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Abstract. Cardiomegaly is a medical disorder characterized by an enlargement
of the heart. Many works propose to automatically detect cardiomegaly through
chest X-rays. However, most of them are based on deep learning models, known
for their lack of interpretability. This work propose a deep learning model for
the detection of cardiomegaly based on chest x-rays images and the qualitative
assessment of three known local explainable methods, i.e., Grad-CAM, LIME
and SHAP. Our model achieved Acc, Prec, Se, Spe, Fl-score and AUROC of
91.8+0.7%, 74.0£2.7%, 87.0+£5.5%, 92.9+1.2%, 79.84+1.9%, and 90.0+0.7%,
respectively. Moreover, except for the SHAP method, our interpretable methods
were able to pinpoint the expected location for cardiomegaly. However, Grad-
CAM method showed faster computational time than LIME and SHAP.

1. Introduction

Cardiomegaly, a pathology frequently detected in chest x-rays (CXR), is a medical dis-
order in which a patient’s heart enlarges temporarily or permanently depending on the
situation. This enlargement is typically a clinical manifestation of another pathogenic
condition, such as chamber dilation, ventricular hypertrophy, or pericardial effusion
[Daines et al. 2021], possibly resulting in heart failure, cardiac arrest, and sudden death
[Cardenas et al. 2020]. Routine chest radiographs showing cardiomegaly have significant
clinical implications, since they help doctors decide whether additional investigation is
necessary [Daines et al. 2021].

Deep learning research has the potential to become a standard method for medical
analysis and even diagnosis [Hicks et al. 2021]. Convolutional Neural Networks, which
use raw data from image pixels as input and abstract the original image data layer-wise
to enable CXR evaluation automation, can increase the effectiveness of analysis of large
volumes of complex medical exams.



The cardiothoracic ratio (CTR), a comparison of the cardiac and thoracic di-
ameters in CXR images, is a commonly used index that offers predictive infor-
mation [Alghamdi et al. 2020], and some works have been done to automatically
identify the CTR and determine whether a given CXR has cardiomegaly or not
[Wuetal. 2022]. However, the CTR must be manually evaluated, which is time-
demanding [Junior et al. 2021, Wu et al. 2022]. Moreover, since CXR can contain noises
and artifacts, segmentation-based methods used to identify the boundaries of the thorax
and heart to measure the CTR can be affected, impairing the results. Other works pro-
pose direct detection of cardiomegaly from CXR without the need to compute the CTR
[Cardenas et al. 2020, Junior et al. 2021] using Deep Learning, letting the networks auto-
matically extrapolate the CTR and use the global CXR information for decision-making.

Currently, many researchers are focusing on developing techniques that can
help understand how deep learning models reach their decisions [Simonyan et al. 2014,
Selvaraju et al. 2017, Ribeiro et al. 2016, Lundberg and Lee 2017]. Some of them rely
on the analysis of gradients [Selvaraju et al. 2017, Simonyan et al. 2014], which can
be difficult to interpret, while others are based on perturbation [Ribeiro et al. 2016,
Lundberg and Lee 2017], which can be specific to a particular instance.

In this study, we aim to assess qualitatively the interpretable methods to under-
stand the decisions of a deep learning model for cardiomegaly detection with CXR im-
ages. By implementing such a model, low-income hospitals that might not have access
to experienced and knowledgeable radiologists might lessen the burden on their medical
infrastructure.

2. Methods

In this section, we describe the dataset, the preprocessing steps, and the deep neu-
ral network architecture used for classifying CXR images into Cardiomegaly and Non-
Cardiomegaly. Moreover, we describe the interpretable methods used to interpret the
model’s results and assess qualitatively their interpretability. The general structure of the
proposed method is shown in Figure 1.

2.1. Datasets

VinDr-CXR [Nguyen et al. 2020a, Nguyen et al. 2020b] is a dataset of CXR scans ob-
tained retrospectively from two major hospitals in Vietnam. All images are in DICOM
format and in postero-anterior (PA) view. It contains 18,000 images manually annotated
by a group of radiologists. This dataset is divided into a training set with 15,000 scans
independently labeled by three radiologists, and a test set with 3,000 scans labeled by the
consensus of five radiologists. It should be stressed that due to the lack of patients ID
information, images from the same patient may exist throughout train and test sets.

Besides the VinDr-CXR dataset, we used a private CXR dataset collected from
the Picture Archiving and Communication System (PACS) of a tertiary referral hospital
in Brazil specialized in cardiology (Heart Institute from Clinics Hospital, University of
Sao Paulo), with patients older than 18 years old. All images are in DICOM format in a
postero-anterior (PA) view. This dataset contains 230 exams labeled as cardiomegaly and
1003 exams labeled as non-cardiomegaly. This private dataset complies with all relevant
ethical regulations and was approved by the Research Ethics Committee.
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Figure 1. General structure of the proposed methodology.

2.2. Data Preprocessing

Our preprocessing steps are based on previous works [Cardenas et al. 2020,
Junior et al. 2021] for cardiomegaly classification. We used a previously developed
and validated model [Pazhitnykh and Petsiuk 2017] that segments the lungs, to be able
to create a binary mask of the chest cavity region, using a fine-tuned UNet-based
convolutional neural network. The extreme points of the lung mask were used to create a
bounding box to crop the chest cavity, segmenting only this region of interest (ROI), that
was used as input in our classification model. We rescaled the intensity of the cropped
image with a contrast stretching method, including all intensities that fall within the Ist
and 99th percentiles of the image histogram. The image was transformed into a square
image using zero padding and resized it to 384x384x3.

2.3. Deep Learning model

The small size of datasets in deep learning for analyzing medical images is a ma-
jor constraint. Consequently, it is frequently difficult to train a CNN from scratch
[Baltruschat et al. 2019]. In this case, Transfer-learning is one solution. Here, we ini-
tiated the training with the ImageNet weights [Deng et al. 2009]. All layers were pre-
trained with the VinDr-CXR dataset images so that the model could learn the patterns of
the CXR domain, and posteriorly we did a fine-tuning with our private dataset.

For our experiments, we choose a ResNet 50 v2 architecture, which is a Deep
Neural Network widely used in the classification of CXRs. We used the default Keras
architecture topology for the network with an input resolution of 384x384x3 before the
classification layers.

For the fully connected layers, we used a customized 2-layer perceptron. Our
model was trained over 40 epochs by stochastic gradient descent using a 16 batch size per
step using RMSprop with a learning rate of le-4 and a callback to reduce it by a factor
of 0.2 every six epochs in case of no improvement in validation loss, and class weights
to balance the dataset. Data augmentation techniques (i.e., image rotation, shift, shear,



scale, and flip) oversampled the training set. Furthermore, we used a threshold of 0.5 to
define the predicted label.

We used a 5-fold cross-validation method to evaluate our model, and we assessed
six different metrics, including Accuracy (Acc), Precision (Prec), Sensitivity (Se), Speci-
ficity (Spe), Fl-score, and Area Under the Receiver Operating Curve (AUROC). Our
experiment was performed using a Foxconn High-Performance Computer (HPC) M100-
NHI with an 8 GPU cluster of 16 GB NVIDIA Tesla V100 cards. The methodology was
implemented using the Python framework and Keras v2.2.4 with TensorFlow backend
v2.3.0.

2.4. Explainable AI methods

We selected the following set of local explainable methods, i.e., Grad-CAM, LIME and
SHAP [Molnar 2019]. Here, we examined individual CXR images. Visualizations result
in a map with the most significant parts highlighted in red color for Grad-CAM, LIME
and SHAP methods.

The Gradient-weighted Class Activation Mapping (Grad-CAM) method
[Selvaraju et al. 2017] generates a coarse localization map by using the gradient infor-
mation flowing into the final convolutional layer, producing a heatmap for a given class
label, and assigning important areas of the CXR input image to the prediction. The Local
Interpretable Model-Agnostic Explanations (LIME) method [Ribeiro et al. 2016] uses a
simpler interpretable surrogate model (e.g. linear regression), applying perturbations on
the CXR input, training an interpretable model that mimics the behavior of the original
model for an individual CXR input image. The SHapley Additive exPlanations (SHAP)
method [Lundberg and Lee 2017], is a game-theoretic approach based on the Shapley
values. It can explain the prediction of an CRX input image by computing the contri-
bution of each segment of the image to the prediction. Here we used the Kernel SHAP
method, which is very similar to LIME. Moreover, we generated 1000 perturbations for
both LIME and Kernel SHAP methods, used a linear regression as the surrogate model,
and segmented the images with a quickshift segmentation algorithm.

3. Results

The model used to be interpreted by our explainable methods achieved the results de-
scribed in Table 1 for the task of detecting cardiomegaly with chest x-ray images.

Acc Prec Se (TPR) Spe(TNR) F1 AUROC
Mean 91.8 74.0 87.0 92.9 79.8 90.0
Std 0.7 2.7 55 1.2 1.9 0.7

Table 1. Summary of the obtained results for the Cardiomegaly classification.

Figures 2 and 3 display the results of Grad-CAM, LIME and SHAP methods of an
exam labeled as Cardiomegaly. Likewise, Figure 4 displays the results of the explainable
methods of an exam labeled as non-Cardiomegaly. Additionally, Table 2 presents the
computational time spent by each interpretable algorithm to perform their interpretations.
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Figure 2. Explainable methods results for an image correctly labeled as car-
diomegaly (prediction probability of cardiomegaly: 99.98%): (a) Grad-CAM;
(b) LIME; and (c) SHAP.
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Figure 3. Explainable methods results for an image correctly labeled as car-
diomegaly (prediction probability of cardiomegaly: 66.3%): (a) Grad-CAM;
(b) LIME; and (c) SHAP.

Grad-CAM LIME SHAP
Cardiomegaly image 15 seconds  6.74 minutes 3.36 minutes
Non-Cardiomegaly image 16 seconds  6.42 minutes 3.40 minutes

Table 2. Amount of time spent by each algorithm to perform their interpretations.

4. Discussion

In this study, we develop a deep learning model capable to detect cardiomegaly in chest
x-ray images. From it, we demonstrate that well-known methods usually used to inter-
pret black-boxes image-based models such as ours can pinpoint the expected location for
cardiomegaly.

Figures 2, 3 and 4 show the explainable methods results for two examples, where
Grad-CAM and LIME methods attributed the highest importance to the performance in
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Figure 4. Explainable methods results for an image correctly labeled as non-
Cardiomegaly (prediction probability of cardiomegaly: 0.0%): (a) Grad-
CAM; (b) LIME; and (c) SHAP.

regions located on the heart, which is expected from a physiologic point of view, since
cardiomegaly is related to the size of the heart. Even on an image labeled as non-
Cardiomegaly, these two methods still highlight the heart’s region. SHAP method, how-
ever, didn’t indicate the heart as the region most relevant to the performance. It should be
emphasized that for all of these methods, relevance refers to how much weight a particular
area contributes to the overall prediction.

Differently from Grad-CAM that uses the gradient information to produce a map
with important areas to the prediction, LIME and SHAP methods are based on pertur-
bations on the input image, produced by changing the original image, which is highly
dependent on the segmentation method applied. Thus, results can be different depending
on the segmentation.

Moreover, it should be noted that while Grad-CAM takes just a few seconds to
generate its results, the LIME and SHAP methods take minutes, depending on the num-
ber of perturbations generated. In a real application, where results are expected to be
generated as quickly as possible, both methods may be impractical. Furthermore, future
works should add quantitative metrics for the explainable AI methods in order to evaluate
the models.

It is indispensable that the models manage to generate explanations about their
operation. By adopting such a concept into practice, low-income institutions that might
not have access to qualified and experienced radiologists could alleviate the strain on their
healthcare system. Furthermore, even the most experienced expert may be susceptible to
errors, thus this model can assist in handling the arduous and time-consuming task of
interpreting and evaluating CXR images.

5. Conclusion

In this study, we developed a deep learning model with outstanding classification per-
formance that can identify cardiomegaly in chest x-ray images using a transfer learning



technique. Additionally, we show that the incorporation of explainable methodologies
enables the identification of relevant regions within the CXR images that contribute to
the classification and allows the determination of the expected location for cardiomegaly.
Such a model can help with the challenging and time-consuming task of deciphering and
assessing CXR images.
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