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Abstract. Breast cancer is one of the diseases which mainly affects women and
is responsible for most of the deaths in Brazil, followed by skin and lung cancer.
Among the consequences of occurrence, there are genetic predisposition, seden-
tarism, and late menopause, for example. The metastatic stage of this illness has
a low survival rate because the disease spreads from the breast to other parts
of the body, and the patients need the diagnosis as fast as possible to start the
treatment. Moreover, state-of-art works claim that pathologists can reach 0.72
AUC in analyzing an exam composed of thousands of histopathologic images
of lymph node sections. In this context, this work presents an Ensemble Con-
volutional Neural Network with Transfer Learning, called U-net ' VGGI19, for
detection using the PatchCamelyon dataset. Results indicate that the proposal
reached an AUC of 0.9565 and a loss of 0.2869, reaching better results than
state-of-the-art CNNs such as VGG16, VGG19, MobileNetV3Large, ConcatNet,
and a custom-made CNN.

1. Introduction

Breast cancer is the disordered development of cells in the breast region with the potential
to invade other organs [PREVENTION 2023a]. The diagnosis of this disease is hard to
conclude even for an experienced pathologist professional because so many characteris-
tics need to be verified.

Moreover, not only one single cause provokes cancer occurrence. Genetic predis-
position and hereditary or unhealthy life habits are important factors contributing to breast
cancer incidence. The statistics in Brazil reveal that this disease affects mainly women
and 1% of men, with a registry of 18,295 deaths in 2019: 18,068 women and 227 men. For
2023, the estimation is 74,000 new occurrences of breast cancer. For prevention, the in-
dividual can choose two strategies: tracking and early diagnosis [PREVENTION 2023b].

Early diagnosis is one of the best ways to obtain the cure for any cancer, mainly
when it is in the first stages. The tracking strategy [PREVENTION 2023a] allows the
individual to track the health stage of breast cells to identify any abnormalities, such as
physical differences in organ structure. Beyond the strategies [ Younis et al. 2022], some
diagnostic methods complement them, such as mammography (most recommended for



tracking stage), magnetic resonance imaging, and self-examination of the breasts (com-
monly to prevent by the physical touch around the region). Mammography is considered
the first option regarding exams to detect earlier cancer because it can anticipate the diag-
nosis up to three years before the first symptoms.

Beyond strategies and methods, pathologists have confidence in their exper-
tise [Litjens et al. 2022] to reach the most precise diagnosis by looking thoroughly for
histopathologic features to find specific cellular structures to justify the conclusion. This
task requires an individual effort that can be impacted by external factors such as exhaus-
tion, visual fatigue, and work pressure, among many others; thus, providing the pathol-
ogist with tools to support the final decision is crucial. Additionally, pathologists have
shown a poor performance of 38% in micro-metastases detection under simulated time
constraints [Bejnordi et al. 2017]. Therefore, machine learning algorithms, such as neu-
ral networks, have become essential tools for helping pathologists with this diagnosis.

In this context, this work aims to help pathologists by using an ensemble Convo-
lutional Neural Network and applying concepts of Transfer Learning to detect metastatic
breast cancer. The results are also compared against the following architectures: VGG-16,
VGG-19, CustomNet (network created from scratch), and MobileNetV3Large. Therefore,
this work is divided as follows: Section 2 presents some related works; Section 3 shows
some literature review and our proposal; Section 4 shows the computational experiment,
its setup, and results; finally, Section 5 presents the conclusions of this investigation and
future work.

2. Related Works

Fukushima [Fukushima 1980] inspired the first CNN [Lecun et al. 1998] in 1998. Since
then, CNNs have played an important role in image segmentation and classification tasks.
In other words, this model represents a milestone in image-based machine learning appli-
cations [Filho and Cortes 2022]. Since LeCun’s publication, intensive research has been
done in the area, especially in medical and biomedical fields, as we can see in research
such as [Gulshan et al. 2016], [Gayathri et al. 2020], and [Su et al. 2021], between many
others.

The VGGs architectures, a popular CNN, were proposed by
[Simonyan and Zisserman 2015a].  Thereafter, several works have been proposed.
For instance, [Shallu and Mehra 2018] compares VGG16 and VGG19 against ResNet50
using transfer learning to breast cancer classification. In [Saikia et al. 2019], an investi-
gation of the performance of VGG16, VGG19, ResNet-50, and GoogLeNet-V3 is carried
out in fine-needle aspiration cytology images.

Regarding breast cancer detection, the architectures ResNet-18, ResNet-152, and
GooglLeNet were evaluated for classifying breast cancer using histopathological images
in [Silva and Cortes 2020]. Also, [Ismail and Sovuthy 2019] compared ResNet-50 and
VGG16 for breast cancer detection using mammograms. Furthermore, [Singh et al. 2020]
investigated the issue of imbalanced data in datasets using VGG19.

In the particular field of breast cancer using a VGG architecture and PatchCame-
lyon dataset, [Bejnordi et al. 2017] proposed the ConcatNet comparing its results with
GoogLeNet, ResNet, and VGG16, reaching an AUC of 0.924. Thus, we used this result



as a comparison of ensemble models. It is crucial to notice that using PatchCamelyon
offers an additional challenge to this investigation due to the large number of images in
the dataset.

3. Material and Method

3.1. Convolutional Neural Networks

The first Artificial Neural Network (ANN) was developed in 1940 by
[McCulloch and Pitts 1943] to mimic the learning capacity of the human brain through
perception and context interpretation as input and get one conclusion according to
context recognition. Next, [Rumelhart et al. 1986] introduced the Multilayer Perceptron
(MLP), in which between the input and the output, one or more hidden layers can exist
for processing data considering specific learning rules and parameters adjusted through
epochs (a period that occurs one stage of measure about the output from the network).

Nowadays, the ANNs have evolved immensely, i.e., ANNs grew beyond the used
two hidden layers from traditional MLPs. Since 2010, thanks also to the growth in com-
putational power, the processing stage is the focus of development[Aggarwal 2018], and
all the efforts were destinated on understanding the complexity of how to get the full and
essential features of an object, which can be an image or video, for instance. With this
purpose, the Convolutional Neural Networks (CNN) came into the field to maximize the
learning power and be nearer to mimicking the behavior of the human brain.

A regular CNN is devised by the following layers: an input, convolutional, pool-
ing, and a fully connected layer with an output. The input receives the images and passes
them to the convolutional layers, which use filters to scan over the image and extract fea-
tures from it. Usually, these features are colors, shapes, and edges that ultimately define
a specific image [Beysolow 11 2017]. A model can have as many convolutional layers as
necessary. Figure 1 shows a CNN with 8 layers (input, a pair of convolutional + pooling,
a fully connected with 2 layers, and the output).
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Figure 1. A CNN architecture with 8 layers

Between the convolutional layers, it is possible to use a pooling layer, which
takes the feature maps produced in the convolution layer and “pools” them into an im-
age [Beysolow II 2017], performing a dimensionality reduction by using a maximum or
average operation. Then, the fully connected input receives a much smaller image than
that presented to the network, processing the resultant images and providing the outcome,
usually a classification.



Among the various available architectures for deep learning, such as ResNet
[He 2015], DenseNet [H. 2016], Inception, Xception, Yolo, VGG, Mobilenet, and many
others, the VGG has attracted researchers’ attention due to its ability for biomédical ap-
plications, especially in image-based exam diagnosis. Figure 2 shows the architecture of
the VGG19.
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Figure 2. VGG19 architecture

The VGG19, unlike the VGG16 [Simonyan and Zisserman 2015b] with 16 layers
deep, presents nineteen layers deep with the following structure: 16 Convolutional layers,
3 Fully-connected (FC) layers (all layers with, at least, one connection between each
other), 5 Maxpool layers, and 1 Softmax Layer. Both architectures are available and
already pre-trained with ImageNet. Next, we present the proposed ensemble network
called U-net VGG19, which takes advantage of the synaptic weights from the previous
training stage, the so-called fine-tuning from Transfer Learning.

3.2. Proposal: U-net_VGG19

The combination of different architectures [Zhang et al. 2022], the so-called ensemble
approaches, allows exploring the combination of different models creating new ones,
and taking advantage of the best of each network combined to get better results. In
this work, we investigate the combination of two distinct architectures: the U-Net
[Ronneberger et al. 2022] and the VGG19.

In our proposal, we used the VGG19 because it is commonly used in biomedical
applications. In contrast, U-Net captures graphical elements more accurately than other
architectures [Ronneberger et al. 2022], demonstrating proper performance segmenting
interested areas. Figure 3 shows our architecture proposal. It receives a histopathological
image as input with dimensions PatchCamelyonxPatchCamelyonx3 (RGB), uses U-Net
as an encoder to feature extraction and learns with abstract representations in convolution
blocks. In the middle of the model, a bridge concatenates both architectures, U-Net and



VGG-19. VGG-19 is responsible for finding semantic meaning using 3x3 convolution
blocks and the ReLu activation function to get the output. The final result is a dimension
output indicating the presence or absence of metastatic breast cancer.
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Figure 3. U-net_ VGG19 architecture

4. Computational Experiments

4.1. Setup

The work was coded in a professional Google Collaboratory environment with the follow-
ing configurations: 166 GB HDD, 26 GB memory, and Py3 GPU using Keras and Tensor-
Flow frameworks. Keras ImageDataGenerator was used to generate training and testing
subsets. In the end, the model was trained using the validation approach with 110,593 im-
ages for training and 27,648 for testing in the ratio of 80/20, similarly to [Jin et al. 2020]
Furthermore, the Keras parameter ReduceLROnPlateau was used to reduce the learning
when the model tends not to improve in the subsequent epochs and checkpoints.

The model was trained with ten epochs, with batch size equal to 32, a seed of
1,337, a learning rate equal to 0.0001 (empirically chosen based on the state-of-the-
art works) with Adam optimizer and activation function sigmoid and loss function bi-
nary_crossentropy. The U-NET_VGG19 used Focal Twersky Loss to calculate the loss
rate because the U-NET architecture was designed to work better with this function. Fig-
ure 4 shows the CustomNet architecture, a simple CNN composed of seven CNN layers
and four fully-connected layers with 4608, 256, 256, and 1 neuron, respectively. The cus-
tom net was empirically implemented as a comparison baseline with no transfer learning.

4.2. Database

The dataset is a reference for testing algorithms of metastatic tissue detection on
histopathological images, called PatchCamelyon [Veeling et al. 2018]. This database
contains 327.800 microscopic images of binary tissues classified indicating metastasis’s
presence or absence. The base ratio is 50/50 for the two classes (with or without metasta-
sis). The image resolution is 96 x 96, with 3-channel color and TIF file format. Figure 5
shows an example of the dataset marked with positive images by experienced professional
pathologists from the department of pathology at Radboud University Medical Center (a
specialized center in nephrology, neuro-oncology, and molecular pathologies).
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Figure 4. Custom CNN

Figure 5. Labeled images from PatchCamelyon dataset.

4.3. Pre-Processing

In pre-processing, the changes were carried out to ensure effective learning. During pro-
cessing input data, it was necessary to remove some images for the following reasons:

* Duplicate images;

* Illegible with the presence of noise (white/black spots);
» Excessively light or dark, covering regions of interest;
* Corrupted and unreadable images.

As a result, only 138,241 images were readable for the training stage, which
changes the balance of the database to the ratio 0.6/0.4 for classes 0 and 1, respectively.
All in all, the algorithm follows the steps described in Figure 6.

4.4. Results

The results take into account the metrics Loss, Accuracy, and AUC in five different ar-
chitectures (VGG16, VGG19, a custom CNN, MobileNetV3Large, and U-NET_VGG19)
can be seen from Figures 7 to 11.
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Figure 7. Loss, ACC, and AUC of VGG16

Looking at metrics in Figures 7 to 11, it is impossible to identify the best results at
a glance. Excepting in MobileNetV3Large, all architectures tend to converge. However,
looking at the y-axis, it is possible to realize that our proposal reaches the best AUC,
confirmed by Table 1 with a loss of 0.2869, an accuracy of 0.8750, and an AUC of 0.9565.
Surprisingly, CustomNet presented an AUC close to VGG16 and VGG19 but using a
reduced architecture.

Table 1. Comparison table of the results.

Algorithm Test_Loss | Test Acc | AUC
VGG16 0.4772 0.7928 | 0.8677
VGG19 0.4776 0.7940 | 0.8632

CustomNet 0.4703 0.7743 | 0.8527

MobileNetV3Large | 0.6518 0.5926 | 0.6392
U-Net_VGG-19 0.2869 0.8750 | 0.9565

In Table 2, we compare our proposal with ConcatNet [Jin et al. 2020], in which
we can see that our proposal reached a better AUC, test accuracy, and test loss. Moreover,
in ConcatNet, the authors used four U-Net models, training them from 50 to 1000 epochs,
while U-Net_VVG 19 was trained using only ten epochs.
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Figure 9. Loss, ACC, and AUC of MobileNetV3Large

Table 2. Comparison against ConcatNet
H ‘ AUC ‘ Test_Acc | Test_Loss H

This Work | 0.9565 0.875 0.2869
ConcatNet | 0.92 0.862 0.4357

5. Conclusions and Future Work

This work proposed an ensemble model composed of two well-established CNN architec-
tures: U-NET and VGG19. Results have shown that our proposal reached a 0.9565 AUC,
a test accuracy of 0.8750, and a test loss of 0.2869, performing better than state-of-the-art
architectures such as VGG16, VGG19, and MobileNetV3Large. Moreover, we devised
a custom CNN as a baseline comparison, which reached promising results close to those
from VGG architectures but using fewer layers and no transfer learning.

As we can see by the results, the proposal presented promising outcomes indi-
cating that the proposed approach can be helpful for pathologists for more precise and
faster diagnosis, which encourages us to develop an application that can embed the U-
NET_VGG model in a mobile application or a web service.

Additionally, future work includes applying double transfer learning (DTL) and
adding a training stage using the BreaKHis dataset as well. Furthermore, it is possible to
explore data augmentation, which we did not analyze in this investigation. Furthermore,
the number of training epochs can be reconsidered at a reasonably higher value, such as
100.
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