Table 2.



Table 3. Results by examining the segmentation of the lungs with the proposed
thresholding technique.

Exam Dice IoU SEN SPE AC AUC Prec FS
CT 1 0.919 0.851 0.867 0.997 0.981 0.932 0.979 0.919
CT 2 0.926 0.862 0.867 0.999 0.984 0.933 0.994 0.926
CT 3 0.966 0.934 0.946 0.999 0.993 0.972 0.987 0.966
CT 4 0.917 0.846 0.849 0.999 0.978 0.924 0.996 0.917
CT 5 0.929 0.867 0.874 0.999 0.984 0.936 0.991 0.929
CT 6 0,913 0,840 0,842 1,000 0,987 0,921 0,996 0,913
CT 7 0.918 0.849 0.852 0.999 0.979 0.926 0.995 0.918
CT 8 0.923 0.858 0.928 0.988 0.980 0.958 0.919 0.923
CT 9 0,941 0,889 0,892 1,000 0,992 0,946 0,997 0,941
Avg 0.928 0.866 0.880 0.998 0.984 0.939 0.984 0.928

To ensure that architectures can learn disease characteristics, slices without lesions
are removed from training and validation sets, resulting in 1160 slices for dataset 1 and
364 slices for training and validation for dataset 2. It is important to highlight that, for
the tests stage, the exams were used in their entirety, i.e., all the images contained in the
patient’s CT exam. For each architecture, in the detection stage of regions suspected of
being affected by COVID-19, five experiments were carried out where:

1. We apply the cross-validation technique (K-fold) with K equal to 10 and 9, for the
dataset 1 and dataset 2, respectively (experiment 1 and 2);

2. The training was performed with Dataset 2 and the test with Dataset 1, and vice
versa (experiment 3 and 4);

3. And finally, the two datasets were mixed, and we applied K-fold with K equal to
10 (experiment 5).

Table 4 presents the average of the results obtained by experiments 1 and 2.

Table 4. Experiments 1 and 2: Results obtained for tests with the U-Net and
Pix2Pix architectures.

Exp. Dice IoU SEN SPE AC AUC Prec FS
U-Net

1 0.73 ± 0.1 0.59 ± 0.1 0.78 ± 0.1 0.99 ± 0.0 0.99 ± 0.0 0.89 ± 0.0 0.71 ± 0.1 0.73 ± 0.1
2 0.27 ± 0.2 0.18 ± 0.1 0.22 ± 0.2 0.99 ± 0.0 0.93 ± 0.0 0.61 ± 0.1 0.93 ± 0.1 0.27 ± 0.2

Pix2Pix
1 0.71 ± 0.1 0.56 ± 0.1 0.73 ± 0.1 0.99 ± 0.0 0.99 ± 0.0 0.86 ± 0.0 0.75 ± 0.1 0.71 ± 0.1
2 0.35 ± 0.3 0.27 ± 0.3 0.49 ± 0.4 0.99 ± 0.0 0.98 ± 0.0 0.68 ± 0.3 0.60 ± 0.4 0.35 ± 0.3

Tests performed on Dataset 2 show less expressive results than those obtained in
tests with Dataset 1, for two architectures. We believe that this may be due to the smaller
number of image samples and the fact that this dataset contains less homogeneous exams
than the dataset 1. Next, we present the results for experiments 3 and 4 (Table 5).

It is possible to notice that when the test is performed in Dataset 2, the results
show a worsening compared to tests on Dataset 1. We believe that this architecture was



Table 5. Experiments 3 and 4: Results obtained for tests with the U-Net and
Pix2Pix architectures.

Exp. Training Test Dice IoU SEN SPE AC AUC Prec FS
U-Net

3 Dataset 1 Dataset 2 0.14 0.09 0.11 0.99 0.92 0.55 0.33 0.14
4 Dataset 2 Dataset 1 0.82 0.70 0.83 0.99 0.99 0.91 0.84 0.82

Pix2Pix
3 Dataset 1 Dataset 2 0.15 0.10 0.15 0.99 0.96 0.57 0.18 0.15
4 Dataset 2 Dataset 1 0.12 0.06 0.16 0.99 0.99 0.58 0.10 0.12

not efficient in learning the characteristics of lesions in these test settings. Continuing
with the flow of experiments, we have in Table 6 the results for experiment 5.

Table 6. Experiment 5: results obtained for tests with the U-Net and Pix2Pix
architectures.

Exp. Dice IoU SEN SPE AC AUC Prec FS

U-Net

5 0.49 ± 0.2 0.37 ± 0.2 0.52 ± 0.3 0.99 ± 0.0 0.98 ± 0.0 0.76 ± 0.1 0.63 ± 0.2 0.49 ± 0.2

Pix2Pix

5 0.48 ± 0.3 0.37 ± 0.2 0.52 ± 0.3 0.99 ± 0.0 0.98 ± 0.0 0.76 ± 0.1 0.55 ± 0.3 0.48 ± 0.3

Experiment 5 showed lower results when compared to the other experiments. We
believe that this may have occurred due to the complexity of the exams, as the CT scanners
used in the acquisition of the exams are different, which causes variations in contrast,
which directly influences the convergence of the model.

4.3. Discussions

The present research presented an automatic method of detecting COVID-19 using deep
learning techniques to target regions suspected of being infected with the new Coronavi-
rus. For experiments performed with U-Net, the best results were obtained in experiment
4, with a Dice of 82%. Using the Pix2pix architecture, the best results were obtained in
experiment 1, with a Dice of 71%. Finally, in experiment 5, which represents a greater
amount of images for training and, consequently, a greater complexity, both architectures
showed acceptable results, but improvements are needed.

Table 7 presents a comparison of the proposed method with related works pre-
sented in Section 2. We know that the task of comparing results is not trivial, so the
comparison made here is only quantitative without merits or demerits to other related
works. We also emphasize that only a sample of the works related to this research was
analyzed since this is a topic of great relevance in the last two years. The volume of
published works is very large, which makes an analysis of all works unfeasible.



Table 7. Comparison with related works

Work Dice (%) SEN (%) ESP (%) Type Exams Slices Lung Seg
[Wang et al. 2020] 80.72 - - auto. 378 76250 no

[Ouyang et al. 2020] - 87 93 auto. - 4982 yes
[Oulefki et al. 2021] 71 73 99 auto. 275 - yes

[Hasanzadeh et al. 2020] 79 - - auto. - 8739 no
[Müller et al. 2020] 76 73 99 auto. 20 - yes

[Xu et al. 2020] 76.7 - - auto. 20 - no
[Fang et al. 2021] 74 73 - auto. 77 2536 yes

Our U-Net 82 83 99 auto. 19 1524 yes
Our GAN 71 73 99 auto. 19 1524 yes

Before comparing the results, it is important to note that some of the methods
presented in related works use sets of images that are different from those used in the
proposed method of this work. Additionally, not all metrics adopted in this work are
present in the related works. Thus, a more accurate and faithful analysis could not be
performed.

Upon analyzing Table 7, we can see that the proposed method using the U-Net
architecture obtained a better Dice coefficient than the methods analyzed in related works.
On the other hand, when using the Pix2pix architecture, the results presented were similar
to those obtained by other works presented.

Given the advances of the proposed method, we would like to highlight the fol-
lowing:

• This research presents a set of techniques for lung parenchyma segmentation that
are relevant and efficient, as they are simple to implement and execute compared
to approaches using deep learning techniques.

• The Pix2Pix and U-Net architectures exhibit good results for the task of seg-
menting COVID-19 lesions, when compared with the results obtained by related
works.

• The proposed method detects whether or not the patient has COVID-19 and in-
dicates the regions suspected of being infected by COVID-19. This is extremely
useful, as it provides specialists with new perspectives for analyzing the lesion.

• The architectures were applied to a series of complex and diversified experiments,
evaluated through several evaluation metrics with cross-validation, ensuring that
all samples have been trained and tested.

As limitations, in addition to those already known that surround methods based on
deep learning, we highlight: i) The presence of false positives, specifically in the results
produced by the Pix2Pix architecture; and, ii) The need for a greater amount of images so
that the models can detect small lesions.

5. Conclusion
This research demonstrates that traditional techniques, such as Otsu and mathematical
morphology, are efficient in extracting lung parenchyma, while the U-Net and Pix2pix



architectures can be used to identify regions suspected of being affected by COVID-19.
The results obtained from experiments conducted on two public databases indicate that
the proposed method can be integrated into a system to assist health professionals in real
clinical settings in segmenting COVID-19 lesions and lung parenchyma on CT scans of
the lungs.

In future works, we intend to apply post-processing steps to the results obtained,
such as reducing false positives using morphological operations. We also plan to investi-
gate the use of data normalization techniques, such as quantization of values, and evaluate
the effectiveness of data augmentation techniques.
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