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Abstract. Diabetic Retinopathy (DR) is a microvascular complication related to
diabetes that affects approximately 33% of individuals with this condition and,
if not detected and treated early, can lead to irreversible vision loss. Fundus
lesions such as Hard and Soft Exudates, Hemorrhages, and Microaneurysms
typically identify DR. The development of computational methods to segment
these lesions plays a fundamental role in the early diagnosis of the disease.
This article proposes a new approach that uses an R2U-Net combined with data
augmentation techniques for segmenting fundus lesions. We trained, adjusted,
and evaluated the proposed approach in the DDR dataset, achieving an accu-
racy of 99.87% and an mIoU equal to 59.69%. Furthermore, we assessed it
in the IDRiD dataset, achieving an mIoU of 49.92%. The results obtained in
the experiments highlight the potential contribution of the approach in generat-
ing lesion annotations in creating new DR datasets, which is essential given the
scarcity of annotations in publicly available datasets.

1. Introduction
Diabetic Retinopathy (DR) represents the main ocular complication associated with Di-
abetes Mellitus, occurring in approximately 33% of diabetic patients. On a global
scale, DR affects more than 100 million people, making it one of the leading causes
of blindness and visual impairment if healthcare professionals do not identify and treat it
early [Tan and Wong 2023]. The severity of DR manifests through the presence of various
types of retinal lesions, including Hard Exudates (EX), Hemorrhages (HE), Soft Exudates
(SE), and Microaneurysms (MA) in the fundus of the eye [Kanimozhi et al. 2021].



Recently, researchers have emphasized the remarkable feature learning capabil-
ity of deep learning in image segmentation. This way, encoder-decoder architectures
based on U-Net can efficiently segment the previously mentioned lesions, demonstrating
promising results in medical image segmentation applications [Wang et al. 2023].

However, obtaining DR data for model training is challenging since the different
public datasets available in the literature present a small number of labeled lesions and
problems associated with the quality of the images. These problems often negatively
affect the results obtained by predictors based on deep neural networks.

In this context, the main contribution of this article is to present a new method for
segmenting fundus lesions with greater precision using an R2U-Net [Alom et al. 2018]
together with data augmentation techniques. Therefore, the proposed work aims to assist
in diagnosing Diabetic Retinopathy and optimize the lesion annotation process to enable
the creation of new DR datasets.

We organize the remainder of the article as follows: Initially, we present a review
of related work, followed by the base architecture used in this work. We provide details on
the materials and methods used later in the article, followed by presenting results obtained
by the proposed work. Finally, we will describe the final considerations.

2. Related Work
Given the challenges presented in the previous Section, the following will review works
available in the literature whose purpose is the segmentation of fundus lesions. Among
the pieces found is the one proposed by Porwal et al. [Porwal et al. 2020], which presents
results of deep learning models used for classification, detection, and segmentation
of objects in fundus images, wherein the segmentation challenges the U-Net architec-
ture [Ronneberger et al. 2015] has been explored. The main contribution of the work
was the availability of the IDRiD public image set (Indian Diabetic Retinopathy Image
Dataset).

The study by Li et al. [Li et al. 2019] reported the introduction of a new dataset
for Diabetic Retinopathy named DDR (Dataset for Diabetic Retinopathy). This study
also evaluated deep learning models for retinal lesions’ classification, detection, and seg-
mentation. The segmentation task employed the DeepLab-v3+ [Chen et al. 2018] and
HED [Xie and Tu 2015] models. The results presented demonstrate the challenge faced
by the models in identifying retinal lesions, mainly in Microaneurysms, where they were
obtained in the test set IoU values equal to 0.0325 and 0.0110, respectively, in the
DeepLab-v3+ and HED models, highlighting the complexity of the task.

In Anand et al. [Anand and Sundaram 2023], the base U-Net architecture received
some modifications to improve the accuracy in the segmentation of blood vessels, Hard
Exudates, and Microaneurysms in fundus images. The study utilized the following public
datasets: IDRiD, DIARETDB1, STARE, ChaseDB1, DRIVE, and HRF. Although the
work did not segment Hemorrhages and Soft Exudates, the results presented suggest great
potential in the segmentation of retinal lesions with the U-Net architecture, highlighting
the accuracies obtained in the IDRiD set of 99.86% in the segmentation of Exudates Hard
and 99.9% in targeting Microaneurysms.



Nair et al. [Nair et al. 2023] proposed a new neural network called MesU-Net for
retinal image segmentation. This model combines U-Net and MesNet. The authors seg-
mented Hard Exudates, Hemorrhages, Microaneurysms, and blood vessels, obtaining ac-
curacies of 97.6%, 98.1%, 99.2%, and 83.7%, respectively. Furthermore, they used public
datasets to train the models, with the IDRiD set dedicated to segmentation fundus lesions
and the DRIVE dataset focused on vessel segmentation.

3. R2U-Net Architecture
R2U-Net was developed based on the Deep Residual Network [He et al. 2016],
RCNN (Recurrent Convolutional Neural Network) [Liang and Hu 2015] and U-
Net [Ronneberger et al. 2015] models in an attempt to optimize the advantages of these
three deep learning models. Among the main factors that differ the architecture from
R2U-Net to U-Net, the following stand out: (1) Use of RCLs (Recurrent Convolutional
Layers) and RCLs with residual units; (2) Efficient method of accumulating characteris-
tics in RCL units; and, (3) Elimination of the cutting and copying unit present in U-Net.

Adopting RCLs and RCLs with residual units replacing conventional convolu-
tional layers gives the architecture a more efficient and deeper structure. Furthermore, the
efficient feature accumulation method in RCL units incorporated by R2U-Net improves
convergence during the training and testing phases. Such an implementation significantly
contributes to enhanced feature extraction and representation. Finally, the cut and copy
unit in U-Net is replaced exclusively by concatenation operations. These architectural
modifications aim to optimize the effectiveness of R2U-Net, exploring state-of-the-art
strategies to improve the model’s performance, especially in medical image segmenta-
tion.

Figure 1 illustrates the architectural model of the neural network that makes up
the proposed approach. This structure comprises two main parts: (1) Coding, represented
by modules in green, and (2) Decoding, highlighted by modules in blue. Additionally, the
architecture incorporates recurring and residual operations. Recurrent operations enable
the reuse of information in different areas of the network, promoting a more comprehen-
sive understanding of contexts. On the other hand, residual processes introduce shortcuts
between layers to reduce challenges associated with performance degradation in deeper
networks. Experimental results presented by the authors indicate that such operations pos-
itively impact the training and testing phases of the model without implying an increase
in the number of network parameters.
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Figure 1. R2U-Net architecture diagram. Source: Adapted from [Shim et al. 2022].



4. Materials and Methods
The proposed work used an R2U-Net as a basis to segment retinal lesions associated with
DR. We conducted both experiments on hardware consisting of an AMD Ryzen 5 2600X
Six-Core @ 12x 3.6GHz processor, an NVIDIA TITAN Xp GPU video card with 12 GB
of VRAM, and 16 GB of RAM. To further enhance the accuracy of the proposed work,
we incorporated a data augmentation step.

4.1. Datasets

Two datasets of Diabetic Retinopathy were used in this work, both publicly available
and consisting of color images of the fundus of the eye obtained from eye exams. The
DDR dataset [Li et al. 2019] has 13,673 fundus images, but 757 have lesion annotations
at the pixel level. They annotated the following lesions: Hard Exudates, Soft Exudates,
Hemorrhages, and Microaneurysms. The IDRiD dataset was created from clinical exams
in an Indian ophthalmology clinic. This set has 516 images of the fundus of the eye. Of
these images, 81 have annotations of the lesions at the pixel level.

The DDR set was selected to train and evaluate the proposed work in the experi-
ments, as it has a more significant number of annotated images. We exclusively utilized
the IDRiD dataset to evaluate the generalization capacity of the model across various
Diabetic Retinopathy datasets. The Hold-out validation method [Lee et al. 2018] was
employed on both datasets, allocating 50% for training, 20% for validation, and 30% for
testing. Table 1 presents the number of images in each set after divisions.

Table 1. The number of images in each dataset after Hold-out validation.

Dataset Training Validation Testing Total
DDR 383 149 225 757

IDRiD 42 17 22 81

4.2. Data Augmentation

Among the main challenges faced in constructing computational models for segmenting
fundus lesions associated with DR, the small number of lesions labeled in retinal images
stands out. This limitation is standard among DR datasets, including the DDR dataset
used in training the proposed work. To overcome this problem, we performed a data
augmentation step on the images in the training set, aiming to improve the effectiveness
of the model in the segmentation of retinal lesions.

At this stage, we applied several techniques to expand the available
data in the library, named Albumentations: Fast and Flexible Image Augmenta-
tions [Buslaev et al. 2020]. We employed the following methods: Horizontal Flip, Ver-
tical Flip, Elastic Transform, Grid Distortion, and Optical Distortion. We applied the
Horizontal and Vertical Flip methods as an alternative to mitigate problems related to po-
sitional biases in the input data. The Horizontal Flip method flips the input image around
the y axis, in contrast to the Vertical Flip, which reverses the input image along the x axis.



We utilized the Elastic Transform and Grid Distortion techniques to address the
structural variations and distortions present in the fundus images. Elastic Transform is an
approach that introduces complex wave-like distortions into the image structure, gen-
erating non-linear variations in the shape and configuration of objects. On the other
hand, Grid Distortion causes variations in the distribution of pixels, creating an illusion of
changes in the image’s perspective, as if seen from above, with different regions exhibit-
ing varying relative distances.

Additionally, the Optical Distortion technique was employed to simulate visual
distortions, mimicking the effects caused by lenses in photography. Exposing the model
to these variations makes it possible to improve its generalization capacity with differ-
ent lesion patterns and structures present in fundus images. In Table 2, we present the
parameters used for each technique.

Table 2. Parameter values used when applying data augmentation techniques on
fundus images.

Augmentation Type Parameters Values
Elastic Transform alpha, alpha affine, sigma, probability 120, 3.6, 6, 1

Grid Distortion percentage 1
Horizontal Flip probability 1

Optical Distortion distort limit, shift limit, probability 2, 0.5, 1
Vertical Flip probability 1

Figure 2 depicts the application of data augmentation techniques to a fundus im-
age. These techniques created five additional pictures for each original image in the
training set, resulting in 2,298 images. For training the proposed model, we used this
augmented dataset.

(a) (b)

(d) (e)

(c)(c)(b)

(e)(d) (f)

Figure 2. Example of data augmentation over a fundus image from the DDR set.
In (a) the original fundus image, (b) Horizontal Flip, (c) Vertical Flip, (d)
Elastic Transform, (e) Grid Distortion, and (f) Optical Distortion. Source:
Own authorship.

4.3. Architecture Training and Adjustment
For semantic segmentation of fundus lesions, an R2U-Net was used, as mentioned previ-
ously, thus training a model for each type of lesion. In the training processes, we divided



images and masks with lesion annotations from the DDR set into Training, Validation,
and Test sets in a proportion of 50:20:30, respectively. Furthermore, we configured the
network input size to accommodate images with dimensions of 256×256×3 in the RGB
(Red, Green, Blue) color space, and we resized both images accordingly.

We trained each model for 50 epochs, using a learning rate 0.001 and a batch size
of 4. Furthermore, the optimizer was Adam, combined with the ReLU activation function.
We exclusively utilize the validation set to adjust the proposed models, aiming to optimize
the hyperparameters and achieve improved results. Table 3 presents the hyperparameters
used in the training of this work.

Table 3. Hyperparameters used in the proposed work.

Hyperparameters Value
Activation Function ReLU
Batch Normalization True

Batch Size 4
Filters for each down and upsampling levels [64, 128, 256, 512, 1024]

Input Size (256, 256, 3)
Learning Rate 0.001

Number of Epochs 50
Optimizer Adam

Output Activation Sigmoid

4.4. Performance Metrics

We evaluated the proposed approach using the metrics: Accuracy (Acc – Equation 1),
Sensitivity (Sen – Eq. 2), Precision (Pre – Eq. 3), Dice Coefficient (DC – Eq. 4), and
Intersection over Union (IoU – Eq. 5). For a deeper understanding of these metrics, it
is crucial to understand the concepts of true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN).

TP represents cases where the model correctly classified an instance as positive.
TN indicates points where the model was correct when ranking an example as unfavor-
able. On the other hand, FP occurs when the model mistakenly classifies an instance as
positive, while FN represents cases in which the model fails to identify a positive example
correctly.

Accuracy is a broad metric that evaluates the overall precision of the model, in-
dicating the proportion of correct predictions about the total number of predictions. This
metric is valuable for getting an overview of the model’s performance, considering both
TP and TN. The Sensitivity metric measures the proportion of positive cases adequately
identified by the model, which is especially useful when detecting positives is crucial.

Precision calculates the ratio between the number of examples correctly classified
as positive and the total number of samples classified as positive, placing greater empha-
sis on errors related to false positives (FP). On the other hand, the index is a statistical
validation metric used to evaluate the performance and accuracy of spatial overlap be-
tween two samples. It is widely used in image analysis and serves as a crucial indicator to



measure the agreement and quality of segmentation, highlighting the similarity between
the ground truth (gt) and the model prediction.

Another metric commonly used to evaluate models is IoU . This metric quantifies
the level of overlap between the gt bounding boxes and the bounding boxes predicted
by the model. The metric ranges from 0 to 1, where 0 indicates no overlap between the
boxes, and 1 shows a perfect overlap between the predicted bounding box (pd) and the
Ground Truth. The calculation of the evaluation metrics follows the equations below:

Acc =
(TP + TN)

(TP + FP + TN + FN)
(1)

Sen =
TP

(TP + FN)
(2)

Pre =
TP

(TP + FP)
(3)

DC =
2TP

(2TP + FN + FP)
(4)

IoU =
Area Overlap
Area Union

=
Area (gt ∩ pd)
Area (gt ∪ pd)

(5)

5. Results
We compared the proposed work with distinct state-of-the-art models that per-
form semantic segmentation of objects. In the experiments, we utilized the fol-
lowing models: (1) HED [Li et al. 2019]; (2) DeepLab-v3+ [Li et al. 2019]; (3)
U-Net [Ronneberger et al. 2015]; (4) U-Net++ [Zhou et al. 2018]; (5) Attention U-
net [Oktay et al. 2018]; and, (6) R2U-Net [Alom et al. 2018]. Furthermore, the U-Net
models, U-Net++ and Attention U-net, were also evaluated using pre-trained weights
on the ImageNet [Russakovsky et al. 2015] dataset, publicly available on Google Cloud
Storage1.

The Table 4 presents the results obtained in the segmentation of Hard Exudates,
Hemorrhages, Soft Exudates, and Microaneurysms using the metrics Acc, Sen, Pre, DC,
and IoU in dataset DDR validation set. The values highlighted in bold represent the best
results obtained in each metric in the different types of lesions. When analyzing Table 4,
it is evident that the proposed work achieved better results than other models in most
metrics. Accuracies of 0.9997, 0.9998, 0.9992, and 0.9997 were achieved for EX, HE,
SE, and MA, respectively, with a mean Intersection over Union (mIoU ) for the classes
equal to 0.5969.

1https://storage.googleapis.com/tensorflow/keras-applications/vgg16/
vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5



Table 4. Results obtained in the segmentation of Hard Exudates, Hemorrhages,
Soft Exudates, and Microaneurysms compared to other models using the
metrics Acc, Sen, Pre, DC, and IoU in the validation set of the DDR dataset.

Models EX HE

Acc Sen Pre DC IoU Acc Sen Pre DC IoU
HED [Li et al. 2019] - - - - 0.0948 - - - - 0.2183
DeepLab-v3+ [Li et al. 2019] - - - - 0.2910 - - - - 0.2819
U-Net [Ronneberger et al. 2015] 0.9994 0.1666 0.3064 0.1218 0.5429 0.9984 0.0000 0.0000 0.0000 0.4990
U-Net++ [Zhou et al. 2018] 0.9995 0.0000 0.0000 0.0000 0.4995 0.9984 0.0000 0.0000 0.0000 0.4990
Attention U-net [Oktay et al. 2018] 0.9995 0.1434 0.3737 0.1279 0.5448 0.9984 0.0000 0.0000 0.0000 0.4990
R2U-Net [Alom et al. 2018] 0.9992 0.3631 0.2948 0.2073 0.5720 0.9962 0.0740 0.1270 0.0509 0.5137
U-Net with imageNet weights 0.9994 0.4639 0.2295 0.2119 0.5757 0.9205 0.0690 0.4838 0.0020 0.0035
U-Net++ with imageNet weights 0.9995 0.0000 0.0000 0.0000 0.4995 0.9984 0.0000 0.0000 0.0000 0.4990
Attention U-net with imageNet weights 0.9993 0.4197 0.1966 0.1842 0.5644 0.9982 0.0247 0.6314 0.0412 0.5118
Proposed work 0.9997 0.3234 0.4809 0.2705 0.6053 0.9988 0.2284 0.7585 0.2991 0.6094

Models SE MA

Acc Sen Pre DC IoU Acc Sen Pre DC IoU
HED [Li et al. 2019] - - - - 0.0379 - - - - 0.0204
DeepLab-v3+ [Li et al. 2019] - - - - 0.2756 - - - - 0.0429
U-Net [Ronneberger et al. 2015] 0.9990 0.0000 0.0000 0.0000 0.4992 0.9997 0.0000 0.0000 0.0000 0.4999
U-Net++ [Zhou et al. 2018] 0.9990 0.0000 0.0000 0.0000 0.4992 0.9997 0.0000 0.0000 0.0000 0.4999
Attention U-net [Oktay et al. 2018] 0.9990 0.0149 0.5928 0.0238 0.5066 0.9997 0.0000 0.0000 0.0000 0.4999
R2U-Net [Alom et al. 2018] 0.9991 0.1313 0.7759 0.1682 0.5601 0.9997 0.0408 0.5528 0.0629 0.5200
U-Net with imageNet weights 0.9992 0.2656 0.7786 0.3054 0.6184 0.9997 0.0319 0.2575 0.0465 0.5158
U-Net++ with imageNet weights 0.9990 0.0000 0.0000 0.0000 0.4992 0.9997 0.0000 0.0000 0.0000 0.4999
Attention U-net with imageNet weights 0.9992 0.2357 0.7889 0.2912 0.6091 0.9997 0.0115 0.1909 0.0177 0.5052
Proposed work 0.9992 0.2230 0.8604 0.2796 0.6072 0.9997 0.2298 0.3418 0.2185 0.5656

Table 5. Results obtained in the segmentation of Hard Exudates, Hemorrhages,
Soft Exudates, and Microaneurysms compared to other models using the
metrics Acc, Sen, Pre, DC, and IoU in the test set of the DDR dataset.

Models EX HE

Acc Sen Pre DC IoU Acc Sen Pre DC IoU
HED [Li et al. 2019] - - - - 0.1874 - - - - 0.0524
DeepLab-v3+ [Li et al. 2019] - - - - 0.3118 - - - - 0.1425
U-Net [Ronneberger et al. 2015] 0.9976 0.1745 0.5455 0.1936 0.5668 0.9951 0.0001 0.5000 0.0001 0.4973
U-Net++ [Zhou et al. 2018] 0.9972 0.0000 0.0000 0.0000 0.4983 0.9951 0.0000 0.0000 0.0000 0.4973
Attention U-net [Oktay et al. 2018] 0.9976 0.1474 0.5935 0.1693 0.5576 0.9951 0.0011 0.0356 0.0007 0.4975
R2U-Net [Alom et al. 2018] 0.9976 0.4077 0.4872 0.3314 0.6143 0.9902 0.0910 0.1586 0.0597 0.5137
U-Net with imageNet weights 0.9978 0.4868 0.4611 0.3791 0.6312 0.9110 0.0640 0.0052 0.0079 0.4577
U-Net++ with imageNet weights 0.9972 0.0000 0.0000 0.0000 0.4983 0.9951 0.0000 0.0000 0.0000 0.4973
Attention U-net with imageNet weights 0.9977 0.4441 0.4214 0.3400 0.6206 0.9950 0.0200 0.6546 0.0340 0.5083
Proposed work 0.9980 0.3566 0.6960 0.3777 0.6466 0.9959 0.1686 0.8138 0.2319 0.5778

Models SE MA

Acc Sen Pre DC IoU Acc Sen Pre DC IoU
HED [Li et al. 2019] - - - - 0.0782 - - - - 0.0110
DeepLab-v3+ [Li et al. 2019] - - - - 0.2295 - - - - 0.0325
U-Net [Ronneberger et al. 2015] 0.9997 0.0001 0.3333 0.0002 0.4994 0.9998 0.0000 0.0000 0.0000 0.4998
U-Net++ [Zhou et al. 2018] 0.9997 0.0000 0.0000 0.0000 0.4993 0.9998 0.0000 0.0000 0.0000 0.4998
Attention U-net [Oktay et al. 2018] 0.9997 0.0104 0.1224 0.0094 0.5025 0.9998 0.0000 0.0000 0.0000 0.4998
R2U-Net [Alom et al. 2018] 0.9997 0.0805 0.2077 0.0619 0.5215 0.9998 0.0430 0.2287 0.0381 0.5135
U-Net with imageNet weights 0.9997 0.1994 0.2619 0.1322 0.5533 0.9998 0.0077 0.0485 0.0077 0.5026
U-Net++ with imageNet weights 0.9997 0.0000 0.0000 0.0000 0.4993 0.9998 0.0000 0.0000 0.0000 0.4998
Attention U-net with imageNet weights 0.9997 0.1840 0.2126 0.0998 0.5378 0.9998 0.0029 0.0531 0.0039 0.5018
Proposed work 0.9998 0.1704 0.3953 0.1446 0.5584 0.9998 0.1899 0.1801 0.1099 0.5336

Table 5 presents the segmentation fundus lesions EX, HE, SE, and MA results
in the DDR test set. The table includes metrics such as Acc, Sen, Pre, DC, and IoU ,
highlighting the superior performance of the proposed work compared to other methods.



Notably, in the test set, the accuracies were slightly lower compared to the validation set,
reaching 0.9980 for EX, 0.9959 for HE, 0.9998 for SE, 0.9998 for MA, and a mIoU of
0.5791. These results indicate the ability of the proposed work to deal with data never
observed before, reinforcing its reliability and adaptability.

Figure 3 compares the predictions made by the proposed approach during the
segmentation of fundus lesions and the ground truth of these images from the test set of
the DDR dataset. When comparing columns (b) and (c), despite not having detected some
lesions, it is notable that the proposed work managed to segment most of the instances in
the selected images accurately.

(a) (c)(b)

HE

EX

SE

MA

Figure 3. Visual comparison between the fundus lesion instance segmentations
performed by the proposed work with ground truth in images from the test
set of the DDR dataset. (a) Original images; (b) Ground Truth; and (c)
Proposed work. Source: Own authorship.

Finally, experiments were conducted on the IDRiD set to assess the accuracy of
the proposed work on diverse datasets. Thus, our model trained on the DDR set was used
to segment the lesions contained in the dataset IDRiD validation set. Table 6 presents
the results obtained with the metrics IoU and mIoU . The proposed work achieved IoU
values of 0.4983, 0.4992, 0.4993, and 0.4998 for the classes EX, HE, SE, and MA, with
a mIoU of 0.4992.



Table 6. Results obtained in the segmentation of fundus lesions compared to the
other models using the metrics IoU e mIoU in the IDRiD dataset validation
set.

Models IoU
mIoU

EX HE SE MA
U-Net 0.4987 0.4999 0.4999 0.0000 0.3746
U-Net++ 0.0000 0.0000 0.0000 0.0000 0.0000
Attention U-net 0.4989 0.4999 0.4995 0.0000 0.3745
R2U-Net 0.4963 0.4956 0.4994 0.4999 0.4978
U-Net with imageNet weights 0.4975 0.4595 0.4994 0.4999 0.4890
U-Net++ with imageNet weights 0.0000 0.0000 0.0000 0.0000 0.0000
Attention U-net with imageNet weights 0.4978 0.4997 0.4996 0.4999 0.4992
Proposed work 0.4983 0.4992 0.4993 0.4998 0.4992

Table 7 shows the results obtained in the dataset IDRiD test set with the metrics
IoU and mIoU . In this evaluation stage, the proposed work got a mIoU equal to 0.4990
and IoU equal to 0.4978, 0.4990, 0.4992, and 0.4998 in classes EX, HE, SE, and MA,
respectively. In both evaluation stages in the IDRiD set, the proposed work obtained a
mIoU higher than the other models, validating the generalization capacity of the proposed
work in segmentation fundus lesions associated with DR.

Table 7. Results obtained in the segmentation of fundus lesions compared to the
other models using the metrics IoU and mIoU in the IDRiD dataset test set.

Models IoU
mIoU

EX HE SE MA
U-Net 0.4986 0.4995 0.4999 0.0000 0.3745
U-Net++ 0.0000 0.0000 0.0000 0.0000 0.0000
Attention U-net 0.4988 0.4999 0.4998 0.0000 0.3746
R2U-Net 0.4954 0.4933 0.4995 0.4999 0.4970
U-Net with ImageNet weights 0.4966 0.4608 0.4996 0.4999 0.4892
U-Net++ with ImageNet weights 0.0000 0.0000 0.0000 0.0000 0.0000
Attention U-net with ImageNet weights 0.4966 0.4994 0.4997 0.4999 0.4989
Proposed work 0.4978 0.4990 0.4992 0.4998 0.4990

6. Conclusions

This work introduced a convolutional neural network model for the segmentation of in-
stances of fundus lesions associated with Diabetic Retinopathy using an R2U-Net com-
bined with data augmentation techniques, which improved the accuracy of the model, in-
cluding the use of small batch sizes. The best results obtained by the proposed work were
in the dataset DDR validation set, with accuracies equal to 99.97%, 99.98%, 99.92%, and
99.97% for Exudates Hard, Hemorrhages, Soft Exudates, and Microaneurysms, respec-
tively, totaling an average class accuracy of 99.87% and a mIoU of 59.69%. Furthermore,



the proposed work was superior to the other models in the IDRiD dataset, reaching mIoU
equal to 49.92% and 49.90%, respectively, in the validation and test sets.

These results demonstrate significant potential in utilizing encoder-decoder archi-
tectural models based on U-Net for segmenting retinal lesions related to DR. While our
work shows promise, improving model accuracy remains a priority for enhancing early
Diabetic Retinopathy diagnosis and optimizing lesion annotation. Our research group
aims to develop a new publicly available dataset comprising fundus images, lesion binary
masks, and corresponding annotations. This dataset will aid in training deep learning
algorithms for segmentation and object detection tasks. Our method automates lesion
mask generation, benefiting medical experts by reducing their annotation workload. Ex-
perts need only validate and potentially correct these masks, streamlining the process and
optimizing medical resource allocation.

In future work to achieve these objectives, it will be necessary to explore new
architectural models, incorporate pre-processing steps to improve the extraction of image
features within the neural network, and explore ensemble techniques combining different
encoder-decoder deep neural network models to create an even more precise approach.
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