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Abstract. Sleep is a crucial aspect to overall health, impacting mental and phys-
ical well-being. The classification of sleep stages is an important step to assess
sleep quality, and Photoplethysmography (PPG) has been demonstrated to be
an effective signal for this task. Recent works in this area usually employ com-
plex methods that may be unfeasible to be deployed in wearable devices. In this
work, we present a XGBoost model for sleep-wake classification based on fea-
tures extracted from PPG signal and activity counts. The performance of our
method achieved a Sensitivity of 91.15 ± 1.16%, Specificity of 53.66 ± 1.12%,
F1-score of 83.88 ± 0.56%, and Kappa of 48.0 ± 0.86%. Our method offers
a significant improvement over other approaches as it uses a reduced number
of features, making it suitable for implementation in wearable devices that have
limited computational power.

1. Introduction
Sleep plays a vital role in maintaining good health for individuals of all ages
[Ramar et al. 2021]. Inadequate sleep of poor quality or duration can lead to a host
of chronic health problems, including cardiovascular diseases, diabetes, and obesity
[Knutson and Van Cauter 2008]. These highlight the importance of ensuring that indi-
viduals get adequate and high-quality sleep to maintain their health and well-being.

Polysomnography (PSG) is the gold standard exam for evaluating human sleep
[Krystal and Edinger 2008]. The exam involves the simultaneous recording of multiple
electrophysiological signals during sleep. After registration, a specialist analyzes the
recorded signals and labels different sleep stages based on time windows of 30 s. Nev-
ertheless, PSG is an expensive and time-consuming procedure and can also suffer from
labeling errors by the specialist. Additionally, PSG exams are performed in an unfamiliar
environment, with multiple electrodes attached, which can affect sleep quality.



With the rise of wearable devices, it is now possible to track several physiological
signals, such as heart rate (HR), more cost-effectively and conveniently. Wearable devices
are increasingly being used to track and evaluate sleep patterns by capturing Photoplethys-
mography (PPG) signals, raw triaxis accelerometer signal (ACC), and activity-based sig-
nals like Activity (ACT). PPG measures changes in the blood volume of vascular tissues,
allowing measurements of vital parameters, such as heart rate, respiration rate, arterial
oxygen saturation, and blood pressure [Mejı́a-Mejı́a et al. 2022]. On the other hand, the
ACT is derived from the ACC signal processing and provides an estimation of rest and
wakefulness periods to assess sleep patterns.

Sleep stages can be classified into five distinct categories: (i) wakefulness (W),
(ii) non-REM stage 1 (N1), (iii) non-REM stage 2 (N2), (iv) non-REM stage 3 (N3), and
(v) REM stage (R). While accurate classification of these five categories is important for
monitoring sleep patterns, the identification of sleep-wake stages are sufficient to calculate
important metrics such as: total sleep time, total wake time, sleep latency, sleep efficiency,
and wakefulness after sleep onset [Shrivastava et al. 2014].

While wearable devices cannot directly measure brain activity like EEG devices
used in sleep stage analysis, they can capture PPG signals, which can be utilized to
estimate HR [Mejı́a-Mejı́a et al. 2022]. HR is known to decrease during the transition
from wakefulness to non-REM stages [Silvani 2008]. There are also indications that
HR exhibits a slight decrease during the transition from non-REM to REM sleep stages
[Silvani 2008, Habib et al. 2023]. Therefore, we hypothesize that only using the infor-
mation of the HR and the Heart Rate Variability (HRV), extracted from the PPG signals,
along with the ACT, derived from the ACC signals, is possible to accurately classify sleep
and wake stages.

Recent works in the field of sleep-wake classification proposed to use both PPG
and/or ACC signals. Most of them are based on features extracted of these signals. Ta-
ble 1 displays a summary of the state-of-the-art on this topic. [Fonseca et al. 2017] used a
Bayesian Classifier to predict sleep-wake stages based on a set of HRV features computed
from interbeat intervals obtained from PPG signals along with measures from ACC. Like-
wise, [Eyal and Baharav 2017] used a similar approach as [Fonseca et al. 2017], with-
out the measures from ACC. [Uçar et al. 2018] proposed to use k-Nearest Neighbors
(KNN) and Support Vector Machine (SVM) algorithms based on PPG and HRV fea-
tures. [Palotti et al. 2019] compared a cohort of classification algorithms to perform
the sleep-wake classification based on classic machine learning or deep learning tech-
niques using only ACC signals. Likewise, [Banfi et al. 2021] proposed to use only raw
ACC signals using Convolutional Neural Networks (CNN) for this binary classification.
[Habib et al. 2023] proposed a CNN derived from PPG raw signals of 10 subjects with
sleep-disordered breathing, using a leave-one-out strategy on the sleep-wake classification
with data augmentation. [Motin et al. 2023] used the same dataset as [Habib et al. 2023],
extracting 72 features from the PPG signals, instead of using the raw PPG, using three
different classifiers, KNN, SVM and a Random Forest (RF). Many of these methods have
been evaluated using small datasets or rely on a large number of features, rendering the
approach impractical for deployment on resource-constrained devices like wearables.

In this work we present a method to classify sleep and wake stages, comparing the
results of three commonly used machine learning techniques: Logistic Regression (LR),



Table 1. Summary of state-of-the-art obtained results for the sleep-wake classification.
Accuracy Sensitivity Specificity F1-score Kappa Dataset Method

[Fonseca et al. 2017] 91.5 ±5.1 58.2 ±17.3 92.9 ±2.0 - 0.55 ±0.14 Private (s = 101)
Bayesian classifier -

PPG features and ACC

[Eyal and Baharav 2017] 84.3 38.1 91.7 - 0.31 Private (s = 88)
Bayesian classifier -

PPG features

[Uçar et al. 2018] 79.23 78.0 80.0 79.0 0.58 Private (s = 10)
SVM -

PPG features

[Uçar et al. 2018] 79.36 77.0 81.0 79.0 0.59 Private (s = 10)
KNN -

PPG features

[Palotti et al. 2019] 81.8 ± 1.0 90.40 ±1.20 68.10 ±1.90 84.30 ±1.10 - MESA (s = 1,817)
Extra Trees -

370 ACC features

[Palotti et al. 2019] 83.1 ± 1.0 91.40 ±1.10 69.90 ±2.00 85.50 ± 1.00 - MESA (s = 1,817)
LSTM 100 -

ACC raw signal

[Motin et al. 2019] 72.36 70.64 74.22 - - Private (s = 5)
Medium Gaussian SVM -

PPG 17 features

[Motin et al. 2020] 81.10 81.06 82.50 81.74 - Private (s = 10)
Cubic SVM -

PPG 22 features

[Banfi et al. 2021] - 89.20 92.0 90.9 0.782 Private (s = 81)
LightCNNA -

ACC raw features

[Habib et al. 2023] 94.18 ±11.95 94.4 - 93.05 ±13.77 0.864 ±0.265 Private (s = 10)
CNN -

PPG raw signal

[Motin et al. 2023] 83.75 ±0.85 87.79 ±1.10 73.63 ±2.45 80.01 ±1.88 - Private (s = 10)
KNN -

PPG 72 features

[Motin et al. 2023] 84.66 ±0.99 87.41 ±1.24 77.79 ±0.93 82.32 ±0.90 - Private (s = 10)
SVM -

PPG 72 features

[Motin et al. 2023] 85.22 ±0.62 87.86 ±1.48 77.67 ±3.26 82.45 ±1.62 - Private (s = 10)
RF -

PPG 72 features

Random Forest (RF), and the eXtreme Gradient Boosting (XGBoost). These algorithm
are based on features extracted from PPG and ACT signals with a reduced number of fea-
tures for deployment feasibility on wearable devices. Additionally, a stratified analysis
was conducted considering age and gender factors. Our method demonstrates advance-
ment over existing approaches by reducing the feature set, thereby enabling implementa-
tion on computational-constrained wearable devices.

2. Materials and Methods

The proposed approach comprises five sequential steps, being them: Data Selection, Pre-
processing, Windowing, Feature Extraction, and Classification. To begin, we describe the
data utilized, specifically selecting subjects with both ACT and PPG signals. We merge
the sleep stages to generate a Wake and Sleep dataset, forming the foundation for sub-
sequent analysis. After that, we present the preprocessing and windowing procedures,
detailing how the data is prepared for further processing. Additionally, we outline the
feature extraction process. Furthermore, we describe our employed classifiers, providing
information on our experimental setup. A flow diagram summarizing these steps is shown
in Fig. 1.

2.1. Data Selection

The experiments were carried out on the MESA Sleep dataset, a subset of the Multi-Ethnic
Study of Atherosclerosis (MESA) dataset [Chen et al. 2015]. The MESA Sleep dataset
contains data collected from 2,237 subjects, including overnight Polysomnography exams
along with their corresponding PPG signals, 7-day wrist-worn Actigraphy signals, sleep
stage labels for every 30 s windows, and sleep questionnaires. For this study, only patients



Figure 1. Overview of the proposed method for sleep-wake classification.

with both ACT and PPG signals were used, resulting in 1,831 patients. The metadata
information about the employed dataset is shown in Table 2.

This dataset provides sleep stage labels for every 30 s window. The labeling pro-
cess followed the AASM guidelines, which suggest the five sleep stage classes aforemen-
tioned. Since our goal is to detect only sleep or wake stages, non-REM stages 1-3 and
REM stage were grouped into class “sleep” (S). For every 30 s window, the PPG signal
was sampled at 256 Hz, and the corresponding ACT registered.

2.2. Preprocessing

We used the same preprocessing steps proposed by [Kotzen et al. 2022] in this study.
The PPG data was filtered using a low-pass 8th-order Chebyshev Type II filter at 8 Hz,
followed by downsampling from 256 Hz to 34 Hz using linear interpolation. Outlier
values greater than or less than three standard deviations from the mean were clipped, and
the data was normalized using z-score normalization.

2.3. Windowing

We partitioned the PPG signals into non-overlapping 30-second windows, as the PSG
exam provides a sleep stage label for every 30 seconds of recording time. Due to the in-

Table 2. Metadata of the MESA dataset.
Parameter Value
Subjects 2, 237

with PSG 2, 056
with actigraphy 2, 158
with PSG and actigraphy 1, 831

Age 69.6± 9.1
Male subjects 1, 039



herent variable recording lengths for each subject in the MESA Sleep dataset, the number
of windows differed among subjects. Figure 2 illustrates the windowing extraction step
applied to the PPG signal of a single subject.

0 x hours 

Windowing

Feature Extraction

PPG signal

Figure 2. Windowing and Feature Extraction process example.

2.4. Feature Extraction

HR and HRV are widely recognized as important features associated with sleep stages
and disorders, being both regulated by the sympathetic and parasympathetic nervous sys-
tems [Stein and Pu 2012]. HR was calculated for every window by taking the mean
time difference between peaks, which were detected using the method proposed in
[Bishop and Ercole 2018]. HRV was calculated as the standard deviation of the time
difference between the peaks. Windows with HR greater than 180 beats per minute or
HRV outside of two standard deviations from the mean HRV of the entire dataset were
discharged. As consequence, all samples from four participants were excluded in this
phase, resulting in s = 1, 827 subjects. Our model also used as input the activity value
provided by the MESA-sleep acquired with the Actiware-Sleep version 5.59 analysis soft-
ware (Mini-Mitter Co, Inc, Bend, OR).

Therefore, for each i subject (i = 1, 2, . . . , s), the features collected in each win-
dow were arranged as

Xi =


x11 x12 x13

x21 x22 x23
...

...
...

xn1 xn2 xn3

 , (1)

where s is the number of subjects, m is the number of features (m = 3), and n is
the number of windows for each subject. Overall, we have a total of 2,050,280 windows:
63.93% (1,310,690) are labeled as sleep and the remaining 36.07% (739,590) as wake.

2.5. Classification

Our sleep-wake classification was performed using three commonly used machine learn-
ing techniques: LR, RF, and XGBoost. The models were implemented in Python using
the default hyperparameters. A 10-fold cross-validation approach was employed to pre-
vent bias in the training and testing split, with samples from the same patient grouped in
the same fold to avoid intra-patient bias.



2.5.1. Experimental Setup

Experiments were performed using a Foxconn HPC M100-NHI with an 8-GPU cluster of
NVIDIA Tesla V100 16GB cards. The model was implemented in Python (3.8.10) with
the support of the libraries scikit-learn (1.1.3), XGBoost (1.6.1), and scipy (1.8.1).

3. Results
Table 3 summarizes the overall performance of the proposed methods for the sleep-wake
classification task. The results were compared to the literature by using five different
evaluation metrics commonly used in sleep-wake classification studies: Accuracy (Ac),
Sensitivity (Se), Specificity (Sp), F1-score, and Cohen’s Kappa Coefficient (Kappa). Ad-
ditionally, we used the same metrics to evaluate the classification provided by the actig-
raphy used in the MESA Sleep dataset as baseline.

Table 3. Obtained results for the sleep-wake classification.
Method Accuracy Sensitivity Specificity F1-score Kappa

Our model XGBoost 77.62 ± 0.56 91.14 ± 1.15 53.66 ± 1.11 83.88 ± 0.56 0.480 ± 0.008
Our model LR 74.62 ± 0.66 96.46 ± 0.33 35.91 ± 0.88 82.92 ± 0.55 0.370 ± 0.009
Our model RF 73.80 ± 0.48 83.68 ± 0.93 56.30 ± 0.76 80.32 ± 0.54 0.413 ± 0.007
MESA Actigraphy - 50.49 94.75 64.08 0.478
[Palotti et al. 2019] LSTM 100 83.1 ± 1.0 91.40 ± 1.10 69.90 ± 2.00 85.50 ± 1.10 -
[Motin et al. 2023] RF 85.22 ± 0.62 87.86 ± 1.48 77.67 ± 3.26 82.45 ± 1.62 -
[Habib et al. 2023] CNN 94.18 ± 11.95 94.4 - 93.05 ± 13.77 0.86 ± 0.26

To assess possible biases in our method, we also performed a stratified analysis of
our obtained results by age and gender. In Fig. 3, we show the obtained F1-score of our
approach in four age groups (54 – 65, 66 – 75, 76 – 85, and 86+) and two gender groups
(male and female).

Figure 3. Stratified F1-score results for sleep-wake classification task for age and
gender.



4. Discussion

Our proposed methodology used only three features: two obtained from the peak-to-peak
interval from the PPG signal and one from the ACT value. The peak-to-peak derived
features were extracted even in adverse acquisition scenarios and the actigraph value was
easily extracted from the accelerometer. This is a major advantage compared to other
reports that extract a complex set of features that can be compromised in noisy acquisi-
tions. As shown in Table 3, the algorithm that best performed was the XGBoost. Apart
from the Spe, our proposed method achieved higher metric values than the MESA Sleep
actigraphy. This shows the gain of using PPG-derived physiological measures (HR and
HRV).

Compared to the best method from [Palotti et al. 2019], which also used the
MESA Sleep dataset, we obtained comparable Se (91.14 ± 1.15% vs 91.40 ± 1.10%)
and F1-score (83.88 ± 0.56% vs 85.50 ± 1.00%); however, the Spe value is lower
(53.66±1.11% vs 69.90±2.00%). The lower Spe might be due to the imbalance between
the classes. Adopting a proper strategy for dealing with unbalanced data might improve
the observed results and need further investigation.

It is not possible to make a direct comparison with other works, since all of them
are based on private datasets. [Motin et al. 2023] achieved comparable results as ours in
terms of F1-score, however, they didn’t used ACC signals and used a much larger set of
PPG features than us. Moreover, their work are based only on 10 distinct subjects. Even
though their results are promising, this reduced number of subjects may lead to limited
generalizability, along with biased learning since there is a high interdependence among
intra-subject heartbeats [Costa et al. 2023]. Likewise, [Habib et al. 2023] used a limited
number of subjects, and employed a CNN on PPG raw signal, achieving the best F1-score
to date. However, these deep learning approaches usually requires lots of data for training,
computational resources and often have many hyperparameters.

In the stratified analysis shown in Fig. 3, the F1-score progressively decreases with
age. Also, there was consistently better mean F1-score for females than for males, despite
an increase in the standard deviation for both genders. This indicates that the reduction
in the number of older patients affects both genders similarly. However, the cause of the
higher mean F1-score for females cannot be determined based on the available data, as it
could be due to a larger sample size or physiological differences between genders. Further
research may be necessary to determine the underlying reasons for these results.

Furthermore, it was aforementioned that deep learning models could be cumber-
some for deployment in wearable devices. However, the computational resource needed
depends on a set of parameters that should be investigated. Thus, future works should ad-
dress this by comparing the performance and computational resources of different models.
Likewise, future works should also be done on external datasets to validate the generaliz-
ability of our proposed method. Additionally, the validation of wearable sleep monitoring
devices would reduce the cost of sleep disorder compared to traditional polysomnography
exams. This requires reliable and practical sleep stages prediction models easy to imple-
ment and capable of being integrated into commercial devices in line with the reported
findings.

Moreover, this study has some limitations that need to be acknowledged. Firstly,



the generalizability of our approach is limited as it relies solely on the MESA Sleep
dataset, which comprises data from older individuals with an average age of 69 years,
which may limit its applicability to other age groups.

5. Conclusion

We provided evidence for a simple method to classify sleep-wake states using only three
features. Our method showed comparable results with more complex methods and su-
perior results than using only the ACT measured by an actigraph, which is currently the
wearable device of choice for sleep monitoring. The validation and integration of sleep-
wake models into commercial devices hold promise for reducing the cost of diagnosing
sleep disorders compared to traditional polysomnography exams, thereby making sleep
health more accessible and convenient for a broader population.
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