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Abstract. Early and accurate diagnosis is required for adequate treatment of
hypothyroidism. However, the presence of subjectivity in the interpretation of
test results presents a significant challenge. In this study, we explored and eval-
uated the potential of machine learning (ML) algorithms for addressing this
issue. These algorithms include decision trees, random forest, XGBoost, Light-
GBM, extra trees, gradient boosting, and a stacking ensemble model. The pur-
pose is to predict hypothyroidism, which is a medical condition that affects the
thyroid gland, using attributes derived from blood test results. These attributes
include thyroxine, thyroid stimulating hormone, free thyroxine index, total thy-
roxine, and triiodothyronine. The results demonstrate the effectiveness of uti-
lizing these algorithms for accurately classifying hypothyroidism and offering
diagnostic assistance with 99.16% of accuracy.

Index Terms - Classification, machine learning, hypothyroidism, thyroid.

1. Introduction

Hypothyroidism is a clinical condition that affects the thyroid gland in the human
body. If left untreated, it can contribute to various health issues, such as high blood
pressure, abnormal lipid levels, fertility problems, cognitive decline, and problems with
the nerves and muscles [Gaitonde et al. 2012].

Figure 1. Thyroid gland and its connection with the pituitary gland situated in the
brain.



Hypothyroidism happens when the thyroid gland does not produce enough thy-
roid hormones [Hueston 2001]. As depicted in Fig. 1, the thyroid gland is located
in the front of the neck, and it is responsible for producing two hormones thyroxine
(T4) and triiodothyronine (T3). The T4 and T3 by the thyroid gland are primarily
regulated by the thyroid-stimulating hormone (TSH) produced by the pituitary gland.
The pituitary gland produces TSH in response to thyrotropin-releasing hormone (TRH)
from the hypothalamus. TSH plays a pivotal role in the regulation of thyroid function
[Kostoglou-Athanassiou and Ntalles 2010]. The feedback loop between the thyroid and
pituitary gland guarantees that the thyroid gland produces a proper quantity of thyroid
hormones to satisfy the body’s metabolic demands. When thyroid hormone levels are too
low, the system is stimulated to produce more hormones, and when they are too high, the
system is inhibited to prevent excessive hormone production [Bensenor et al. 2012]. Di-
agnosing hypothyroidism involves a combination of clinical evaluation, laboratory tests,
and assessment of various symptoms and medical history [Vaidya and Pearce 2008]. Gen-
erally, the most common blood tests used to diagnose include TSH measure, Free Thyrox-
ine (FT4), T3, and Thyroid Peroxidase Antibody (TPOAb) [Gaitonde et al. 2012]. How-
ever, are these features sufficient for diagnosis? Perhaps using a ML algorithm can help
in determining which features are crucial for making a diagnosis.

The use of ML models is demonstrating promise in detect hypothyroidism early
[Duan et al. 2022, Hu et al. 2022]. This allows quickly and accurately check medical
information for patterns and important details [Cavalcante et al. 2023]. These findings
can improve how doctors diagnose and treat hypothyroidism [Shahid et al. 2019]. More-
over, ML algorithms can be helpful for feature selection in the context of hypothy-
roidism diagnosis by choosing the most relevant variables that are most likely to con-
tribute to the diagnosis [Chaganti et al. 2022]. Many different ML methods have been
suggested in scientific literature to help identify thyroid disorders at an early stage
[Shahid et al. 2019, Guleria et al. 2022]. However, previous studies have not adequately
designed models in a way that allows humans to understand and interpret their decisions
and reasoning processes by creating feature importance scores, generating textual or vi-
sual explanations, and ensuring the model’s internal workings are accessible for review.

Motivated by the aforementioned discussion, this research conducted a compara-
tive analysis of Random Forest (RF), Extreme Gradient Boosting (XGBoost), Light Gra-
dient Boosting Machine (LightGBM), Extra Trees (ET), Gradient Boosting (GB), De-
cision Tree (DT), and a proposed approach by explain the model output with SHapley
Additive exPlanations (SHAP) [Lundberg and Lee 2017] and Local Interpretable Model-
Agnostic Explanations (LIME) [Ribeiro et al. 2016] to provide insight into how a ML
model arrives at its predictions.

The manuscript is organized as follows: In Section 2, we discussed some related
work and its models metrics. In Section 3, we explained the dataset used, and preprocess-
ing steps undertaken to ensure data quality and consistency, from data cleaning, and data
balancing. In Section 4, we discussed some feature selection tecniques. In Section 5, we
presented some ML models, providing a comprehensive overview of the methodologies
employed. In Section 6, we presented the core of the paper, combining discussions and
results. Finally, in Section 7 the conclusions is presented.



2. Related work

In [Shahid et al. 2019], the authors proposed the application of Support Vector
Machine (SVM), Random Forest (RF), and K-nearest neighbors (K-NN) algorithms for
hypothyroidism diagnosis. The best results are achieved with the RF model. The models
metrics are presented in Table 1. Differently, in [Guleria et al. 2022], the authors trained
Naive Bayes (NB), Decision Tree (DT), RF, and Multiclass Classifier (MC). The most
satisfactory result is reached by decision tree algorithm. Like [Guleria et al. 2022], in
[Almahshi et al. 2022], the authors demonstrated that the decision tree algorithm outper-
forms the others models. Stroek et al. [Stroek et al. 2023] implemented six ML algo-
rithms, the multilayer perceptron (MLP) achieved better accuracy, as depicted in Table
1. Differently, in [Sankar et al. 2022], the authors worked with Logistic Regression (LR),
DT, KNN, and XGBoost (XGB) algorithms. The XGB model outperforms other models
with higher accuracy.

Table 1. Models used in different works

Paper Model Accuracy Precision Recall F1-score

[Shahid et al. 2019]
SVM 97.27 76.80 75.90 76.36
RF 98.74 86.51 92.77 89.53
KNN 63.15 69.56 57.83 96.08

[Guleria et al. 2022]

RF 99.30 - 99.30 -
NB 95.30 94.60 95.30 94.50
DT 99.60 - 99.60 -
MC 95.40 95.10 95.40 94.30

[Almahshi et al. 2022]

SVM 75.10 - - -
NB 96.70 - - -
DT 97.60 - - -
Ensemble 97.30 - - -

[Stroek et al. 2023]

SVM 92.53 - - -
RF 91.20 - - -
NB 90.67 - - -
DT 90.13 - - -
LR 91.73 - - -
MLP 96.40 - - -

[Sankar et al. 2022]

KNN 96.87 - - -
DT 87.50 - - -
LR 81.25 - - -
XGB 98.59 - - -

All the works mentioned, with the exception of [Stroek et al. 2023], used the UCI
(University of California Irvine) repository in their research. From previous works, the
ML algorithms showed potential in assisting with the diagnosis of patients with hypothy-
roidism. However, we need to analyze the features to understand which parameter values
have the most significant influence on the model’s predictions. Moreover, we need to ex-
plain the predictions made by the models. In this way, we applied the SHAP and LIME
techniques to analyze the contribution of each selected feature in the model’s output.



3. Dataset
We utilized the Thyroid disease dataset, which was obtained from the publicly

available ML repository of the UCI [Quinlan 1987]. We worked with the hypothyroid
data. This dataset encompasses comprehensive information for each patient, including
29 attributes, such as age, sex, medication history, pregnancy status, surgical history, and
results from thyroid function tests. After downloading the dataset, we needed to guarantee
the data consistency then we proceeded with the data cleaning process.

3.1. Data cleaning

In the data science field, not all data is straightforward to use. Therefore, we
need to prepare it through the data cleaning process, which is designed to get rid of any
unnecessary or messy information from the data. This step is an important part of ML
workflows because it helps fix errors in the dataset that could affect the accuracy of the
final ML model [Van Der Aalst and van der Aalst 2016]. In data cleaning process, we
first formatted the data, adding column headers. After formatting, we discarded invalid
characters or values. Thereafter, we treated the missing data with imputation techniques
commonly used in data science, such as replacing the missing data with the average of
the existing data in the column. In other cases, we applied the mode, for example, in the
sex parameter.

3.2. Data balancing

Generally, when we work with classification problems, the data must be balanced
to be fed into the ML algorithm. We implemented the Synthetic Minority Over-sampling
Technique (SMOTE) to balance the dataset. This technique generates extra data from the
minority class to overcome data imbalance [Chawla et al. 2002]. The new data generation
is based on the K nearest neighbors algorithm (K Nearest Neighbors - KNN). Fig. 2 (a)
shows the unbalanced data with the minority class as hypothyroidism, and the majority as
data from healthy people. After the synthetic data generation with the SMOTE technique,
we achieve the balanced data, as shown in Fig. 2 (b).
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Figure 2. Database: (a) Before SMOTE and (b) after SMOTE.

From the original dataset, only 11% of the data corresponds to data of patients
with hypothyroidism, therefore the oversampling can increase the overlapping of classes
and can introduce additional noise. However, we analyzed the scatter plot of the class
distribution before and after SMOTE, as shown in Fig. 3 (a) and (b), the synthetic data



balanced the class distributions and induced the classifier to create more considerable
decision regions helping the classifier generalize better. After the formatting, cleaning,
and balancing process, the data is ready to be used.
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Figure 3. Synthetic data: (a) T3 values before SMOTE and (b) with SMOTE and
Total T4 values.

4. Features selection
In this section, we discussed the methods used to select meaningful features, in-

cluding the Recursive Feature Elimination (RFE) method, Pearson Correlation, and also
the selection based on K-means clustering.

4.1. Pearson correlation coefficient

Pearson Correlation estimates the statistical relationship between two variables
and is calculated using the correlation coefficient. This correlation must fall within the
range of -1, which means a strongly negative correlation, to 1, which means a strongly
positive correlation [Cohen et al. 2009, Saidi et al. 2019]. We used Pearson correlation
to identify which features have a strong linear relationship with the target variable and,
therefore, infer which one may have a significant impact on the ML model. The observed
features are depicted in Table 2.

4.2. Recursive Feature Elimination

RFE is a technique that determines a subset of features within a dataset for feature
selection. The technique gradually eliminates the features through a ML model, until
the minimum number of attributes to be included is reached [Darst et al. 2018]. In RFE
implementation, we selected the random forest model to select the most important features
from a dataset. Random is selected because it is capable of raking the importance of
features. We set the number of features to eliminate as 2, 3, 5, 8, 10, and 12. Finally, we
selected 10 as the number of features because it demonstrates better model performers.
Table 2 depicts the 10 features selected with the RFE method.

4.3. K-means clustering

K-means clustering is an unsupervised learning algorithm that groups data into
clusters. Each cluster is composed of similar instances, i.e., it seeks to find pat-
terns and structures in the data without the need for pre-defined labels or categories



[Arora et al. 2022]. We varied the cluster’s number between 3, 5, 8, 10, and 12, with
the number of features varied between 2, 3, 5, 8, 10 and 12. After clustering, we calcu-
lated the cluster centroids for each cluster. We used the proximity of each feature to the
cluster centroids as a measure of feature importance.

Table 2. Features with the highest frequency in each method.

Method Features selected
RFE TSH FTI T3 TT4 Age T4U Sex OT RS QH
Correlation TSHm TSH T3m T3 TT4m TT4 T4Um T4U FTIm FTI
Clustering TT4m T4Um TT4 T3m FTI T3 Pregnant I131 Psych Sick
Proposed TT4 TT4m T4Um T3m FTI T3 TSH T4U Pregnant I131

The suffix m in each feature means measured, and RS is Referral source, OT means on
thyroxine, and QH query hypothyroid.

4.4. Feature selected results
We implemented an algorithm to select the features with the highest frequency

among the feature selection method’s (RFE, Pearson, K-means) outputs. The output of
our algorithm is shown in the Table 2 as proposed. The feature T4U refers to total T4,
TT4 is the level of thyroxine in the patient’s body, and I131 indicates if the patient uses
Iodo-131 or not.

5. Machine learning models for classification
In this section, we introduced various ML models, including random forest, XG-

Boost, LightGBM, extra trees, gradient boosting, decision tree, and a proposed approach
based on stacking ensemble model.

5.1. Random Forest
Random Forest is an ML method used for classification or regression

[Fawagreh et al. 2014]. The algorithm consists of an arrangement of tree classifiers, gen-
erating a forest, where each of the classifiers is generated using a random input vector,
and each generated tree casts a vote for the most popular class to classify the input vector
[Pal 2005]. To implement the classifier, we set 12 decision trees, each with a maximum
depth limited to 3 levels. Furthermore, we defined the maximum number of variables
considered in each tree node as log2. We used sampling criteria with 2 minimum samples
for the division of nodes and 1 minimum sample for the formation of leaf nodes.

5.2. Extreme Gradient Boosting
XGBoost, introduced by [Chen and Guestrin 2016], is an model based on the gra-

dient boosting algorithm. This method utilizes gradients to train decision trees within the
ensemble, meaning it leverages the gradient of the loss function to adjust tree parameters.
As a result, the algorithm offers improved speed and scalability.

We implemented the XGBoost with a learning rate of 0.04, which regulates the
step size during training, and a value of 0.5 for the penalty parameter, controlling ad-
ditional divisions in the trees. Furthermore, we established 200 trees, with a maximum
depth of 9 levels and a minimum weight of 5 samples per node. These parameters made
it possible to adapt the XGBoost model to the specific needs of the problem, resulting in
an effective and accurate model.



5.3. Light Gradient Boosting Machine

LightGBM is a grid learning model based on decision trees algorithm. The method
uses algorithms based on histograms to speed up the training process, which results in
less memory usage and a better growth strategy on each sheet with depth restrictions
[Fan et al. 2019]. We implemented the algorithm using 100 trees, with a maximum depth
limited to 5 levels and 15 leaf nodes in each tree.

5.4. Extra Trees Classifier

Extra Trees model is a variation of Random Forest, which introduces more ran-
domness during the construction of the decision tree. When creating decision trees, the
classifier randomly selects subsets of smaller features for each of the node divisions, mak-
ing the model less sensitive to the occurrence of overfitting and enabling improved per-
formance in more robust data sets [Geurts et al. 2006]. We used 50 trees with a maximum
depth of 30 levels, and a minimum number of 4 samples to form a leaf node in the algo-
rithm.

5.5. Gradient Boosting Classifier

Gradient Boosting algorithm has the ability to build high-precision classification
models. It works by building decision trees sequentially, where each new tree aims to
correct the errors made by the previous one [Friedman 2001]. We used 20 trees in the
algorithm, with a maximum depth of 5 levels. Also, we set a learning rate of 0.02 to
control the step size during model training, and the number of features considered in each
split was set as the square root of the total available features.

5.6. Decision Tree

Decision Tree is an algorithm based on hierarchical tree structures in which each
node represents a decision or test on a feature, each branch represents the result of one
of the tests, and each leaf of the tree represents one of the classes or an output value
[Quinlan 1986]. We implemented the algorithm using the entropy function to measure
the impurity of the node divisions to improve the quality of the divisions. We used the
square root function to split the features at each node, and a minimum number of 24
samples to form a leaf node.

5.7. The proposed approach

We proposed a stacking model based on GB, ET, DT, and RF algorithms to im-
prove the predictive capacity. Fig. 4 shows the hierarchical approach. We chose these
models because they presented the best metrics. The GB, ET, and DT models perform the
primary classifications based on the available input data. Then, the RF model receives the
predictions from base models and performs the final classification. The final prediction is
introduced into the SHAP and LIME methods for explanation of the results.

6. Discussions and Results

6.1. Models evaluate

We evaluated the models using metrics like the confusion matrix, accuracy, recall,
precision, and F1-score. Table 3 shows the model’s metrics. To improve the models, we



Figure 4. Proposed scheme with the stacking model and explainable AI.

used a grid search method along with cross-validation with 5 K-fold to make sure that
we reduce overfitting. According to Table 3, the proposed model (stacking) achieved an
accuracy of 0.9916 and an AUC of 0.9973. It showed high precision and F1-score values,
demonstrating its effectiveness in classification.

Table 3. Model evaluation metrics.

Model Accuracy AUC Recall Precision F1
RF 0.9908 0.9951 0.9848 0.9969 0.9908
XGBoost 0.9840 0.9960 0.9817 0.9862 0.9840
LightGBM 0.9460 0.9459 0.9878 0.9116 0.9482
ET 0.9763 0.9960 0.9605 0.9918 0.9759
GB 0.9901 0.9963 0.9832 0.9969 0.9900
DT 0.9809 0.9861 0.9772 0.9846 0.9809
Stacking Model 0.9916 0.9973 0.9863 0.9969 0.9915

Fig. 5 (a), (b), (c), (d), (e), (f), and (g) depicted the confusion matrices for each
model. As shown in Fig. 5 (g), the stacking model classified 655 patients as healthy and
649 as sick. However, it made an error by classifying 2 healthy patients as sick and 9 sick
patients as healthy. But, the proposed model demonstrated the best overall performance
among the classifiers.

6.2. Model explanation

6.2.1. SHAP

Fig. 6 shows the distribution of SHAP values. The TSH values have a stronger
positive impact on the prediction. Also, the features FTI, TT4, T3, T3 measured, and T4U
are crucial for the model predicting if the person has hypothyroidism. The distribution of
points provides insight into how the chosen feature affects model predictions across the
dataset.
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Figure 5. Confusion matrix: (a) RF, (b) XGBoost, (c) LightGBM, (d) ET, (e) GBC,
(f) DT, and (g) Stacking model.
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Figure 6. Features impact on the prediction.

6.2.2. LIME

Fig. 7 shows how the model provides the predictions by application of the LIME
method. Fig. 7 (a) depicts which features are relevant for the model to classify the patient



as normal with a probability of 66%. Fig. 7 (b) shows how the model performs the
prediction for hypothyroidism with a probability of 66%. The features determinant for
deciding if this patient has hypothyroidism are TSH, TT4, FTI, and knowing if the patient
is pregnant. Differently, for the model to decide if the patient has no hypothyroidism, the
features most influential are TSH, FTI, TT4, I131, T4U, T3, and know if the patient is
pregnant.

(a) (b)

Figure 7. Features that impacted in the predicted value and their respective
meanings: (a) Normal and (b) Hypothyroidism.

These two methods offer different approaches to explaining ML model predic-
tions, highlighting the importance of model interpretability in diagnostic contexts. SHAP
shows the distribution of feature values, revealing which ones have a more significant im-
pact on the model. On the other hand, the LIME method enables a local interpretation of
the model predictions.

7. Conclusions

ML algorithms hold significant promise in the identification of hypothyroidism,
offering the benefits of the discovery of patterns and trends within clinical data. These
insights are instrumental in improving the diagnosis and treatment of hypothyroidism,
eventually improving patient care and outcomes. From all models evaluated, the pro-
posed stacking ensemble model demonstrated the highest classification accuracy, reaching
99.16%. This research emphasizes the potential of combining medical data with ML al-
gorithms to improve diagnostic processes and potentially enhance the overall well-being
of patients. Moreover, for a more transparent, interpretable, and understandable model
to doctors, we applied two explainable AI methods: SHAP and LIME. SHAP method
provide a global insights into the model’s overall behavior, and LIME provides a local
explanations for specific predictions. Fundamentally, this research demonstrates how the
association between medical data and ML can pave the way for advancement in health-
care.
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