
Deep Learning Approach for Detection of Atrial Fibrillation
and Atrial Flutter Based on ECG Images

Estela Ribeiro1,2, Felipe M. Dias1,3, Quenaz B. Soares1,3, Jose E. Krieger1,2,
Marco A. Gutierrez1,2,3

1Heart Institute (InCor) – Clinics Hospital
University of Sao Paulo Medical School (HCFMUSP)

Sao Paulo – SP – Brazil

2University of Sao Paulo Medical School (FMUSP)
Sao Paulo – SP – Brazil

3Polytechnique School, University of Sao Paulo (POLI USP)
Sao Paulo – SP – Brazil

{estela.ribeiro, f.dias, quenaz.soares, j.krieger}@hc.fm.usp.br

marco.gutierrez@incor.usp.br

Abstract. This study explores the application of image-based deep learning
techniques to distinguish between Atrial Fibrillation (AFib) and Atrial Flutter
(AFlut) using images of standard 12-lead ECG exams from a private database.
By implementing a MobileNet Convolutional Neural Network architecture, we
achieve a high classification performance, with an accuracy of 95.6%, AUROC
of 97.6%, F1-score of 83.2%, specificity of 99.6%, and sensitivity of 72.7%.
We also applied explainable methods, such as Grad-CAM and LIME, to try to
interpret the model’s decision-making process and identify significant regions
within the ECG images that contribute to the classification. Our results demon-
strate the potential of image-based deep learning approaches for accurate and
reliable discrimination between AFib and AFlut, paving the way for enhanced
diagnostic capabilities in clinical settings.

1. Introduction
Atrial Fibrillation (AFib) and Atrial Flutter (AFlut) are heart conditions character-
ized by irregular heart rhythms at the Atria [Cosı́o 2017, Ko Ko et al. 2022], being
particularly dangerous for the elderly population [Shah et al. 2018]. Both conditions
are associated with an increased risk of stroke and other heart-related complications
[Brundel et al. 2022]. Thus, the development and validation of AFib and AFlut auto-
matic detection methods may collaborate to speed up its diagnosis on triage to provide
the necessary treatment.

The use of non-invasive 12-lead electrocardiogram (ECG) is the standard method
for the clinical diagnosis of AFib and AFlut [Brundel et al. 2022, Cosı́o 2017] since these
two heart conditions can be distinguished by the patterns of electrical activity registered
on an ECG exam. AFib is characterized by a chaotic electrical activity at the atria, the
absence of P waves, irregular RR intervals, and the presence of fibrillatory waves, whereas
AFlut commonly presents a sawtooth flutter wave pattern [Thaler 2019].



There have been several efforts at developing automated ECG interpretation
methods that use traditional machine learning approaches and rule-based expert sys-
tems to provide a classification of well-known cardiac condition patterns. Deep learn-
ing methods have recently been shown to be more effective than traditional methods
for automatic electrocardiogram (ECG) analysis [Hicks et al. 2021, Wegner et al. 2022].
Regarding AFib and AFlut classification methods, only a limited number of works
propose to differentiate these two rhythms, using one-dimensional signals with long
records of two-lead ECGs exams [Ivanovic et al. 2019], mainly using the MIT-BIH Atrial
Fibrillation [Moody and Mark 1983, Goldberger et al. 2000] and MIT-BIH Arrhythmia
[Moody and Mark 1983, Goldberger et al. 2000] datasets. However, these studies usually
use a limited number of leads with few subjects, which could hinder the classification.

In this study, we developed a Convolutional Neural Network based on 12-lead
ECG image records to differentiate AFib from AFlut using data from a private database
acquired from ambulatory patients of a tertiary referral hospital. To the best of our knowl-
edge, this is the first study to present an AFib/AFlut classification model based on an
end-to-end convolutional neural network with 12-lead ECG exams.

2. Methods

2.1. Dataset

We used a private 12-lead ECG dataset collected from 2017 to 2020 from the Picture
Archiving and Communication System (PACS) of a tertiary referral hospital in Brazil
specialized in cardiology (Heart Institute Hospital), acquired from Mortara™ ELI 250c
machines, with 52 different clinical diagnoses of cardiac abnormalities [Dias et al. 2021].
We only considered exams that included the specific diagnostic labels of AFib and AFlut
arrhythmia. Exams with different diagnostic annotations were not considered in this work.
Table 1 summarizes the entire number of ECG records available in our private dataset.

Table 1. Number of selected 12-lead ECG records from our private database.

ECG records (total) Atrial Fibrillation Atrial Flutter
9,528 8,219 1,309

2.2. Data preprocessing

Our preprocessing steps are based on previous works [Dias et al. 2021] for Atrial Fibrilla-
tion classification. The standard 12-lead ECG raw one-dimensional signals of limb leads
(I, II, III, aVR, aVL, and aVF) and chest leads (V1 to V6) had a frequency of 500 Hz and
a fixed length of 10 seconds. It was necessary to map the one-dimensional raw signals
to their image counterparts by employing a MORTARA ECG image template without
any signal as background and drawing the signals onto this image (original dimension
1671x3122x3). These signals were filtered with a 60 Hz notch filter and a 0.5-100 Hz
bandpass butterworth filter before converting to image. We transformed the images into
grayscale and resized them to 30% of their original size to decrease the computational
complexity of the models (resized dimension 501x936).



2.3. Deep Learning Model

To evaluate the performance of image-based Atrial Fibrillation and Atrial Flutter clas-
sification, we used a traditional and widely used 2-dimensional Convolutional Neural
Network named MobileNet [Howard et al. 2017]. The fully connected layers were a cus-
tomized 3-layer perceptron with a dropout rate of 30%, a ReLU activation function in
intermediate layers, and a sigmoid function in the last layer. Our model was trained over
30 epochs using a batch size of 8 samples. Additionally, to avoid overfitting, an early
stopping callback to terminate the model training process after seven epochs was also
added. Furthermore, we estimate class weights to deal with the unbalanced datasets.

2.4. Performance Evaluation

We performed an 80% train, 10% validation, and 10% test split. To prevent data leak-
age, we ensured that exams from the same patient does not exist in different divisions.
To evaluate the employed models, we addressed five statistical metrics, including Sen-
sitivity (Se), Specificity (Spe), F1-score (F1), Area Under Operational Receipt Curve
(AUROC), and Accuracy (Acc). All experiments were performed using a Foxconn High-
Performance Computer (HPC) M100-NHI with a 4 GPU cluster of 16 GB NVIDIA Tesla
V100 cards. The methodology was implemented using the Python framework (version
3.6.8) and Keras/TensorFlow (version 2.3.0).

2.5. Explainable methods

We selected two well-known methods to understand the predictions of our
model. The Gradient-weighted Class Activation Mapping (Grad-CAM) method
[Selvaraju et al. 2017], creates a heatmap for a certain class label, allocating significant
regions of the ECG input image to the prediction, and creating a coarse localization map
using the gradient information flowing into the final convolutional layer. The Local Inter-
pretable Model-Agnostic Explanations (LIME) method [Ribeiro et al. 2016] uses a sim-
pler interpretable surrogate model (e.g. linear regression), applying perturbations on the
ECG input. Furthermore, it weights the perturbed images in accordance with how sim-
ilar they are to the original image, and utilizes this knowledge to train an interpretable
model that imitates the behavior of the original model for a certain ECG input image. In
our work, we used a linear regression as the surrogate model, and segmented the images
with a quickshift segmentation algorithm with 1000 perturbations. Additionally, for the
LIME method, visualizations produce a map with the most positively significant areas
highlighted in green and the least positively significant areas highlighted in red, whereas
for the Grad-CAM method, the most significant pixels are highlighted in red and the least
significant in blue.

3. Results

Our model performance achieved Acc 95.6%, AUROC 97.6%, F1 83.2%, Spe 99.6%, and
Se 72.7%, with AFlut as a positive class. Figure 1 shows the confusion matrix and the
AUROC curve for the test split. Figure 2 displays the results of Grad-CAM and LIME
methods of an exam labeled Atrial Fibrillation (a) and (c) and an exam labeled Atrial
Flutter (b) and (d).



(a) (b)

Figure 1. MobileNet performance on our private dataset test split: (a) The confu-
sion matrix; (b) The AUROC curve.

(a) Grad-CAM (AFib) (b) Grad-CAM (AFlut)

(c) LIME (AFib) (d) LIME (AFlut)

Figure 2. MobileNet performance on our private dataset test split: (a) Grad-CAM
of a AFib example; (b) Grad-CAM of a AFlut example; (c) LIME of a AFib
example; (d) LIME of a AFlut example.

4. Discussion

In this study, we demonstrated the effectiveness of an image-based deep learning ap-
proach for the classification of Atrial Fibrillation (AFib) and Atrial Flutter (AFlut) using
standard 12-lead ECG records. We utilized a MobileNet Convolutional Neural Network
architecture, which provided a high classification performance. These results indicate that
our model is capable of accurately distinguishing between AFib and AFlut based on ECG
images.



Our approach differs from previous works, which mostly focused on one-
dimensional signals and a limited number of leads. The utilization of a private database
with a diverse range of patients and clinical diagnoses also contributed to the robustness
of our model.

The data preprocessing steps, including the conversion of raw ECG signals into
images and the application of filtering techniques, proved to be effective in maintain-
ing the essential features of the ECG signals while reducing computational complexity.
Additionally, the use of class weights in the training process helped to address the class
imbalance issue, which could have otherwise affected the model’s performance.

In Figure 2, we applied two interpretation methods – Grad-CAM and LIME –
to examine electrocardiogram (ECG) examples of Atrial Fibrillation (AFib) and Atrial
Flutter (AFlut). For both cases, Grad-CAM and LIME attributed the highest importance
to the DII long lead, which was expected, as both AFib and AFlut are rhythm disorders
and this lead contains the most significant information about rhythm. Nevertheless, in
both instances, we were unable to derive a valid interpretation for the highlighted regions.
Consequently, further research is needed to enhance the interpretability capabilities of the
proposed model.

Despite the promising results, there are some limitations to our study. Firstly, our
dataset was acquired from a single hospital, which may limit the generalizability of the
results to other populations and settings. Secondly, our model may not perform as well
for other types of arrhythmias or in the presence of noisy ECG signals. Future research
should focus on expanding the dataset to include a more diverse patient population and
investigating the performance of the model for various types of arrhythmias.

5. Conclusion

In this work, we presented an image-based deep-learning approach for the classification
of Atrial Fibrillation (AFib) and Atrial Flutter (AFlut) using images of standard 12-lead
ECG exams. The implementation of the MobileNet Convolutional Neural Network archi-
tecture demonstrated high classification performance. Furthemore, integration of explain-
able methods, such as Grad-CAM and LIME, allowed us to identify significant regions
within the ECG images, that contribute to the classification. Despite the limitations re-
lated to the dataset, our results demonstrate the potential of image-based deep-learning
approaches for accurate and reliable discrimination between AFib and AFlut.
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