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Abstract. Diabetes is a chronic condition which prevention and control is
done mostly by minimally invasive devices. In this work, we propose a non-
invasive method based on photoplethysmography (PPG) for cost-effective and
discomfort-free diabetes detection and prevention. We used PPG signal features
and patient metadata from a public dataset for classifying subjects as Diabetic
or non-Diabetic. The Logistic Regression and eXtreme Gradient Boosting algo-
rithms were evaluated using a five-fold cross validation approach and achieved
a mean AUC of 0.79 ± 0.15 and 0.73 ± 0.17, respectively. Our results align
with existing literature, supporting the use of machine learning techniques for
developing non-invasive diabetes detection and prevention devices.

1. Introduction
Diabetes is a chronic disease characterized by insufficient insulin release by the
pancreas or lack of tissue response, leading to higher blood glucose levels (BGL)
[DeFronzo et al. 1992]. When undetected or untreated, this higher glucose concentra-
tion may lead to several vascular illnesses, such as kidney and heart diseases. Diabetes
management includes the prevention of such illnesses by constant BGL self-monitoring
[Kirk and Stegner 2010].

Several devices for assessing the patient’s BGL are either invasive based on fast-
ing plasma glucose test, which requires a blood sample collection by a healthcare pro-
fessional, or minimally invasive through finger prick blood test and continuous glucose
monitors (CGM) for self-monitoring at home. However, all these methods require skin
perforation, and only the CGM provides continuous measurements. Due to the high cost,
discomfort, and risk provided by minimally invasive devices, frequent BGL monitoring
is not implemented at large. A non-invasive approach to detect diabetes would be valu-
able for the identification of early stages of diabetes in healthy and pre-Diabetic subjects,
contributing to global efforts in preventing this disease and instrumental to assist monitor
therapy interventions [LaMonte et al. 2005].

The Photoplethysmography (PPG) is one of the non-invasive approaches that has
been studied for the detection of diabetes and pre-diabetes [Zanelli et al. 2022]. The PPG



is an optical technique for measuring changes in blood volume in the microvascular bed
of tissues. This technique typically involves emitting light on the tissue and measur-
ing changes in light absorption, reflection, or scattering to determine changes in blood
volume [Mejı́a-Mejı́a et al. 2022]. Moreover, the quantification of certain molecules in
the blood can be performed by employing light of particular molecules’ peak absorp-
tion frequencies [Mukkamala et al. 2022]. The canonical case is oximetry (SpO2). Be-
sides that, PPG waveform can be used to measure other important cardiovascular and
respiratory parameters, such as heart rate (HR), respiration rate, and blood pressure
[Nitzan and Ovadia-Blechman 2022].

PPG can be applied as an indirect measure of a subject’s hemodynamics informa-
tion, conveying information pertaining to the condition of the blood vessel, such as the ar-
terial stiffness, which is found to be elevated in individuals with diabetes [Pilt et al. 2013].
Other work show that the area under a PPG pulse is reduced when the level of HbA1c (gly-
cated hemoglobin) level increase [Usman et al. 2011]. The HbA1c provides an estimation
of a person’s average blood glucose levels over the past two to three months and is used
for diabetes diagnostic and management.

An advantage of PPG-based methods for assessing BGL is that they can provide
continuous non-invasive measurements. These are not only important for monitoring, but
also for detecting diabetes in its early stages of development. In [Reddy. et al. 2017], they
applied an SVM method for predicting diabetes using features related to heart rate vari-
ability (HRV) and PPG morphology, using a fingertip pulse oximeter private dataset. In
[Hettiarachchi and Chitraranjan 2019], they proposed to predict diabetes based on mor-
phological features extracted from PPG signals from a public dataset [Liang et al. 2018]
using a Linear Discriminant Analysis method. In [Moreno et al. 2017], they proposed a
method for screening patients for diabetes by extracting features from the signal of a pulse
oximeter. The features served as input for different classification algorithms, such as ran-
dom forest and gradient boosting. [Srinivasan and Foroozan 2021] made an analysis in
the frequency domain using a convolutional neural network (CNN) with 30 seconds PPG
scalograms and metadata over a large dataset. More recently, [Zanelli et al. 2023] pro-
posed a transfer learning approach to detect diabetes through 1-second raw PPG signals.

In this work, we presented a method to classify non-Diabetic and Diabetic pa-
tients using a set of features extracted from PPG signals and metadata for training ma-
chine learning models using Logistic Regression (LR) and eXtreme Gradient Boosting
(XGBoost) [Chen and Guestrin 2016b] algorithms. We aimed to correlate the PPG sig-
nals morphological characteristics and the subject’s diabetes status adjusted by the indi-
vidual’s metadata information. The method proposed in this paper utilizes shorter PPG
signals, each segment lasting 2.1 seconds. This approach enables easy integration into
various wearable devices, while also potentially offering benefits such as reduced compu-
tational costs and processing times.

2. Materials and Methods

In this section, the description of the publicly available dataset used to classify the PPG
signals into non-Diabetic or Diabetic patients is presented and also the data selection
criteria. Next, we describe the proposed methodology for Diabetes classification, based on
signal preprocessing and feature extraction of PPG signals, and the use of two algorithms



for the classification step. Fig. 1 shows the proposed methodology for the classification
between non-Diabetic and Diabetic groups.
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Figure 1. The proposed methodology for the classification of patients into Dia-
betes or non-Diabetes groups.

2.1. Data Selection

We used a publicly available dataset provided by a study that contains physiologi-
cal information and PPG data from 219 patients of Guilin People’s Hospital in China
[Liang et al. 2018]. The PPG signal was collected from the fingertip using the transmis-
sion method in infrared wavelength (905 nm) at a sample rate of 1 kHz. The PPG signal
was collected from resting patients, where three 2.1-second PPG segments were captured
from each patient.

The dataset contains information about three different classes of diseases: dia-
betes, hypertension, and cerebrovascular diseases, along with metadata information such
as age, weight, height, body mass index (BMI), arterial blood pressure (ABP), and an
unique patient ID number.

For this study, we divided the patients into two groups: non-Diabetic and Diabetic
patients. We kept 59 healthy subjects in the non-Diabetic group by removing all patients
with any stage of hypertension or cerebrovascular disease and all 38 patients diagnosed
with diabetes were kept in the other group. It was not feasible excluding diabetic patients
diagnosed with other diseases since only 9 subjects had no other disclaimed pathology,
although none of the diabetic group present any cerebrovascular disease. Due to segmen-
tation errors and noisy signals, 11 subjects were excluded from the analysis. Table 1 show
a description of the data used in this study.

Table 1. Summary of the data used.

Class Subjects Male Cycles Age Height Weight HR BMI
Non-Diabetic 54 22 281 45± 16 161± 8 56± 11 73± 11 22± 4
Diabetic 32 14 172 59± 12 160± 8 62± 12 74± 11 24± 4
Total 86 36 453 50± 16 161± 8 59± 11 74± 11 23± 4

2.2. Preprocessing

To remove high-frequency artifacts in the PPG, we preprocessed each signal segment
with a 6th-order Butterworth low-pass filter with a cutoff frequency of 16 Hz. During the
acquisition of PPG signals, different artifacts may cause baseline oscillations. To address



this issue, we applied the Fitting-based Sliding Window (FSW) algorithm instead of a
high-pass-filter to remove the baseline, as the high-pass filter may eliminate important
low-frequency characteristics present in the signal [Zhang et al. 2020].

The FSW algorithm involves a sliding window that identifies the local minimums
between each cycle (heartbeat) in the signal segments and uses them to fit the baseline.
The fitted line was subtracted from the signal, removing the baseline fluctuations while
preserving low-frequency characteristics. The valleys between the cycles were also used
to segment the PPG cycles in each signal segment. The FSW algorithm details are de-
scribed in [Zhang et al. 2020].

We performed a visual inspection on the cycles extracted from PPG signals of
all patients in the study. During this process, six Diabetic and five non-Diabetic patients
were removed from the experiment due to segmentation flaws or presence of very noisy
signals.

2.3. Feature extraction

Each PPG cycle segmented by the FSW served as input for the feature extraction
algorithm. We used the same features presented in [Costa et al. 2023], resulting in
104 features. The features were computed from each signal cycle (heartbeat) and its
corresponding first and second derivatives. The features included a variety of val-
ues such as pulse width, area, intervals, peak-to-peak interval, and systolic amplitude.
A detailed description of the features used here can be found in [Costa et al. 2023],
[Chowdhury et al. 2020], [El-Hajj and Kyriacou 2021], and [Lin et al. 2020].

The metadata (sex, age, height, weight, heart rate, and BMI) was used as features
in the classification algorithm along with the PPG signal features. However, the data
related to blood pressure was not included due to its strong relation to hypertensive and
pre-hypertensive patients. This could create a potential bias in the classification algorithm
as high blood pressure could be falsely associated with the presence of Diabetes, since
most Diabetic patients included in the experiment have a degree of hypertension.

This feature extraction step resulted in 453 sets of features that were used to per-
form the detection of Diabetes on PPG signals, being 6 features in each set related to the
medadata information and 104 related to features extracted from the PPG signal cycles.

2.4. Classification

We employed two well-known algorithms commonly used in machine learning classi-
fication tasks, the Logistic Regression and the XGBoost [Chen and Guestrin 2016a] al-
gorithms. XGBoost is known for its high accuracy, ability to handle complex data, and
scalability, but it’s less interpretable. Logistic Regression, on the other hand, is a simpler
model with better interpretability, but may not perform as well in complex datasets.

L1 penalty and LIBLINEAR solver were used as hyperparameters for the LR al-
gorithm. For the XGBoost algorithm we used the tree booster with learning rate of 0.1.
Since the input data is unbalanced and their proportion may vary within each fold, the
weights for each class were adjusted according to the number of samples representing
each class for both classifiers.



The performance of the LR and the XGBoost models was evaluated using sta-
tistical metrics: Accuracy (Acc), Sensitivity (Se), Specificity (Sp), F1-score, Positive
Predictive Value (PPV ), and the Area Under the ROC Curve (AUC).

The “Diabetes” column of the dataset was used as the label, considering one for
Diabetics and zero for non-Diabetics. The classification was performed and evaluated
using a 5-fold cross-validation strategy, which involves splitting the dataset into five equal
parts or folds. In each iteration, four of the folds are used for training and one fold is used
for testing. This process is repeated five times with each fold serving as the testing set
once. The performance of the classifiers (LR and XGBoost) is then averaged across the
five iterations.

Features sets obtained from PPG cycles were split in each fold patient-wise. This
way, features extracted from signals of the same patient are placed in training folds or
testing fold, never in both. By allocating each patient in training and testing sets by their
IDs, we avoided the classification bias caused by mixing information of the same patient
in both training and testing folds in each iteration [Costa et al. 2023].

The overall performance of the classifiers is obtained by evaluating the mean and
standard deviation of all statistical metrics obtained in each iteration. Moreover, we used
the permutation importance algorithm from Scikit-learn to determine feature importance
for both classifiers. Since we have a 5-fold strategy, the mean feature importance for all
5-folds was computed.

3. Results
This study used data from 86 subjects, with 453 cycles extracted using the FSW method.
Out of these cycles, 172 belong to Diabetic patients. A total of 110 features were used
as input for the classifiers, with 104 of these being morphological features extracted from
each PPG cycle and the remaining 6 features comprising metadata of the patients.

The goal of the study was to classify non-Diabetic and Diabetic patients by using
LR and XGBoost classifiers on features extracted from PPG cycles. The 5-fold cross-
validation strategy permitted the evaluation of the classifiers’ performance on multiple
iterations and reduced the impact of any random fluctuations in the data.

Table 2 summarizes the overall performance of the proposed methods for the bi-
nary classification between Diabetic/non-Diabetic. The metrics are presented as the mean
and standard deviation of the five iterations of the cross-validation strategy. In addition,
Figs. 2 and 3 show the AUC for the LR and XGBoost methods, respectively.

Table 2 shows the classification metrics of this study, which achieved a mean
AUC of 0.79 ± 0.15 for LR and 0.74 ± 0.17 for XGBoost, respectively. The best
achieved AUC with LR model is comparable to the AUC of 0.79 ± 0.15, reported in
[Hettiarachchi and Chitraranjan 2019], which used the same dataset for diabetes detec-
tion.

Additionally, we present the feature importance measures, displaying the 7 most
significant features for the two proposed models’ ability to predict the outcomes. The
importance and name of each feature is shown in Fig. 4 for Logistic Regression and in Fig.
5 for XGBoost. Based on the feature importance results obtained from both algorithms,
we have compiled a summary of the six most significant PPG features in Table 3. We



Table 2. Comparison of the performance results of our two proposed algorithms
for Diabetic/Non-Diabetic classification.

Metrics Logistic Regression XGBoost
Se 0.66± 0.27 0.56± 0.22
Spe 0.75± 0.19 0.70± 0.16
F1-score 0.59± 0.20 0.52± 0.16
Acc 0.70± 0.12 0.64± 0.10
PPV 0.61± 0.24 0.54± 0.21
AUC 0.79± 0.15 0.75± 0.17
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Figure 2. Receiver Operating Curve (ROC) and AUC for each fold of the Logistic
Regression method.

have excluded from this table the features associated with metadata, namely age, weight,
height, and BMI, as they are self-explanatory.

4. Discussion

In this study, we proposed a method aimed at aiding in the diagnosis of diabetes based
on PPG signals. This is an exploratory study that correlates the morphological features
extracted from PPG signals with metadata information from the subjects.

We show that it is possible to achieve results comparable to the state-of-the-art
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Figure 3. Receiver Operating Curve (ROC) and AUC for each fold of the XGBoost
method.
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Figure 4. Importance of the 7 most significant features for Logistic Regression.
The values represent the the mean of the five folds.
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Figure 5. Importance of the 7 most significant features for XGBoost. The values
represent the the mean of the five folds.

Table 3. Description of the six most significant PPG signal features of the exper-
iment.

Name Description
der 1 PI Intensity of the 1st inflection point in the 1st derivative of the

PPG cycle
AS Slope of the systolic portion in the PPG cycle (from the begin-

ning of the cycle to the systolic peak)
der 1 AS Slope of the line up to the 1st inflection point (from the begin-

ning of the 1st derivative to the 1st inflection point)
DID Difference in intensity between the systolic peak and the end

of the PPG cycle
AID Difference in intensity between the beginning of the PPG cycle

and the systolic peak
PI Intensity of the systolic peak in the PPG cycle normalized by

the average value (baseline)

using a limited dataset, with features extracted from single heartbeats (cycles) of the PPG
signals. Table 4 displays a comparison of works that propose to detect diabetes through
PPG signals. [Hettiarachchi and Chitraranjan 2019] used the same dataset as our study;
however, they used features extracted from the whole 2.1 s segment available, reducing the
input size of their models. [Moreno et al. 2017], on the other hand, used a private dataset
with one-minute long segments registered from 1,170 subjects and achieved results in
the same range as ours (AUC 0.69, Se 0.65 Spe 0.64) using different machine learning
techniques. [Zanelli et al. 2023] used 1 s segments of PPG raw signals from 100 subjects
to predict diabetes. Even though they proposed a transfer learning strategy, heir best-
performing model was the one without transfer learning, combining age and sex metadata



information.

Different from the works on Table 4, [Nirala et al. 2019] achieved Acc 0.98, Se
0.99 and Spe 0.97, using data from 141 subjects. However, they randomly partitioned
the data into k-equal folds on a k-fold strategy, implicating that they mixed the same
subject data on the training and test partitions. [Gupta et al. 2022] also did the same
approach, not clearly specifying the dataset division. Previous research has shown that
utilizing the same subject for both the training and test sets can yield better outcomes, as
data leakage may occur due to the high interdependence among intra-subject heartbeats
[Costa et al. 2023]. [Reddy. et al. 2017], on the other hand, achieved Acc 0.89, Se 0.90
and Spe 0.88, using data from 100 subjects. Nevertheless, they didn’t make it clear if
during partition of the data on the k-fold strategy they ensure that the same subject signals
wasn’t on both training and test sets.

Table 4. Comparison of the performance results of our two proposed algorithms
for Diabetes detection through PPG signal and the related state-of-the-art
works.

Reference F1-score AUC Accuracy Sensitivity Specificity Dataset Method

[Moreno et al. 2017] – 0.70 – 0.80 0.48 Private (s = 1,170) RF and GB - PPG features and metadata

[Reddy. et al. 2017] – – 0.89 0.90 0.88 Private (s = 100) SVM - PPG features

[Hettiarachchi and Chitraranjan 2019] 0.71 ± 0.15 0.79 ± 0.15 0.71 – – [Liang et al. 2018] (s = 64) LDA - PPG features and metadata

[Hettiarachchi and Chitraranjan 2019] 0.69 ± 0.10 0.74 ± 0.17 0.79 – – [Liang et al. 2018] (s = 64) SVM - PPG features and metadata

[Nirala et al. 2019] 0.98 0.98 0.98 0.99 0.97 Private (s = 141) SVM - 37 PPG features

[Avram et al. 2020] – 0.77 – 0.75 0.65 Private (s = 55,433) CNN - PPG raw signal and metadata

[Srinivasan and Foroozan 2021] – 0.83 0.76 0.77 0.76 MIMIC III (s = 808) 2D CNN - PPG scalogram and metadata

[Gupta et al. 2022] 0.99 – 0.98 0.99 0.96 [Liang et al. 2018] (s = 219) RF - PPG features

[Zanelli et al. 2023] 0.46 0.56 – 0.75 0.76 Private (s = 100) CNN - PPG raw signal, age and sex

[Zanelli et al. 2023] 0.31 0.61 – 0.50 0.72 Private (s = 100) CNN and Transfer Learning - PPG raw signal, age and sex

Our method: XGBoost 0.52 ± 0.16 0.74 ± 0.17 0.64 ± 0.10 0.56 ± 0.22 0.70 ± 0.16 [Liang et al. 2018] (s = 86) XGBoost - 104 PPG features and 6 metadata

Our method: LR 0.59 ± 0.20 0.79 ± 0.15 0.70 ± 0.12 0.66 ± 0.27 0.75 ± 0.19 [Liang et al. 2018] (s = 86) LR - 104 PPG features and 6 metadata

[Nirala et al. 2019] suggest in their work that the absence of a dicrotic notch on
PPG waves can be observed in Diabetic subjects. [Zanelli et al. 2023] also compares a
waveform from a Diabetic and a non-Diabetic subjects, highlighting the absence of a
dicrotic notch in the former. However, they imply that these differences are not always
readily apparent. On the contrary, [Srinivasan and Foroozan 2021] indicates that despite
using a much larger dataset than the aforementioned studies, it is not possible to observe
this dicrotic notch difference between the two groups. Our work aligns with Srinivasan’s
findings, where no discernible difference in regarding the presence of dicrotic notch was
found. Moreover, the absence of dicrotic notch may be related to aging or other factors
[MILLASSEAU et al. 2002].

Heart Rate Variability (HRV) is broadly used as a feature in diabetes detection and
BGL estimation studies [Reddy. et al. 2017]. However, this feature may not be calculated
with confidence in short segments of data such as the available in our dataset. For this
reason, the HRV was not estimated for this experiment.

The small number of patients in the dataset raises concerns about potential bias in
the classifier’s performance. There is a possibility that the classifier may learn to estimate
other clinical parameters, such as blood pressure or other clinical conditions, instead of



focusing solely on Diabetes classification. In addition, several studies involving Diabetes
classification do not explicitly consider the bias caused by mixing PPG signals from the
same patient in the training and testing steps [Panwar et al. 2020], which may result in
better metrics due to overfitting. We addressed this issue by adopting the 5-fold cross-
validation strategy considering the patient’s identification number while splitting the data.

Comparing the significance of each feature shown in Figs. 4 and 5, it is seen that
the Logistc Regression algorithm considered mostly the PPG-related features as impor-
tant for predicting diabetes. On the other hand, the XGBoost algorithm made predictions
considering almost exclusively the patient’s metadata information. The better results pro-
vided by LR algorithm suggest that the PPG cycles may indeed carry diabetes-related
information. Both classification algorithms consider as important two specific PPG fea-
tures: der 1 PI and AID. These features use information from the systolic wave between
its onset and peak, indicating a potential value of this portion of the PPG wave for further
analysis.

One of the reasons for the lack of studies using this dataset may be related to
its reduced number of patients and its short time signals, considering that each patient
has only six seconds of PPG signal divided into three non-continuous segments. This
aspect may impair the performance of segmentation algorithms, such as the FSW. Such
impairment seen in this work led to the exclusion of eleven patients from the experiment
due to segmentation errors and noisy signals. The FSW algorithm was first introduced
in [Zhang et al. 2020] for removing the baseline and segmenting PPG signals. However,
when applied to signals with a small number of cycles, it tends to discard the edges,
resulting in a reduction of the data passed to the feature extraction algorithm and, conse-
quently, a lower number of computed features, which negatively affects the performance
and generalization of the classifiers.

The clinical use of PPG-based diabetes detection algorithms demands higher ac-
curacy and reliability on different patients with varying medical conditions. Therefore,
in order to enhance the effectiveness and reliability of the findings, ensuring their gen-
eralizability and applicability, future studies on the detection of diabetes using wearable
devices should be conducted on a larger and more diverse dataset, including patients with
different medical conditions, ages, and ethnicities.

5. Conclusion
Our study proposed a method for diagnosing diabetes based on PPG signals, utilizing
morphological features extracted from single beats of the PPG signals. We achieved com-
parable results to state-of-the-art studies using a limited dataset. Comparison with other
studies showed that our approach yielded promising accuracy, sensitivity, and specificity
values. However, the small number of patients in our dataset and the short duration of the
PPG signals available for the analysis may have impacted our results. Additionally, pub-
licly available well-annotated datasets in this field are needed for further advance research
in this area.
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