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Abstract. Immunosenescence refers to the alterations in the immune system that
occur due to the aging process, which increases susceptibility to diseases and
reduces vaccine efficacy. Consequently, understanding the impact of aging on
the immune system is crucial for simulating the different ways in which it can
be challenged, thereby increasing life expectancy and quality of life. This study
combines two mathematical models to understand how cortisol affects and is
affected by the glucose uptake and the pro- and anti-inflammatory cytokines
under infection. Cortisol concentration follows a diurnal rhythm and increases
with glucose intake. The model simulates the influence of cortisol on the immune
response, specifically through cytokine regulation.

1. Introduction
According to the World Health Organization, the parcel of the population over 60 years
will increase from 1 billion in 2020 to 1.4 billion in 2030 and up to 2.1 billion in 2050
[WHO 2020]. People are living longer but that does not necessarily mean that longer
lives are healthy lives until the end. Thus, understanding the aging process and its con-
sequences is necessary, as we would all profit from increased longevity maintaining the
best quality of life possible. Aging can be defined as the natural process of gradually
reducing the functionality of the organism; the term senescence encompass that impact
[Agondi et al. 2012].

The human body is extremely complex and is comprised of a set of systems that
must act together like a symphony to guarantee proper behavior. Among those systems,



the most important against invaders is the Immune System. With aging a progressive de-
cline in the functions of this system and, consequently, increased susceptibility to chronic
diseases, infections and reduced response to vaccines is observed. This phenomenon is
called immunosenescence and is a major concern for the future of the world population
[Bosch et al. 2013].

Mathematical modeling is highlighted as a resourceful research tool in the area
of computational biology. It provides great possibilities to explore and improve un-
derstanding of complex systems such as the immune system as it allows more simula-
tions and experiments are performed without the need for in vitro studies, for example
[Marchuk and Romanyukha 2010]. It is possible to test several hypotheses, represent the
systems of the human body and interesting phenomena such as Immunosenescence that
will be addressed in this work [Romanyukha et al. 2018].

Several mathematical models have been proposed to study the immune system
in response to bacteria [Quintela et al. 2014] and other pathogens [Perelson 2002] and
also there are several models that have been proposed to represent the endocrine sys-
tem [Zavala, E et. al. 2019]. The first to our knowledge to represent both was a thesis
[Pritchard-Bell 2016]. Based on their idea of coupling the immune system and the en-
docrine system models, we are proposing here a distinct coupled model to represent the
effect of cortisol on the immune response over the decades. In the remainder of this work,
we will present the models that we chose and the coupling strategy as well as the orches-
tration of the simulations as the models have distinct time scales. The preliminary results
are also presented with gained insights and future directions.

2. Methods
The mathematical model proposed in this work to represent the influence of aging on the
immune response was obtained by coupling two mathematical models from the literature
[Pritchard-Bell 2016]. The main differences between the work proposed herein to the ref-
erence is the use of distinct and more complex models to represent the immune response
and the insulin-glucose dynamics considering fluctuations over the course of each day
with cortisol peaking after meals. Moreover, as the models of choice were simulated in
different time scales we needed to orchestrate the simulations. The strategies that were
used are also described in this section.

A model of the immune response to a bacteria proposed by [Talaei et al. 2021]
was chosen as it represents the main cells and cytokines involved in the innate immune
response. We considered 7 equations to represent the Activated Macrophages (AM), Rest-
ing Macrophages (RM), the pro- and anti-inflammatory interleukin (IL-6, IL-8, IL-10),
Tumor Necrosis Factor (TNF-α) and S. aureus bacteria (A). That model was modified,
so the cytokines are influenced by the presence of cortisol which was added as a new
equation.

To represent the dynamics of glucose and insulin, the model of choice was pro-
posed by [Uluseker et al. 2018]. From that model we considered 16 equations to represent
glucose intake and its dynamics throughout the body: Stomach Glucose (S), Intestinal
Glucose (L), Blood Glucose (G), Insulin (I), Incretin (W), Glucagon concentration (E),
Liver Glucose (C), Glucose in muscle tissue (M), in the adipose tissue (A), the concen-
tration of Leptin (Y), of Ghrelin (Q), the ingestion of Glucose (H), Interstitial Insulin (II),



Interstitial Glucose (IG) and transporters (G4m and GLUT4).

Therefore, by adding an equation to represent cortisol and coupling the aforemen-
tioned models we have a mathematical model with 24 ODEs that represent the behavior
of the innate immune system, when exposed by the bacterium S. aureus considering also
the dynamics of the endocrine system. To improve understanding of the model, we refer
to each part as as the Cell-Cytokine Model (CCM) and the Glucose-Insulin Model (GIM).
The equations that were either added or modified are detailed below.

2.1. Modified Cell Cytokine Model (CCM)

The Cell Cytokine Model proposed by part of the authors in a previous publication
[Talaei et al. 2021] was chosen to represent the immune system activation.

Bacterium S. aureus: A(t);
Activated macrophages: MA(t);
Resting macrophages: MR(t);
Interleukin-6 (pro-inflammatory): IL6(t);
Interleukin-8 (pro-inflammatory): IL8(t);
Interleukin-10 (anti-inflammatory):IL10(t).
Tumor Necrosis Factor-α : TNF(t);
Cortisol Hormone: COR(t).

We have added the following equation to represent cortisol dynamics as a sim-
plification of the reference [Pritchard-Bell 2016]. The first term represents that cortisol
concentration depends on the concentrations of glucose and TNF-α and is limited by
kmtc and Cmax and the second term represents natural decay at a constant rate (kcd).

dCOR

dt
= ktc(

TNF (t)

TNF + kmtc
)(Cmax − COR(t))gluc(t)− kcdCOR(t). (1)

Therefore, the TNF-α dynamics also include the added cortisol variable:

dTNF

dt
= kTNFH

D
TNF (IL6)H

D
TNF (IL10)MA − kltCOR(t)(1− COR(t)

COR(t) + kmct
) (2)

−kTNF (TNF (t)− qTNF ).

First and third terms represent, respectively, regulation from interactions with IL-6 and
IL-10 and decay and were kept as described in [Talaei et al. 2021]. The second term was
added to represent cortisol influence. For more information regarding the other equations
please refer to [Talaei et al. 2021].

2.2. Modified Glucose-Insulin Model (GIM)

The following 16 Equations were chosen from the literature [Uluseker et al. 2018] to rep-
resent the Glucose-Insulin dynamics:

Stomach Glucose: S(t);
Intestinal Glucose: L(t);
Blood Glucose: G(t);



Insulin: I(t);
Incretin: W(t);
Glucagon concentration: E(t);
Liver Glucose: C(t);
Glucose in muscle tissue: M(t);
Glucose in the adipose tissue: A(t);
Leptin: Y(t);
Ghrelin: Q(t);
Glucose intake: H(t);
Interstitial Insulin: II(t);
Interstitial Glucose: IG(t);
Transporters: G4m(t) and GLUT4(t).

As cortisol also influences glucose intake we have also modified Eq. H(t) to in-
clude cortisol:

dH(t)

dt
=

b17Q(t)

b18Y (t) + 1
exp−rI(t)−b19G(t)H(t)− b9H(t)− kc2gCOR(t), (3)

The other equations of the Glucose-Insulin model were kept the same. Thus, for
more information please refer to [Uluseker et al. 2018].

2.3. Coupling Strategy

Cortisol increases after each meal following the glucose intake dynamics and affects the
immune response by regulating TNF-α. Thus, both models are connected by that variable
(Figure 1). Cortisol variable is represented in the Cell-Cytokine Model interacting at each
time step with TNF-α variable as shown in Eqs (1) and (2). The Glucose-Insulin model
uses the outcome of cortisol over one day converted to minutes and that is represented in
Eq. (3).

2.4. Orchestration of the Simulations

As the GIM considers the dynamics of the endocrine system by minute and the CCM
considers the dynamics of the immune system by day, we have a multi-scale situation that
need orchestration to guarantee both models work properly with their optimized parame-
ters. We propose two approaches for the simulations including the conversion from days
to minutes and vice-versa (Figure 2).

The first approach considers that the glucose dynamics are similar everyday, thus,
we simulate the MGI model only once after running one day of MCC without glucose
influence, so we can have the cortisol variable over the course of one day (Figure 2.A)).
Then, we iterate only the MCC over the number of days of interest for the simulation. That
is useful, for example, to see the dynamics of the innate response for the first few days.
However, as the glucose dynamics are also affected by cortisol, it would be interesting
to iterate both models over longer periods of time. Figure 2.B) shows how we propose
the orchestration to represent that both models are being updated by the other model
outcomes.



Figure 1. Cortisol increases after each meal considering glucose intake and af-
fects TNF-α and glucose.

Figure 2. Proposed orchestrations for the simulations of the multiscale models.
A) we keep the same fluctuation for glucose dynamics and run MGI only
once. B) we consider that glucose also varies depending on cortisol levels
and iterate both models over the decades.

In this later scenario, the simulations also start by running the MCC without glu-
cose, then convert cortisol variable to minutes to run the MGI model. The MGI model
outcomes the glucose values per minute, which are converted to days and then the MCC
model is run a second time but now considering the glucose influence. The updated corti-
sol valued are then passed to MGI model again and this iteration occurs running one day
for each decade.

2.5. Experimental Data

To represent the variation of cortisol with aging, we extracted the experimental data from
[Miller et al. 2016] as initial condition for each decade simulated. We are considering the



last five decades from 40 to 90 years old (Figure 3).

Figure 3. Cortisol experimental data used as initial condition for each decade.

3. Results and Discussion
Assuming a baseline morning peak of cortisol and the presence of bacterial infection, we
initially observed a slow cortisol decay throughout the day, as demonstrated in Figure
4a. By integrating the glucose intake factor into our coupled model, we incorporated that
cortisol levels also peaked after each meal, as shown in Figure 4b. In our simulations,
we assumed that individuals consumed three meals per day. This approach allowed us to
capture a more comprehensive understanding of the complex interplay between cortisol
and glucose intake.

(a) Peaks in the morning and de-
cays without glucose in-
take.

(b) Peaks after each meal.

Figure 4. Cortisol dynamics over one day.

Through the proposed coupled model, we have developed a framework to simulate
the intricate dynamics of immune response to a pathogen, taking into account the day-to-
day and year-to-year fluctuations in cortisol levels. In Figure 5, we illustrate the daily
patterns of TNF-α (Figure 5a) and cortisol (Figure 5b), with the initial cortisol condition
varied across each decade, as per the experimental data. This analysis was performed
through the use of an orchestration approach, as described in Figure 2B, allowing us to
investigate the impact of cortisol fluctuations on the immune response.



(a) TNF-α (b) Cortisol.

Figure 5. Daily dynamics for each decade based on female data.

In addition, we have conducted simulations of one week following the onset of
infection for each decade, as outlined in Figure 2.A). The parameters utilized in these
simulations were consistent with those established in the literature [Talaei et al. 2021],
and represent that the immune system is able to eliminate the bacteria in less than one
day. Figure 6 shows the dynamics of TNF-α and cortisol over one week of simulation.
Our results indicate that the concentrations of TNF-α are higher on the first day with the
presence of bacteria (Figure 6a) and subsequently vary over time following cortisol levels
(Figure 6b).

We anticipated observing more significant differences in cytokine profiles in re-
sponse to changes in cortisol levels across the lifespan. However, it is important to
note that we maintained the models using parameters established in the literature and
only manipulated the initial cortisol conditions. TNF-α exhibits peak expression in the
presence of bacteria and subsequently decays as it is contained by the immune system
[Talaei et al. 2021]. Our simulation results (as illustrated in Figure 5a) demonstrate that
TNF-α expression profiles are influenced by diurnal cortisol peaks, while stabilizing at
different levels across each simulated decade. Similarly, Figure 5b shows differences in
initial cortisol values across age groups, though cortisol expression patterns remain con-
sistent across decades.

Further simulations are required to establish the optimal sets of parameters that
accurately represent each decade, as our results indicate that initial conditions alone are
insufficient to capture the full range of dynamic behaviors. Future studies should incor-
porate a broader range of experimental data, and employ other sophisticated modeling
techniques as sensitivity analysis and uncertainty quantification to accurately capture the
complex interplay between cortisol and immune response across various time scales and
physiological contexts.

4. Conclusions

In this study, we have successfully achieved our main goal of developing a differential
equation-based model that incorporates the effects of glucose dynamics and increasing
cortisol levels with aging on cell and cytokine activation. By coupling two existing mod-
els, we were able to capture the complex interplay between these factors and simulate the
dynamics of immune response to bacterial infection over time.



(a) TNF-α

(b) Cortisol.

Figure 6. Daily dynamics for each decade based on female data. Orchestration
as shown in Figure 2A.

However, further simulations are needed to fully validate the proposed model. Our
ultimate goal is to apply the model to simulate the dynamics of the immune response over
the course of 40 years, while fitting the parameters of the coupled model to experimental
data reported in the literature [Miller et al. 2016]. This will enable us to more accurately
capture the long-term effects of cortisol on immune response and observe the same in-
crease in cortisol levels observed in the literature.
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