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1Graduate Program in Electrical Engineering - Universidade Federal de Minas Gerais -
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Abstract. This study investigates the dynamics of the COVID-19 pandemic
across the 41 largest Brazilian municipalities from 2020 to 2022. We used a
mathematical model with fuzzy transitions between epidemic periods to estimate
epidemiological parameters such as basic reproduction number (R0) and the In-
fection Fatality Rate (IFR). We provide insights into the trajectory of the pande-
mic by correlating these parameters with data on social isolation, vaccination
efforts, and the emergence of new variants. Our findings highlight the role of
social isolation in reducing R0 in 2020 and the impact of mass vaccination on
lowering the IFR in 2022. However, the highest mortality rates recorded in 2021
underscore the complex interplay of various factors observed in that moment.

1. Introduction
The impact of the COVID-19 pandemic on Brazil was profound, with around 38 million
confirmed cases and 711 thousand deaths reported until April 2024 [DATASUS 2020].
Undoubtedly, the virus has spread extensively across the country, affecting every city.

In this research, we delve into the dynamics of COVID-19 across the initial three
years, from 2020 to 2022, focusing on the 41 largest municipalities in Brazil. Leveraging
a mathematical model with fuzzy transitions between epidemic periods as proposed by
Lima et al. [2024], we estimate time-varying parameters such as the basic reproduction
number (R0) and the Infection Fatality Rate (IFR). Via an extensive analysis, we correlate
these model outputs with data concerning social isolation measures, vaccination indices,
and the emergence of new coronavirus variants. We aim to offer insights into the factors
that influenced the trajectory of the pandemic at the municipal level.

Different studies utilized models to forecast the first COVID-19 wave in the
Brazilian context [Bastos and Cajueiro 2020, Melo et al. 2020, Oliveira et al. 2021]. No-
tably, a work analyzed epidemiological parameters across 29 inner municipalities during
the initial wave, emphasizing potential differences in control effectiveness across regions
[Almeida et al. 2021]. Our focus is on research exploring the dynamic of epidemiological
parameters over time. Other work examined the impact of mobility on the variation of R0



in various countries [Nouvellet et al. 2021]. Lima et al. [2024] explored the variation of
epidemic parameters across time using national data from Brazil. Ferrante et al. [2022]
correlated epidemiological parameters with various factors to elucidate the dynamics of
the first two waves in the Brazilian city of Manaus/AM [Ferrante et al. 2022].

We note a need for more work that conducted comprehensive pandemic analysis
across a more significant period at the municipal level. So, our study contributes by analy-
zing the pandemic within larger Brazilian cities across three years. Our research provides
an understanding of the factors shaping the pandemic trajectory via the correlation of the
model outcomes with data on social isolation, vaccination indices, and the emergence
of variants. We also examine the cities exhibiting outlier death rates (Cuiabá/MT, Rio de
Janeiro/RJ, and Goiânia/GO), contrasted with bottom outliers (Feira de Santana/BA, São
Luı́s/MA, and Florianópolis/SC), which illuminates the diverse drivers behind divergent
pandemic outcomes. Our findings give policymakers and public health officials empiri-
cally grounded insights, facilitating decision-making for combating future challenges.

The rest of the paper follows this organization: Section 2 details the methodology,
Section 3 shows the results and discussion, and we present our conclusions in Section 4.

2. Material and methods
2.1. Data source
This study utilized daily COVID-19 death data from Brazilian municipalities, extracted
from the Mortality Information System (MIS) [DATASUS 2022b]. Data collection span-
ned from the early stages of the pandemic in 2020 until December 31, 2022.

In this work, we concentrated our analysis on a sample of the 41
largest Brazilian municipalities with populations exceeding 500,000 peo-
ple. We obtained population size data from the 2022 Demographic Census
[Instituto Brasileiro de Geografia e Estatı́stica 2022]. The relation with all munici-
palities in our sample is available in the supplementary material.

For tracking COVID-19 cases in Brazilian municipalities, we accessed data from
the Monitoring Panel [DATASUS 2020] and the Severe Acute Respiratory Syndrome
(SARS) database [DATASUS 2022a], both provided by the Brazilian Health Ministry.

We examined our results with correlated data on human mobility, vaccination,
and COVID-19 variants. To monitor human mobility in Brazilian municipalities, we
utilized data from the COVID-19 Community Mobility Report [Google 2020] produced
by Google. We used vaccination data for Brazilian municipalities from Cota [Cota 2021],
which organized datasets from the Brazilian Health Ministry containing administered
doses. Additionally, state-level data on COVID-19 genomic surveillance in Brazil,
reported monthly by the Fundação Oswaldo Cruz [Fiocruz 2020], were incorporated.

2.2. Data overview
The average death rate per 100,000 inhabitants in our sample of municipalities on De-
cember 31, 2022, is 413 (± 89). Figure 1 shows the existence of outlier municipalities in
this sample. Cuiabá/MT, Rio de Janeiro/RJ, and Goiânia/GO recorded the highest death
rates at 580, 564, and 558, respectively. Conversely, Feira de Santana/BA, São Luı́s/MA,
and Florianópolis/SC reported the lowest rates at 189, 234, and 245, respectively. We
highlighted these two outlier groups in our analysis and discussion.
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Figure 1. Boxplot illustrating COVID-19 death rate per 100,000 for the 41 largest
Brazilian municipalities across 2020-2022. The lower and upper bounds
represent the first and third quartiles, respectively. The vertical line within
the box indicates the median, while the whiskers extend to the minimum
and maximum values within 0.7 times the interquartile range. The points
represent the outlier municipalities. Data from DATASUS [2022b].

The highest COVID-19 mortality peaks in Brazilian municipalities occurred
between 2020 and 2021. Figure 2a illustrates that top outlier municipalities experienced
more frequent and elevated peaks than their bottom outlier counterparts.
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Figure 2. Pandemic data overview for the 41 largest Brazilian municipalities. (a)
COVID-19 death rate per 100,000 inhabitants in a 7-day rolling average.
Data from DATASUS [2022b]. (b) Effective reproduction number (Rt). The
dotted horizontal line represents the reference value (Rt = 1) used to
monitor epidemics. (c) Stay-at-home index (∆H ) reported in a 7-day rolling
average. The dotted horizontal line highlights the baseline (∆H = 0%).
Data from Google [2020]. (d) Cumulative percentual of individuals fully
vaccinated against COVID-19. Data from Cota [2021]. The plots highlight
cities with notable deviations from the average death rate, categorized as
top outliers (Cuiabá/MT, Rio de Janeiro/RJ, and Goiânia/GO) and bottom
outliers (Feira de Santana/BA, São Luı́s/MA, and Florianópolis/SC).

The effective reproduction number (Rt) indicates whether a disease is spreading
or diminishing. Values exceeding one signal ongoing transmission, while those below
one indicate a decline in transmission. In our examination of COVID-19 within Brazilian
municipalities, Rt was computed using the time series of new cases sourced from SARS
patients [DATASUS 2022a]. This computation utilized the epyestim library, a Python
toolkit implementing the methodology proposed by Cori et al. [2013]. The detailed
parameter settings for estimating Rt are accessible in the supplementary material.



Figure 2b shows the time-varying behavior of Rt, revealing instances where
Rt surpasses one during various periods of the study. Notably, in the initial two years,
epidemic periods exhibited some lack of synchronization among municipalities; however,
by 2022, three synchronized epidemic periods became apparent.

In the early stages of the pandemic, the primary measures against spreading the
virus were adopting non-pharmacological interventions, including social isolation. We
observed changes in the mobility behaviors of the population in Brazilian municipalities
throughout the pandemic. To monitor these changes, we used data from the COVID-19
Community Mobility Report [Google 2020] generated by Google. This report quantifies
the percentage change in time spent at residential locations by Google users, relative to a
pre-pandemic baseline, serving as a metric known as the stay-at-home index (∆H).

We note in Figure 2c a significant change in mobility patterns in March 2020,
coinciding with the moment that the country reported its first COVID-19 fatality. Du-
ring the initial outbreak, most municipalities experienced a notable increase in the ∆H ,
gradually trending towards baseline levels, with occasional exceptions observed.

In Brazil, up until 2022, the national health service administered COVID-
19 vaccines developed by AstraZeneca, Janssen, Pfizer/BioNTech, and Sinovac
[Cota 2021]. The initial vaccination protocol for all these vaccines consisted of two
doses, except for the Janssen vaccine, for which only one dose was recommended
[World Health Organization 2023]. Consequently, we consider an individual fully vacci-
nated either after receiving the second dose of AstraZeneca, Pfizer/BioNTech, or Sinovac
vaccines or upon receiving the first dose of the Janssen vaccine.

Figure 2d depicts the vaccination timeline in Brazil, indicating that vaccination
efforts began in early 2021. However, it was not until around October 2021 that approxi-
mately half of the population across Brazilian cities reached complete vaccination status.

Another aspect of understanding the pandemic dynamic is the prevalence of
variants. Figure 3 depicts that the Gamma variant became dominant in early 2021,
co-occurring with the second wave of infections in the country. Following the peak of
cases in 2021, the Delta variant emerged as the predominant strain. Subsequently, coin-
ciding with the onset of the third wave, the Omicron (BA.1) variant swiftly became the
prevailing strain. Additionally, throughout 2022, other Omicron subvariants, including
BA.2, BA.4, and BA.5, have emerged as the most dominant strains in the country.
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Figure 3. Monthly relative frequency (%) of different coronavirus variants over
time in Brazil. Data from Fiocruz [2020].



2.3. Simulations

In our study, we utilized the mathematical model proposed by Lima et al. [2024] to simu-
late the progression of the COVID-19 pandemic across municipalities. This model uses
fuzzy transitions between epidemic periods to depict epidemiological dynamics over time,
capturing changes in essential parameters [Lima et al. 2024]. At its core, the model relies
on key epidemiological metrics. Firstly, the recovery rate (γ), defined as γ = 1

infectious period ,
stands as a fundamental parameter. Additionally, the model discerns between the rapid
adjustment of the contact rate (β), expressed as β = R0

infectious period = γR0, and the more
gradual transitions characterizing the lethality rate (f ) and immunity loss rate (ω), re-
presented respectively as f = IFR

100
and ω = 1

protected period . Consequently, it provides time-
varying estimates for crucial epidemiological indices such as R0, IFR, and the duration
of protection against reinfection (Ω). Furthermore, the model generates time series data
for population compartments including Susceptible (S), Infected (I), Recovered (R), and
Deceased (D) [Lima et al. 2024].

The model developed by Lima et al. [2024] relies on epidemic periods to guide
its input parameters. In this context, an epidemic period comprises the time between out-
break onsets. To identify the outbreaks for each city, we consider an outbreak the period
where a sustained Rt value is above one for at least seven consecutive days. Also, we al-
lowed for a maximum of seven consecutive days below this threshold within the identified
outbreak. Each municipality experienced approximately 10.6 outbreaks (± 1.5).

The model proposed by Lima et al. [2024] introduces several parameters, inclu-
ding the initial infected population (I(0)), recovery rate (γ), lists representing contact
rates for different epidemic periods (

−→
β ), infection fatality probabilities for different epi-

demic periods (
−→
f ), immunity loss rates for different epidemic periods (−→ω ), breakpoints

for fast transition between epidemic periods (
−−→
bfast), transition days for smoothing fast

transitions (−−→τfast), and breakpoints for slow transition between epidemic periods (
−−→
bslow).

Lima et al. [2024] introduce a fuzzy variable to denote a rapid transition (µfast)
between epidemic periods, with the universe representing the number of days in the simu-
lation. Each epidemic period is represented by a fuzzy partition in this variable, resulting
in a total of |

−→
bfast|+ 1 fuzzy partitions. Additionally, they propose another fuzzy variable,

µslow, to represent a gradual transition between epidemic periods, employing the same
universe as the number of days in the simulation. Similar to µfast, each epidemic period is
represented by a fuzzy partition, yielding a total of |

−−→
bslow|+ 1 partitions.

Also, Lima et al. [2024] performs a defuzzification on µfast by combining it
with

−→
β and −−→τfast to obtain a time-varying parameter β. Similarly, µslow is defuzzificated

combining it with
−→
f and −→ω to derive time-varying parameters f and ω, respectively.

We utilized the stochastic differential evolution algorithm [Storn and Price 1997]
to optimize the model parameters. The details about the algorithm application are availa-
ble in the supplementary material. We minimized the error between the original data and
the simulations for both the death rate per 100,000 inhabitants in the 7-day moving ave-
rage (M ) sourced from MIS [DATASUS 2022b], and the effective reproduction number
(Rt), calculated from SARS database [DATASUS 2022a] and presented in Section 2.2. To
accomplish this, we formulated a composite objective function as depicted in Equation 1:



MAE(M, M̂)

M
+

MAE(Rt, R̂t)

Rt

, (1)

where MAE represents the mean absolute error measure. In this context, M̂ and R̂t denote
the mortality and effective reproduction numbers estimated by the model, respectively.
Additionally, M and Rt represent the mean values of M and Rt, respectively.

For each outbreak after the initial one, we define a breakpoint bfast to represent
fast transitions between epidemic periods. Another innovation proposed by Lima et
al. [2024] is the insight that the β could change inside an outbreak. So, we defined,
following the criteria proposed by Lima et al. [2024], special breakpoints b0fast and b

′

fast

to represent the adjustment in the initial outbreak and subsequent outbreaks, respectively.

Being
−−→
b∗fast = b0fast ∪

−−→
bfast ∪

−−→
b
′

fast, we define an initial β and one β for each item in
−−→
b∗fast,

along with one τ for each item in
−−→
b∗fast.

To model a gradual transition between epidemic periods, we establish a bre-
akpoint bslow for each subsequent outbreak following the initial one, ensuring that the
interval between outbreaks is at least 180 days, as proposed by Lima et al. [2024].
Consequently, in practical terms,

−−→
bslow forms a subset of

−→
bfast. We initialize both f and ω,

along with additional instances of f and ω corresponding to each
−−→
bslow.

We optimize our model by conducting 25 executions for each municipality in
our sample considering parameter bounds presented in Table 1, a population of 100,000
individuals, and the simulation period beginning at the start of the case time series until
December 31, 2022. Following Lima et al. [2024] findings, we set γ = 1/8, i.e., an
infectious period of eight days. Additionally, it is crucial to highlight that

−−→
bslow ⊂

−−→
bfast,

and optimization of these parameters is unnecessary, as
−−→
bfast has already been optimized.

2.4. Data analysis

This section outlines the methods employed for analyzing the obtained results. Initially,
we evaluated the performance of the Lima et al. [2024] model using data from our
municipality sample. This assessment relied on two key metrics: the Sum of Squared
Errors (SSE) and the coefficient of determination (R2).

For each municipality, we conducted a cross-correlation analysis
[Shumway et al. 2000] between ∆H and R0. Before applying this technique, we perfor-
med one transformation on the time series R0, resulting in R

′
0, and two transformations

on ∆H , resulting in ∆
′′
H . These transformations were necessary to ensure the stationarity

of ∆
′′
H and R

′
0. Further details about the cross-correlation measurement, time series

transformations, and significance thresholds can be found in the supplementary material.

Additionally, we explored the relationship between virus variants and R0 and the
percentage of vaccinated individuals and IFR. We present these analyses in Section 3,
which presents our findings and discusses observations regarding outlier municipalities.



Table 1. Model parameter bounds for optimization, adapted from Lima et al.
[2024].

Parameter Description Minimum value Maximum value Reference

I(0)
Initial quantity of
infected population

1
population × 100, 000 C[0 : 56] Empirical

b0fast

Adjusted breakpoint in initial
outbreak for fast transition
between epidemic periods

Outbreak begin Outbreak end Empirical

bfast
Breakpoint for fast transition
between epidemic periods Outbreak begin At R↑

t Empirical

b′fast

Adjusted breakpoint in subsequent
outbreaks for fast transition
between epidemic periods

At R↑
t Outbreak end Empirical

τ
Transition days for
smoothing fast transitions
between epidemic periods

0 56 Empirical

β0 Initial contact rate γRt γR0 Empirical

β′
0

Adjusted contact rate
in initial outbreak γRQ0.25

t γR0 Empirical

β Contact rate max(inf βb−1, γR
↑
t ) γR↑

t /0.3 Empirical
β′ Adjusted contact rate γRQ0.25

t γR↑
t /0.3 Empirical

f IFR in probability max(M, 0.0001) min(CFR, 0.0133) [Verity et al. 2020]
ω Immunity loss rate 1/365 1/90 [Pulliam et al. 2022]

C[0 : 56]: Case rate per 100,000 inhabitants until the 56th day in the first outbreak.
R↑

t : Peak of the effective reproduction number in outbreak.
Rt: Mean of the effective reproduction number in outbreak.
R0: Basic reproduction number.
RQ0.25

t : First quartile of the effective reproduction number in the period between the current outbreak end and the subsequent outbreak begins.
γ: Recovery rate.
inf βb−1: Minimum bound of the previous contact rate.
IFR: Infection Fatality Rate.
CFR: Case Fatality Rate in the epidemic period.
M: Death rate per 100,000 inhabitants in the epidemic period.

3. Results and discussion
Table 2 shows that the model closely matches the observed data about mortality in larger
Brazilian municipalities. On the other hand, the R² assessed for Rt indicates that the
model captures moderately the variance of the actual observations.

Table 2. Results of the COVID-19 simulations for the 41 largest Brazilian munici-
palities.

Error SSE R²
Rt New death rate Rt New death rate

0.278 (0.255-0.320) 0.018 (0.014-0.023) 0.014 (0.010-0.019) 0.600 (0.430-0.678) 0.942 (0.912-0.966)

Note: values are presented as the median with the first and third quartiles in parentheses.
Error: the objective function error, as defined by Equation 1.
SSE: Sum of Squared Error.
R²: coefficient of determination.
Rt: effective reproduction number.
New death rate: per 100,000 inhabitants.

While the model may not precisely capture the variability of Rt, the overall out-
comes suggest that it effectively captures the trend of the original data. As an illustration,
Figure 4 depicts the simulation results for Cuiabá/MT, the city with the highest death rate
in our sample. The median R² for Rt in Cuiabá/MT is 0.55, but still, Figure 4 indicates
a reasonable reproduction of the pandemic dynamics. We produced outcome plots for all
municipalities in our sample and have them available in the supplementary material.



01/2020 01/2021 01/2022 01/2023
Date

0

50,000

100,000

Po
pu

la
tio

n

a) SIRDS simulation

01/2020 01/2021 01/2022 01/2023
Date

1.0

1.5

R t

b) Effective reproduction number (Rt)

01/2020 01/2021 01/2022 01/2023
Date

0

2

4

De
at

hs
(p

er
 1

00
K 

pe
op

le
) c) New deaths

Legend
Chart a:
Chart b:
Chart c:

S
Original data
Original data

I
Simulation
Simulation

R D

Figure 4. Comprehensive analysis of simulation results for Cuiabá/MT, the
municipality with the highest COVID-19 mortality in our sample. (a) Model
outcomes for the compartments Susceptible (S), Infected (I), Recovered
(R), and Deceased (D). (b) Comparison of the effective reproduction
number (Rt) between original data and simulation. (c) New death rate
per 100,000 inhabitants comparing original data and simulation. Shaded
regions depict the 95% Confidence Interval (CI).

Figure 5 shows the time-varying estimates of R0, IFR, Ω for the municipalities
from our sample. Notably, Ω exhibits the highest uncertainty, aligning with Lima et al.
[2024] findings, which reported low sensitivity for this parameter. We note a trend in the
cities to reduce R0 to near the critical value of 1 during the early stages of the pandemic.
However, this trend reverses after mid-2020, with the model estimating an increase in R0,
which persists across 2021. 2022 is marked by increased uncertainty in R0 estimations.
Regarding IFR, we note that the highest confusion was in the early stages of the pande-
mic. In 2021, the model suggests a declining trend in IFR. Notably, the model estimates
significantly lower IFR values for municipalities in 2022 compared to the preceding years.
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Figure 5. Model parameters varying by time (t) estimated for COVID-19 in the 41
largest Brazilian municipalities from 2020 to 2022. (a) Basic reproduction
number (R0), with a dotted horizontal line representing the reference value
(R0 = 1). (b) Infection Fatality Rate (IFR). (c) Days to loss of immunity (Ω).
The plot highlights cities with notable deviations from the average mor-
tality rate, categorized as top outliers (Cuiabá/MT, Rio de Janeiro/RJ, and
Goiânia/GO) and bottom outliers (Feira de Santana/BA, São Luı́s/MA, and
Florianópolis/SC). Shaded regions depict the 95% Confidence Interval (CI).

Our analysis delved into the cross-correlation between the time series of ∆H and
the time-varying R0 for municipalities in our sample, as depicted in Figure 6. Across the
years, distinct patterns emerged: in 2020, we observed two distinct groups of municipa-
lities where ∆H inversely led to R0, which we noted eight municipalities with a lag of
around seven days and six municipalities with a lag of around 28 days. Regarding 2021,
we note that ∆H is lagged by R0 for 13 municipalities, in which 75% of the correlations



were with the lag between one day and seven days. However, in 2022, no notable cor-
relation was observed. These findings shed light on the effectiveness of social isolation
measures over time: stringent early stages reduced R0, while reactive measures in 2021
failed to replicate the same impact. The absence of significant correlations in 2022
indicates that social isolation was no longer the primary measure to combat COVID-19
in municipalities since a large portion of the population was already vaccinated.
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Figure 6. Scatter plots for the correlation absolute coefficients and lag values
resulting from cross-correlation analysis between ∆

′′

H (stay-at-home index)
and COVID-19 R

′

0 (time-varying basic reproductive number) estimated
for the 41 largest Brazilian municipalities in the years (a) 2020, (b) 2021,
and (c) 2022. Each point represents the highest significant correlation
coefficient observed for a municipality in the respective analysis.

We calculated the median R0 for each coronavirus variant during the months it
predominated in states across the 41 largest Brazilian municipalities. As illustrated in Ta-
ble 3, the initial dominant variants, categorized as Others, exhibited a median R0 of 1.30.
Subsequently, variants such as Gamma and Delta emerged as dominant in 2021, showca-
sing an R0 hovering around 2. The Omicron phase marked the period with the highest
median R0, with values exceeding 2.30, except for the BA.4.* subvariant, which reported
a lower R0. These observations underscore the capability of the model to capture the ri-
sing trend of R0 in Brazilian municipalities in response to the emergence of new variants.

Table 3. Basic reproduction number (R0) for each coronavirus variant during
months when it was dominant in states from the 41 largest Brazilian muni-
cipalities.

Variant R0

Others 1.30 (1.16 - 1.45)
P.1.* (Gamma) 1.95 (1.62 - 2.41)
B.1.617.2+AY.* (Delta) 1.98 (1.66 - 2.36)
BA.1.* (Omicron) 2.53 (1.81 - 3.22)
BA.2.* (Omicron) 2.94 (1.99 - 3.54)
BA.4.* (Omicron) 1.53 (1.24 - 1.81)
BA.5.* (Omicron) 2.32 (1.69 - 3.66)

Note: values are presented as the median with the first and third quartiles in parentheses.

Table 4 illustrates a consistent reduction in the IFR as the percentage of the
population fully vaccinated against COVID-19 increases. Our analysis reveals a robust
negative correlation between the proportion of fully vaccinated individuals and IFR, with
a Spearman correlation coefficient of -0.80.

We analyzed the correlations among the epidemic parameters and the usual
interventions against COVID-19, such as social isolation and vaccination. We pay special
attention to outlier cities that exhibited notably elevated mortality rates during the study
period, exemplified by Cuiabá/MT, Rio de Janeiro/RJ, and Goiânia/GO, as well as those



Table 4. Infection Fatality Rate (IFR) for different ranges of the fully vaccinated
population against COVID-19 in the 41 largest Brazilian municipalities.

Population fully
vaccinated

Infection Fatality
Rate (IFR)

0% 0.32% (0.21 - 0.49)
> 0% and ≤ 10% 0.29% (0.23 - 0.37)
> 10% and ≤ 20% 0.23% (0.17 - 0.29)
> 20% and ≤ 30% 0.18% (0.13 - 0.24)
> 30% and ≤ 40% 0.15% (0.11 - 0.21)
> 40% and ≤ 50% 0.13% (0.10 - 0.19)
> 50% and ≤ 60% 0.11% (0.08 - 0.16)
> 60% and ≤ 70% 0.07% (0.04 - 0.11)
> 70% and ≤ 80% 0.04% (0.02 - 0.06)
> 80% 0.03% (0.01 - 0.05)

Note: values are presented as the median with the first and third quartiles in parentheses.

demonstrating reduced mortality rates, such as Feira de Santana/BA, São Luı́s/MG, and
Florianópolis/SC. Despite our efforts, we did not uncover a definitive explanation for why
top outlier cities experienced 2.5 times more deaths than their bottom outlier counterparts.

If ∆H and vaccination could not clearly explain the pandemic outcome in outlier
cities, we note that epidemiological parameters estimated are much more explicit in
suggesting the differences between outlier groups. Notably, we noted a contrast between
these two groups of cities during the initial two years, with death rates in top outliers
being 2.65 times higher than those in bottom outliers. By 2022, however, the death
rate in top outliers had reduced to 65% higher than in bottom outliers. Also, we note
that all outliers reduced R0 during the early stages of 2020, as depicted in Figure 5a.
Subsequently, in early 2021, R0 increased for all outliers; however, we note that after the
initial rise in R0, the municipalities from the bottom outlier group were able to maintain a
stable R0, while municipalities such as Cuiabá and Rio de Janeiro experienced R0 values
exceeding 2.5. Finally, the model estimated that the IFR for top outlier municipalities was
higher than that observed in bottom outlier municipalities during the initial two years,
as illustrated in Figure 5b. However, by 2022, the model indicated a convergence of the
IFR in top outliers towards the same pattern observed in bottom outliers, suggesting a
mitigating effect of mass vaccination efforts on lethality disparities among cities.

We note limitations in our study. We identify eight cities with vaccination rates ex-
ceeding 100% of their population due to noise in the database [Cota 2021]. Also, Google
advises caution when using the COVID-19 Community Mobility Report [Google 2020]
for comparisons between different locations or periods. Despite this, we assessed that the
data remained reasonably reliable and did not damage the analysis conducted in this study.

4. Conclusion

In this study, we conducted COVID-19 simulations for the 41 largest Brazilian muni-
cipalities, uncovering several significant insights. Initially, we observed a significant
reduction in the time-varying R0 during the early stages of the pandemic, coinciding with
robust social isolation measures. While municipalities implemented preventive social
isolation in 2020, a shift to reactive social isolation occurred in 2021, leading to less
control over R0 and increased mortality rates. The emergence of variants Gamma and
Delta in 2021 also contributed to elevated R0 values. However, the simulations revealed



a notable decline in the IFR throughout 2021, coinciding with mass vaccination efforts.
In 2022, all municipalities exhibited a convergent pattern of reduced IFR. These findings
underscore the effectiveness of social isolation measures in 2020 and the crucial role of
mass vaccination campaigns in mitigating the impact of the pandemic. Nonetheless, the
issues observed in 2021, characterized by reactive social isolation, variant emergence,
and slow vaccination, highlight the need for proactive measures to combat epidemics.

Our study also revealed disparities between cities from the top and bottom outlier
groups, which we attribute to differences in the R0 and IFR. Further work into correlated
factors, particularly socioeconomic features, is needed to understand these observations.

Supplementary material

Data, code, and supplementary information are available on GitHub (https://
github.com/helderseixas/covid-brazilian-municipalities).
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