
  

Unobtrusive Movement Detection during Sleep based on 

Load Cell Dynamics 

Adriana Miorelli Adami
 1

, André Gustavo Adami
1
, Tamara Hayes

2
, Zachary 

Beattie
2
 

1
Laboratório de Tecnologias em Saúde – Universidade de Caxias do Sul – (UCS)  

Rua Francisco Getúlio Vargas, 1130 – 91.501-970 – Caxias do Sul – RS – Brazil 

2
Biomedical Department – Oregon Health and Science University  

Portland, USA 

{amiorell, agadami}@ucs.br, {hayesta, beattiez}@ohsu.edu 

Abstract. Changes in the pattern of motor activities during sleep can be a 

disease marker, or can reflect various abnormal physiological and 

neurological conditions. Currently, there are no unobtrusive ways to assess 

the quality of sleep at point of care outside of a clinic. In this paper, we 

propose an alternative method of detecting movements during sleep that can 

be deployed unobtrusively in a patient’s own home by using load cells sensors. 

This subject-independent method uses a linear discriminant function to detect 

periods of movement in a cohort of 17 patients admitted to a sleep lab. The 

system yields a sensitivity of 97.5% and a specificity of 99% when compared 

to technicians’ annotations.  

1. Introduction 

Body movements in normal sleep constitute a very regular pattern that is characteristic 

of the sleeper, and the alteration of this pattern might reflect the deterioration in sleep 

process [Muzet 1986]. The alteration of the pattern or amount of motor activity can also 

be a disease marker [Muzet 1986; Chokroverty, Hening et al. 2003]. It can reflect 

illnesses ranging from flu to depression, pain, or the side effects of certain treatments 

[Hyyppa and Kronholm 1987; Chokroverty, Hening et al. 2003]. Many neurological 

disorders are presented with abnormal movements during day and nighttime that may 

adversely affect sleep [Chokroverty, Hening et al. 2003]. For example, normal body 

movements in Parkinson’s disease patients may be repressed by motor daytime 

symptoms that persist during sleep such as a decreased ability to start and continue 

movements, and impaired ability to adjust body position. These symptoms worsen sleep 

quality, and can cause discomfort and pain [Phillips 2004]. 

The assessment of nocturnal motor disturbances in sleep is traditionally 

performed using overnight polysomnograph recording or actigraphy. Overnight 

polysomnograph recording (PSG) is the gold standard to evaluate motor events 

occurring during sleep [Chokroverty, Hening et al. 2003]. PSG consists of continuous 

recordings of several physiological measures including brain waves 

(electroencephalography), electrical activity of muscles, eye movement (electro-

oculogram), breathing rate, blood pressure, blood oxygen saturation, and heart rhythm. 

Additional leads are applied to other parts of the body (for example, arms and legs) if 

there is a specific motor complaint [Chokroverty, Hening et al. 2003]. It involves at 

least a full night’s stay in a sleep laboratory attended by properly trained technicians 
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[Culebras 2004]. PSG has been widely and successfully used for both research and 

clinical applications [Guimarães, Silva et al. 2006], but it is expensive, obtrusive and it 

is done in an unfamiliar environment. 

Long-term assessment and behavior therapy require an inexpensive technique 

for which wrist actigraphy is a reasonably economical method that is commonly used 

[Tryon 2004]. Actigraphs are wristwatch-like devices that measure acceleration, and 

provide information on the activity level of the user. They are usually placed on the 

non-dominant wrist, although they can also be placed at the site of movement to 

examine specific movements. Although they have the advantage that they can be used 

for extended periods of time, the exact nature and the number of movements that occur 

are not recorded [Chokroverty, Hening et al. 2003]. In addition, the patient has to keep 

records of bedtimes and getup times, as well as times out of bed during the night, 

because the device cannot differentiate between times in bed from out of bed. 

Since traditional methods are obtrusive, researchers have been studying 

unobtrusive approaches to assess mobility in bed by instrumenting the bed with sensors 

[Watanabe, Watanabe et al. 2005; Jones, Goubran et al. 2006; Cheng, Hsu et al. 2008; 

Shin, Chee et al. 2010; Verhaert, Haex et al. 2011]. Cheng et al. [Cheng, Hsu et al. 

2008] propose a system that uses conductive mats to detect movement times and 

determine sleep and wake periods. Three conductive mats are placed under the chest, 

hip and legs to detect physical activities with the resistance changes of the mats. Jones 

et al. [Jones, Goubran et al. 2006] propose a system based on a pad with 24 pressure 

sensors to determine movement onset times. Shin et al. [Shin, Chee et al. 2010] use an 

air-mattress with balancing tube method to monitor heartbeat, respiration, snoring and 

body movements. Watanabe et al. [Watanabe, Watanabe et al. 2005] use a pneumatics-

based system, placed under the bed mattress, for measurement of heartbeat, respiration, 

snoring and body movements. Verhaert et al. [Verhaert, Haex et al. 2011] propose an 

algorithm that detects movements based on the time derivate of mattress surface 

indentation. Our research focuses on the unobtrusive assessment of movements in bed 

using data from load cells installed under each support of a bed. Load cells have been 

used in our laboratory to assess sleep hygiene [Adami, Adami et al. 2010], classify lying 

position [Beattie, Hagen et al. 2011], classify sleep and wakefulness [Austin, Beattie et 

al. 2012], and to distinguish normal respiration from disordered breathing [Beattie, 

Hagen et al. 2009]. Load cell data can be collected continuously without interfering 

with the patient. This paper describes a system for unobtrusive detection of movement 

in bed that employ load cells installed at the corners of a bed. The system focuses on 

identifying when a person is in bed and when a movement occurs based on the forces 

sensed by the load cells. The performance of the system was evaluated using data 

collected from 17 patients during regularly scheduled single-night sleep studies at a 

sleep clinic.  

2. System for Unobtrusive Detection of Movements during Sleep 

In its simplest form, the problem of detection of movement in bed consists of 

determining whether someone is moving or not at a given time t. This problem can be 

formulated as a two-class classification problem (movement and non-movement). Our 

approach comprises three stages: pre-processing, feature extraction and detection, as 

illustrated in Figure 1. The pre-processing stage consists of a segmentation process to 

extract the data from the periods when the subject is in bed. In the feature extraction 
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stage, a six dimensional representation of the load cell signals is estimated by assessing 

the variability in the short-term energy across the load cells. In the decision, a linear 

discriminant function is applied to the features so that a decision of whether the subject 

is moving or not moving while in bed is made. Details about the three stages and about 

the load cells used in the experiment are presented next. 

Figure 1. Movement detection framework. 

2.1 Load Cells 

Load cells are strain gauge transducers that convert applied force into a resistance 

change. They are widely deployed in industrial systems and are also commonly used in 

electronic scales. They are of relatively low cost, and represent a simple and durable 

technology. Although forces are not directly measured, but inferred from the resultant 

strain, the output is linearly proportional to force, with the relationship determined by 

calibration. After calibration the raw data is converted to force values (in Newton).  

 The sleep laboratory bed used for this study is equipped with load cells under 

the bed supports. Given the number of bed supports, 6 load cells (AG100C3SH5eU, 

SCAIME Annemasse, France) with capacities of 100 kg each are used for data 

collection. The load cell signals were collected at 2 kHz for the entire length of the 

patient's sleep study using a 16 bit A/D converter (USB-1608FS, Measurement 

Computing, Norton, MA). Then, the signal is downsampled to 20 Hz to reduce the 

computational cost during analysis. Figure 2 shows an example of data collected from 

one subject. The highlighted intervals are intervals when the subject made a movement. 

 

Figure 2. Six load cell signals collected from a subject during the study. The 
highlighted intervals are intervals where a movement occurred. 
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2.2 Pre-Processing 

The forces sensed by the load cells placed under each support of a bed are related to the 

instantaneous distribution of the mass of the body when someone is lying on bed. It is 

straightforward to identify the in- and out-of-bed periods with load cells due to the drop 

in the total force sensed when someone exits the bed. We used the k-means algorithm to 

separate the data from each subject into two clusters representing the two states in- and 

out-of-bed. The k-means algorithm is an unsupervised clustering method that aims to 

partition m observations into k clusters [Duda, Hart et al. 2001]. After the data from 

every subject was clustered into two groups, the time intervals with data from the group 

with the smallest centroid (the centroid representing the mean of the total force sensed 

by all the load cells) are labeled as out-of-bed. More details about this step can be found 

in [Adami, Adami et al. 2010]. 

2.3 Feature Extraction 

A movement of a person in bed is generally reflected by rapidly changing forces at the 

load cells. Therefore, the general idea underlying the movement detection is the 

assessment of the variability in the short-term energy across the load cells. The six 

dimensional feature vector is estimated as the energy in the short-term variability in 

each load cell that can be estimated through the mean-square difference. The mean-

square difference for each load cell signal  tix , for i = 1, 2, …,  6, and it is calculated 

as 
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where L is an odd number that represents the length of the analysis window, and 

 tix represents the local average of the signal calculated over the analysis window. We 

discuss later the selection of an appropriate value for L. 

2.4 Decision 

The problem of movement detection can be formulated as a two-class classification 

problem (movement and non-movement). Among all approaches to two-class problems, 

linear discriminant functions designs decision rules based on functions estimated from 

the data. That is, a linear discriminant classifier tests a linear combination of the features 

given by a linear discriminant function 
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where x is the feature vector, V is the weight vector, v0 is the threshold value, and Ci is a 

class, for i = 1, 2. This function indicates that x is assigned to C1 if h(x) is larger than 0, 

and vice versa. 

The parameters V and v0 of the linear discriminant function can be estimated, in 

a supervised mode using the criterion that measures the between-class scatter 

normalized by the within-class scatter [Fukunaga 1990], as follows 
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where Pi is a prior probability of class i, Mi is the mean from class i, and iΣ  is the 

covariance matrix. 

3. Experimental Setup 

In this section, we describe the subjects that participated in the study, the training and 

testing procedure, and present the performance measurement used to evaluate the 

system.  

3.1 Subjects 

Seventeen patients (10 men and 7 women) from the Oregon Health and Science 

University (OHSU) Sleep Disorders Program, with ages ranging from 29 to 74 years 

(mean age 50.4 ± 12.3 years-old) participated of the study. The data were collected 

during regularly scheduled single-night sleep studies at the OHSU sleep clinic, where 

the patients were admitted for regular PSG. The protocol was reviewed and approved by 

OHSU (IR4345). Table 1 shows the number of hours of movement and non-movement 

for each subject, with a total of 27.3 hours of movement data and 110.8 hours of non-

movement data. 

Table 1. Number of hours of movement and non-movement for each subject. 

Subject Movement Time 

(Hours) 

Non-Movement 

Time (Hours) 

1 1.5 5.7 

2 1.8 6.9 

3 1.1 6.4 

4 2.0 7.6 

5 2.3 4.6 

6 2.0 6.0 

7 1.1 7.5 

8 1.5 6.9 

9 1.0 7.5 

10 1.1 7.0 

11 1.4 8.2 

12 4.2 2.7 

13 0.8 7.0 

14 0.7 6.9 

15 1.8 6.0 

16 0.5 7.3 

17 2.5 6.6 

Total 27.3 110.8 

3.2 Training and Testing Procedure 

Since data was collected for only one night from each subject, a proper method for 

dealing with small datasets was applied to ensure independency between the training 
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and testing data, while maintaining sufficient data for training a classifier. Using a 

leave-one-out method [8], a linear classifier is designed using data from 16 subjects and 

the excluded subject is tested by the classifier. This procedure is performed 17 times to 

test all subjects. The overall performance measurements are estimated using the errors 

obtained for each test sample. Despite the disadvantage of designing 17 classifiers, the 

problem was alleviated by the simplicity of the linear classifier.  

 The values of the prior probabilities for estimating the parameters of the linear 

discriminant function (Equations (3) and (4)) where estimated from the collected data. 

The prior probability for the movement class is 0.4 and, consequently, 0.6 for the no-

movement class.  

3.3 Performance Measurement 

The performance is evaluated by comparing the decisions taken by the linear classifier 

to a ground truth measure derived from the technicians’ annotations of when 

movements were performed (movement segment boundaries defined by onset and offset 

times) during the night. Given that the linear classifier provides a decision on a feature 

sample level, such decisions divide the data into segments that belongs to a movement 

or a no-movement class. The resulting segments can be described by time periods that 

can be easily compared to the technicians’ annotations. Since the technicians’ 

annotations of movements for PSG do not have precise boundaries, 500 milliseconds 

around each movement boundary were necessarily excluded from analysis. 

 The movement detection problem is formulated as a two-class classification 

problem, and sensitivity and specificity can be used to measure the performance of the 

method. Sensitivity measures the proportion of positive samples (i.e., the patient is 

moving) correctly labeled by the classifier, and is given by 

NegativeFalsePositiveTrue

PositiveTrue
ySensitivit

  

 


 , 

where True Positive is the total time period labeled as movement, and False Negative is 

the total time period labeled as non-movement for the period when the patient was 

moving in bed. The specificity measures the proportion of negative samples (i.e., the 

patient is not moving) correctly labeled by the classifier, and is given by 

tivePFalsetiveNTrue

tiveNTrue
ySpecificit

osi ega 

ega 


 , 

where True Negative is the total time period labeled as non-movement, and False 

Positive is the total time period labeled as movement for the period when the patient 

was not moving. These statistical measurements are independent of the population of 

interest subjected to the test. They are also related to false alarm (Specificity = 1 – False 

Alarm Rate) and miss detection (Sensititvity = 1 – Miss Detection Rate) errors used in 

detection problems.  

4. Results 

Before any result can be produced, a decision must be made about the length of the 

analysis window L required, as defined in Equation (1), in the feature extraction step. 

Before estimating each linear classifier, the analysis window parameter is estimated 
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through a series of experiments with varying analysis window lengths using a leave-

one-out method on the subjects belonging to the training data (i.e., on the data from the 

16 subjects). The analysis window length with the best performance on the training data 

was used in the training and testing procedure for each subject. In all experiments, the 

analysis window length of 0.5 second provided the highest sensitivity and specificity. 

 Using the leave-one-out method, the system yields an overall sensitivity of 

97.5% and specificity of 99%. The achieved high performance and the subject-

independent modeling make the approach practical for application in residential and 

clinical settings. The use of load cell sensors installed under the bed posts provides an 

unobtrusive way of monitoring subjects during their sleep. In addition, the system can 

be readily installed because no subject model training is required.  

 Table 2 shows the age, height, weight, body mass index, and the performance 

for each subject. Even though the subjects show a large variability in the BMI (from 

23.0 kg/m
2
 to 56.8 kg/m

2
), the detector performance is not affected by the subjects’ 

BMI.  

Table 2. Individual Results and Patient Demographics. 

Subject 

Number 

Age Height (m) Weight 

(kg) 

Body Mass 

Index 

(kg/m
2
) 

Sensitivity 

(%) 

Specificity 

(%) 

1 44 1.75 98.4 32.1 98.1 100.0 

2 63 1.70 164.2 56.8 99.9 98.8 

3 30 1.70 69.4 24.0 93.4 100.0 

4 47 1.70 99.3 34.3 99.8 99.6 

5 69 1.63 87.1 32.8 89.0 99.2 

6 51 1.88 134.7 38.1 100.0 94.3 

7 46 1.65 92.1 33.8 98.7 100.0 

8 53 1.68 67.1 23.8 92.3 99.6 

9 55 1.88 141.1 39.9 100.0 99.4 

10 49 1.85 151.5 44.3 100.0 99.6 

11 61 1.85 128.4 37.5 91.0 99.9 

12 36 1.64 151.1 56.2 99.9 99.8 

13 29 1.63 71.2 26.8 99.6 99.9 

14 55 1.63 61.2 23.0 91.2 100.0 

15 49 1.75 86.2 28.1 99.5 99.8 

16 45 1.70 94.3 32.6 99.8 99.9 

17 74 1.88 138.8 39.2 100.0 92.6 

5. Conclusions 

We presented a movement detection system based on load cells installed under the 

supports of a bed on data collected during a PSG exam. The short-term mean-square 

differences of each load cell signal were used to capture the variations in the signal 

caused by movement. The system used a supervised detection method based on a linear 

classifier, and the performance of the method was assessed against manual annotation 

performed by a sleep clinic technician from seventeen patients.  

 Using a leave-one-out approach, the method achieved a sensitivity of 97.5% and 

a specificity of 99%. A high performance rate was achieved on realistic data, and the 
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simplicity of the approach makes it practical for application in residential and clinical 

settings. The subject-independent model training is an important feature when dealing 

with small datasets. The individual performance showed that the detection performance 

is not affected by the variability of the subjects’ BMI.  

 This work provides several directions in which the assessment of movement in 

bed can be pursued further. One direction is to include the classification of movements 

to distinguish, for example, involuntary and repetitive movements (caused by the 

Periodic Limb Movements disorder) from normal movements.  
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