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Abstract. Pneumonia is a lung disease responsible for the highest number of
deaths from infection in children and adults. Its diagnosis must be fast and ac-
curate so that procedures are taken as soon as possible to combat the disease. In
this work, Convolutional Neural Networks were explored for the classification of
chest radiography images in the context of pneumonia diagnosis. Although these
models are highly effective, their predictions are difficult to interpret. There-
fore, the proposed method additionally aims at presenting an explainable model
based on Shapley approximation values to perform the diagnosis of pneumonia
with higher robustness. Results show that the model achieves competitive accu-
racy when compared to other architectures, and overcome them with respect to
interpretation abilities.

1. Introduction
Pneumonia is an infection that is among the most commonly diagnosed lung diseases.
It can be fatal, and is still the main cause of death for children up to 5 years of age.
According to UNICEF [2022], more than 2000 children die every day in the world. Infec-
tion mortality before Covid pandemics was estimated in 2.5 million deaths and the fight
against the disease continues to require important attention.

Pneumonia diagnosis can be made by tests such as chest X-ray, computer tomog-
raphy (CT), magnetic resonance (MRI) and ultrasound. Currently, the most common
screening method is X-ray, as it is a less expensive technique that can be performed in
seconds, despite producing a simpler visualization compared to other exams. The inter-
pretation of chest radiography is however time consuming, so that it has become a po-
tential target for machine learning techniques. Convolutional Neural Networks (CNNs)
have proved to be effective in several medical applications with image classification de-
spite providing little understanding of how decision process is carried out. It is worth
mentioning the importance of data interpretability, especially in the medical field, so that
health professionals feel confident to incorporate diagnosis through deep learning mod-
els as an ally in their work. Interpretability also allows the discovery of other important
information in the image data that could otherwise go unnoticed.

The objective of this work is to propose a CNN architecture to accurately classify
pneumonia from chest X-ray images, along with the application of an interpretability
technique based on the approximation of SHapley Additive exPlanations (SHAP) values to
provide visual explanations for the models’ decisions. Based on comparisons between the



classification metrics of the networks and their interpretation results, the best interpretable
model can be chosen to perform more reliable pneumonia diagnoses.

The work is structured in five sections. Section 2 presents a literature review with
an analysis of background work. Section 3 presents the theoretical framework for carrying
out the proposed methodology. Section 4 presents the method with experiments described
in section 5. Finally, section 6 presents the conclusion of this article and the trends for
future work.

2. Related works

In order to propose a method for the interpretability of neural networks, Shrikumar et al.
[2017] present the Deep Learning Important Features (DeepLIFT). In the approach, the
activation of each neuron is compared with a reference activation and a contribution score
is generated. According to the authors, the use of the difference of references guarantees
the propagation of the information regarding the importance of the neurons, thus avoiding
misinterpretations. This approach is further improved by Lundberg and Lee [2017] that
create a unified framework for the interpretation of predictions. The work implements
an integration of interpretability methods using the approximation of SHAP values, that
assigns to each feature an importance value for a specific prediction. One of the integrated
methods is based on DeepLIFT, where the authors provide a new value approximation
approach resulting on the Deep SHAP algorithm.

In view of the impact caused by the COVID-19 pandemics, Ravi et al. [2020]
proposed a visual data clustering structure (ViDi) to assist radiologists in the diagnosis
of COVID-19. The authors employed the Deep SHAP algorithm to generate clusters that
were described as interpretable saliency maps and managed to achieve a grouping homo-
geneity of 80% in a dataset. Also in the context of the COVID-19 pandemics, Panwar
et al. [2020] proposed a deep transfer learning algorithm that accelerates the detection of
chest X-rays and CT scans, together with the use of a visualization approach based on
Gradient-weighted Class Activation Mapping (Grad-CAM) for interpreting the classifica-
tions performed by the model. The authors concluded that for the accurate detection of
cases of COVID-19 it is also necessary to train the model for the detection of pneumonia
in order to avoid false negatives. Using the same approach of activation maps for the
diagnosis of gliomas in magnetic resonance images, Pereira et al. [2018] proposed a Con-
volutional Neural Network model for brain tumor classification. The approach has two
main steps: the extraction of regions of interest and the prediction of the degree of glioma.
The Guided Backpropagation and Grad-CAM methods were used for the interpretation
of the predicted results. The method achieved an accuracy of 0.895 in the complete brain
analysis and an accuracy of 0.9298 in the analysis of regions of interest in the tumor. The
approach was further addressed by Saleem et al. [2021] with the objective of generating
visual explanations for the segmentation of 3D brain tumors. It also presented a tech-
nique based on class activation maps (CAMs), for the interpretation of the segmentation.
According to the authors, the use of a methodology for interpretability that does not de-
pend on gradients to generate visual explanations, yields better results for segmentation,
surpassing other techniques such as Grad-CAM.

Another group of algorithm based on the Prototype Classification approach Chen
et al. [2019] has also pursued more interpretable diagnoses. In the XProtoNet proposal, an



interpretable framework is presented for diagnosing chest radiographs that uses probable
areas of occurrence of a certain disease as prototypes with discriminative characteristics,
and compares them with the characteristics of the query image. The authors claims that
XProtoNet achieves better performance for 10 out of 14 diseases, when compared to com-
petitor classifiers. Another work based on Prototype Classification, the Gen-ProtoPNet
Singh and Yow [2021], presents an interpretable deep learning model for detecting Covid-
19 in chest radiographs. Unlike the ProtoPNet approach, the model generalizes the L2 dis-
tance function and uses any type of spatial dimension in its prototypes to ensure greater
precision and more correct interpretation reasoning. More recently, Singla et al. [2021]
present an approach with counterfactual explanations, where regions that the classifier
considers to be associated with the disease are highlighted. The authors concluded that
the explanations generated by the technique were consistent with the diagnosed diseases.

3. Shapley Values
SHAP values were introduced by game theory economist Lloyd Shapley. The values
represent, in a game, the contribution of each player of a team in a fair way.

The calculation for the importance of a player i is made from the difference in the
contribution of a team S to which the player is added, by the contribution of the same
team S without the player. The difference is obtained by a function c that calculates the
resulting contribution:

cresult = c(S ∪ {i})− c(S)

For each player, contributions are calculated for the combination of all players in
S that can be formed by the total set of players. The final contribution for each member
of the set is given by the average of its contribution with respect to all possibilities of sets
that do not include them.

In this work an improved version of DeepLIFT, the Deep SHAP algorithm, was
used as a method of interpreting recursive predictions for deep learning. In the algorithm,
resource contributions are calculated from how an output of a neuron t changes as the
difference between the activation of an input xi and the activation of a reference entry.
The reference comes from a single input and its choice depends on each domain in which
the algorithm is applied.

To calculate the contribution, the algorithm compute multipliers for the entries,
given by m∆xi∆t, which are like partial derivatives that inform how much an output
changes from a small change in the input. Input multipliers are computed from output
neurons using backpropagation. Finally, the contribution to entry i is given as the product
of its multiplier by its ∆i, the difference between the activation and the reference entry:

C∆ii∆t = m∆ii∆t ×∆i.

Deep SHAP, emerging as an evolution of the approach, is proposed as a high-
speed algorithm for SHAP values. Its implementation differs from DeepLIFT in that it
defines its multipliers using Shapley values from not just a reference input, but using a



selection of background samples. The algorithm estimates approximate SHAP values by
summing the difference between the expected output of each sample and the actual output
f(x)− E[f(x)].

Figure 1 presents an example for the explanation of the classification of four inputs
taken from the MNIST dataset. The input images are on the leftmost column and are
followed by the explanations for each of the classes. In the explanation columns, red
pixels indicate an increase in their contribution to the specific class, while blue pixels
indicate a decrease in contribution to the same class. For the image with the digit zero, for
example, the central part contributes positively to the classification. As for the digit four,
the explanation shown in the rightmost column class indicates that the lack of connection
at the top of the digit decreases the contribution to classifying the image as a nine.

Figure 1. Examples of explanation in the classification of the MNIST dataset.

4. Materials and Methods
The Kermany et al. [2018] database used in this work consists of 5,856 x-rays divided
into two categories, normal and pneumonia, selected from pediatric patients aged one to
five years. For the database, the images were diagnosed by three physicians for quality
control before being made available. Figure 2 presents an example of a database image
for each class.

Figure 2. Examples of normal and pneumonia images.

The database images have varying dimensions and an unbalanced proportion be-
tween classes. The database consists of 4,273 images with the diagnosis of pneumonia
and 1,583 images diagnosed as normal.



The proposed method, ShapCNN, is composed of a customized CNN of 12 layers
that is trained to perform the first step of the diagnosis. The architecture is shown in Fig-
ure 3, and is based on the model described in Giełczyk et al. [2022], where the authors
present the impact of pre-processing methods on classification results with a data base of
x-rays from the chest for classes normal, COVID-19, and pneumonia. Due to the fact that
the database in this work had only two classes, the last fully connected layer of the model
was adjusted to 1 unit and consequently the activation function changed from Softmax
to Sigmoid to perform binary classification. In addition, four different pre-trained net-
works were investigated: Visual Geometry Group 16 (VGG16), Visual Geometry Group
19 (VGG19), MobileNetV2 and DenseNet121. In order to validate the results obtained
by ShapCNN, a comparative analysis was performed between the results obtained from
each model.

Figure 3. Proposed network architecture of the ShapCNN.

For the training step, as there is an imbalance in the proportion of the database
classes, pre-processing was performed to increase the training data. In this process, ran-
dom transformations are performed on the images such as rotations and displacements to
create a new data set.

For the second stage of the process, after training the ShapCNN, visual explana-
tions are generated for the classification of x-rays using the Deep SHAP algorithm that,
from each of the previously trained models and a set of sample images, generates an
explanation module for each of the networks.

5. Experimental results
The experiments were carried out using the Google Colab service in the PRO version,
which provides remote access to machines with a Nvidia Tesla K80 GPU, two vCPUs
and 32GB of RAM memory. Python was used in version 3.7.14, the core libraries Tensor
Flow with Keras in version 2.8.0, and the SHAP library in version 0.41.0.

5.1. Effectiveness evaluation
The data set was divided into image sets used for training, testing and validation, with
5,216, 624 and 16 images respectively. A pre-processing step was applied to the images.



In order to standardize the input data, the images were resized to 150x150 pixels and
normalized so as to speed the convergence of the CNNs. The models were configured
with the following parameters: binary cross entropy for the loss function, Adam optimizer
with learning rate of 1× 10−3, a batch size of 32 and 10 training epochs. The results were
obtained from a 10-fold cross-validation.

In order to evaluate the impact of pre-processing by the increase of the sample
size, training tests were initially performed without using data augmentation. Table 1
presents the results for the metrics and running time for training and prediction for each
CNN.

Table 1. Classification performance in 10-fold validation without data augmenta-
tion.

Model Accuracy Precision Recall F1-Score Training* Predict*
VGG19 0,77 0,86 0,69 0,70 487.24 0,21

ShapCNN 0,76 0,86 0,68 0,69 488,28 0,04
DenseNet121 0,74 0,85 0,66 0,66 889,59 0,03

VGG16 0,73 0,84 0,64 0,62 494,89 0,70
MobileNetV2 0,62 0,31 0,50 0,38 514,92 0,25

*Time in seconds

In the first set of tests, the models showed satisfactory accuracy rates when dealing
with unbalanced data, with the exception of MobileNetV2 that seems to suffer more from
unbalancing. In the other models, despite having good accuracy, the Recall and F1-Score
metrics showed the difficulty of the models to perform classification with unbalanced
data.

Table 2 presents the results of the models using data augmentation. For the trans-
formations, a new dataset was generated with images created from 20º rotations, dis-
placements of 10% of the total width, and zoom of 20%. The model parameters were
maintained and the results were also obtained from a 10-fold cross-validation.

Table 2. Classification performance in 10-fold validation with data augmentation.
Model Accuracy Precision Recall F1-Score Training Predict

DenseNet121 0,93 0,93 0,94 0,93 988,09 0,04
VGG16 0,90 0,90 0,90 0,90 699,68 0,19
VGG19 0,90 0,89 0,90 0,90 681,38 0,09

ShapCNN 0,89 0,91 0,85 0,87 696,93 0,17
MobileNetV2 0,80 0,82 0,75 0,77 702,94 0,01

*Time in seconds

The tests showed improvements in the results of the metrics in all models.
DenseNet121 presented the best accuracy with 93%, followed by VGG16 and VGG19,
where both presented an accuracy rate of 90%, and ShapCNN with 89%. The model
that presented the lowest performance was the MobileNetV2, with an accuracy rate of
80%. For Recall and F1-Score metrics, MobileNetV2, despite obtaining better results



compared to the first tests, was still slightly below the other networks, which indicates
that the model still suffers from the issue of class imbalance. In addition, changes in
running times can be observed. As expected, training times were higher with increasing
data for all models. However, the prediction times showed variations with different be-
haviors, where some models showed an increase while others showed a decrease in the
elapsed time. Therefore it is important to consider that the execution environment may
have influenced running time.

5.2. Interpretability

For the interpretation of the models, the Deep SHAP algorithm was used to generate
an explaining module for each of the networks. As previously presented, the algorithm
needs a trained model, and a sample dataset. For this latter parameter, it should be noticed
that the algorithm complexity scales linearly with the number of images in the set and,
therefore, although the use of the entire training database would provide more accurate
results, groups of 100 and 200 images randomly chosen from the database were defined
for the generation of explainers for each of the models.

As the models carry out a binary classification, the outputs of the explainer mod-
ules present, in addition to the original image, an image with the interpretations, where red
pixels indicate a contribution from that region in favor of the pneumonia class, and blue
pixels indicate a contribution from the region in favor of the normal class. For compari-
son purposes, the indicated regions with greater contributions were analyzed considering
the diagnosis of the original image. In order to validate the generated explanations, it is
important to say that for an accurate evaluation of the results, an analysis together with
specialists in the field of radiology would be necessary.

Several tests were carried out with the two sizes of sets for all models. Table
3 presents the results of explainers generated using a set of 100 sample images. The
first x-ray is from a patient diagnosed with pneumonia, and the second is from a healthy
patient. The choice of the exemplified images was based on the most common pattern of
the results obtained in the tests.

Table 3. Examples of explanations for pneumonia and normal samples.

Original ShapCNN VGG16 VGG19 DenseNet121 MobileNetV2

In the case of the image with the diagnosis of pneumonia, ShapCNN mostly pre-
sented regions of interest that contributed to the correct classification of the image, in
addition to the fact that its emphasized regions were presented mainly in lung regions,



indicating patterns of pneumonia. Among the pre-trained networks, VGG16 and VGG19,
did not clearly show patterns that could generate some explanation, as well as the Mo-
bileNetV2, that presented the worst interpretation results. The DenseNet121, on the other
hand, demonstrated some patterns in inner regions of interest of the lungs.

For the results of the second image shown in Table 3 referring to healthy sub-
ject, ShapCNN and VGG16 emphasized regions of interest in internal regions and at the
edges of the lungs, which contributed to the correct diagnosis. The VGG19 presented few
regions that lead to the interpretation of the diagnosis. The MobileNetV2 still showed
the worst results for interpretability with an absence of patterns in important regions for
classification purposes. Finally, the DenseNet121 highlighted some small areas in the
the lungs that contributed to the normal diagnosis, but not in a significant way, like the
explanations presented by ShapCNN and VGG16.

For the tests using a set of 200 sample images, the results did not show noticeable
differences compared to the explainers generated with 100 sample images for the same
radiographs. Numerous tests were performed and no improvements were obtained for
none of the five CNNs. In the following section, a discussion of the experiments and
results is presented.

5.3. Discussion

In this work, the performance of Convolutional Neural Networks and their interpretations
for the classification of x-rays into pneumonia and normal classes were evaluated.

The database used has problems regarding to the balancing of classes. For this
reason, a data augmentation procedure was used to generate a new training set. The tech-
nique proved to be effective as expected, causing significant improvements in the results,
in which the DenseNet121 presented the highest accuracy with 93%. It is possible that
the exploration of other pre-processing techniques may improve even more the results,
mainly for the MobileNetV2 that obtained the lowest accuracy. In general, the training
process of the CNNs showed to be effective for the task, although much improvement can
be further achieved.

For the interpretation aspect, an explainer was generated for each of the models
trained using different sample sizes. It was possible to observe a difference in the interpre-
tations generated for ShapCNN in comparison with the pre-trained networks. During the
performance of numerous tests, ShapCNN demonstrated more defined regions of interest
in the lung area for the interpretation of the classification of both classes. The interpre-
tation of the model can also be improved, as some attention regions still fall out of the
lungs portion, which, in principle, should not be used for diagnosis. Figure 4 exemplifies
these findings, where the model appears to detect patterns that contribute positively to the
correct classification for pneumonia, but also with focuses on areas outside the region of
interest.

Figure 5 depicts another classification result for pneumonia from ShapCNN. In
this case, the explanation map emphasizes small areas in the regions of interest, and also
other areas with more subtle contributions to the correct class, that cannot be considered a
well-defined explanation. This example demonstrates that the model can still be adjusted
to provide better interpretation, despite its already high levels of accuracy.



Figure 4. Example of pneumonia image with the explanation map computed by
ShapCNN in which the attention regions are well defined.

Figure 5. Example of pneumonia image with the explanation map computed by
ShapCNN in which the attention regions are not well defined.

Limitations in the computational environment prevented the use of larger samples
in the implementation of the explainer modules with consequent decrease in precision.
Changing from 100 to 200 images did not produce noticeable changes in the explanation
ability of the networks. Thus, there is a need to consider other test environments in order
to overcome this limitation and to use a larger number of samples in future investigation.

From the analyses and comparisons of the models mentioned in section 4 for clas-
sification and interpretation of x-ray images, with the aim of identifying a pattern that
indicates the presence of pneumonia in these images, it can be concluded that ShapCNN
obtained a competitive performance, in comparison with the other networks, by jointly
carrying out the diagnoses and the explanations for their decisions. The model presented
good results for the classifications, despite not obtaining the best accuracy. However, it
demonstrated to be superior with respect to interpretation, presenting better defined re-
gions related to the disease effects when compared to other models.

6. Conclusion
In this work, a new method based on deep learning and the approximation of SHAP val-
ues was proposed to perform an accurate and clear diagnosis of pneumonia in X-ray im-
ages, with explained results. Even though the accuracy obtained by the DenseNet121 was
higher, the proposed method was able to provide better explanations during the data inter-
pretation phase. Considering the criteria of accuracy together with the ability to explain



the results, the ShapCNN proved to be competitive, so that this combination of techniques
should deserve attention in the development of computer-aided diagnosis applications.

Further improvement of this work should consider a systematic way to evaluate
the interpretations, in addition to qualitative visual inspection. Future implementations of
the architecture using large-scaled computational resources may overcome limitations in
the number of images used in the experiments. It is also possible to expand the database to
classify bacterial and viral types of pneumonia, as well as to explore other pre-processing
techniques and model configurations.
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