
Applying Ventricular Wall Shape and Motion Features from
CMRI for Aiding Diagnosis of Cardiomyopathies

Stephani S. H. Costa1, Vagner Mendonça Gonçalves1,2, Fátima L. S. Nunes1
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Abstract. Cardiomyopathies are diseases usually characterized by dilation or hy-
pertrophy of the heart muscle. Left Ventricle (LV) is the heart chamber most affected
in most cases. Cardiac Cine Magnetic Resonance Imaging (CMRI) is a powerful
tool applied for diagnosis of cardiomyopathies. Although some studies define de-
scriptors based on CMRI images, usually they are related to clinical metrics. In this
paper, we explored shape and motion features from the LV ventricular wall to define
descriptors based on a priori knowledge about heart anomalies to build Supervised
Machine Learning-based classification models capable of discriminating cases of di-
lated cardiomyopathy, hypertrophic cardiomyopathy, or those ones without anoma-
lies associated with these diseases. The best classification model built and evaluated
achieved F1-score = 0.85± 0.05, accuracy = 0.85± 0.04, and AUC = 0.94± 0.02.
Our results are promising, indicating the potential of the approach for applications
in computer-aided diagnosis systems.
Keywords. Cardiac Cine Magnetic Resonance Imaging, CMRI, Shape Features,
Motion Features, Supervised Machine Learning, Left Ventricle, Ventricular Wall,
Computer-Aided Diagnosis, Dilated Cardiomyopathy, Hypertrofic Cardiomyopathy.

1. Introduction
The human heart works as an efficient, durable and reliable pump, being responsible for
the blood that circulates throughout the body, providing tissue oxygenation, nutrition and
waste removal [Kumar et al. 2020]. Among the heart chambers, the Left Ventricle (LV) is
the chamber responsible for pumping blood out of the heart [Kumar et al. 2020; Whiteman
et al. 2021]. The ventricular wall is formed by the heart muscle, the myocardium, covered
by an inner membrane, the endocardium, and an outer membrane, the pericardium. The
myocardium contracts during systole and relaxes during diastole to pump blood [Kumar
et al. 2020].

Cardiomyopathies correspond to a heterogeneous group of diseases of the my-
ocardium associated with electrical and/or mechanical dysfunctions that are usually, but not
invariably, characterized by ventricular dilation or hypertrophy [Maron et al. 2006]. Car-
diomyopathies and myocarditis resulted together in 410 thousand deaths worldwide in 2021
[Martin et al. 2024]. Among the different types of cardiomyopathies, the most common
correspond to Dilated Cardiomyopathy (DC) and Hypertrophic Cardiomyopathy (HC), con-
ditions that can lead to consequences such as heart failure, heart transplantation, or sudden
death [Braunwald 2017; Izquierdo et al. 2021; Kumar et al. 2020; Maron et al. 2006].



DC is characterized by the enlargement of the cavities of the heart chambers, mainly
the LV cavity, as well as systolic dysfunction. It is the most common cardiomyopathy in the
world, being the main motivation for heart transplants [Braunwald 2017; Maron et al. 2006].
HC, in turn, can be characterized by hereditary factors related to abnormal thickening of the
myocardium, without dilation of the LV, which leads to reduction of the ventricular cavity.
It is a common cause of sudden death in adolescents and young adults, especially athletes
[Elliott et al. 2014; Maron et al. 2006].

CMRI is an important tool to support the diagnosis of cardiomyopathies, providing
a spatio-temporal analysis of the cardiac structure [Maron et al. 2006; Menchón-Lara et al.
2019]. In a CMRI exam, sequences of images of the patient’s heart structure over a period
of time are generated and analyzed by specialists. Slices are two-dimensional images of
different sections of the heart at the same time point in the cardiac cycle. Frames, in turn,
are two-dimensional images of the same section of the heart throughout the entire cardiac
cycle [Menchón-Lara et al. 2019]. Visual fatigue caused by the large amount of images that
must be continuously inspected is an aspect that has challenged the medical community,
leading to less accuracy in the diagnoses [Waite et al. 2017]. In this context, Computer-
Aided Diagnosis (CAD) approaches have been developed with the purpose of supporting
specialists in decision-making regarding diagnosis [Ammar et al. 2021; Antonopoulos et al.
2021; Bhatia et al. 2022; Izquierdo et al. 2021; Liu et al. 2023; Moreno et al. 2019; Peña
et al. 2021; Xiao et al. 2020; You et al. 2021; Zhang et al. 2023].

In this research, our main objective is to build and evaluate Supervised Machine
Learning (SML)-based classification models for discriminating cases of DC, HC, and those
ones without characteristic anomalies of these diseases (NA, from No Anomalies) through
the application of shape and motion features from the LV ventricular wall segmented in
CMRI images. We have applied feature descriptors presented by Delmondes [2022], as well
as new feature descriptors implemented during this research. Thus, the main contribution of
this article is a comparative study of the application of different SML algorithms in conjunc-
tion with features extracted from CMRI images, based on a priori knowledge about heart
anomalies. Our results are promising and demonstrate the effectiveness of the approach for
applications in CAD systems for cardiomyopathies.

In addition to this introductory section, this paper is organized as follows: in Sec-
tion 2, we present related works; in Section 3, we present the materials and methods; in
Section 4, we present and discuss the results; and, finally, in Section 5, we present our
conclusions.

2. Related Work

The works summarized in this section were selected through an exploratory analysis of the
scientific literature in the ACM Digital Library and IEEE Xplore Digital Library, using key-
words related to cardiac magnetic resonance, such as MRI, CMR, cardiology, left ventricle,
computer-aided diagnosis, and feature descriptors.

Moreno et al. [2019], Ammar et al. [2021], Peña et al. [2021], and Bhatia et al. [2022]
proposed shape, motion, or spatio-temporal feature descriptors for CMRI images applied in
conjunction with SML algorithms to build classification models capable of discriminate
among cases of various heart diseases, including DC and HC. These researchers applied
SML algorithms such as k-Nearest Neighbours (kNN), Random Forest (RFO), and Support



Vector Machine (SVM), obtaining models with good mean performance values (greater than
0.75) considering traditional metrics such as accuracy, precision and F1-score.

Neisius et al. [2019], Antonopoulos et al. [2021], Izquierdo et al. [2021], Liu et al.
[2023], and Zhang et al. [2023] applied radiomic features from CMRI T1 maps also in con-
junction with SML algorithms for building classification models that, among other heart
diseases, were also able to discriminate among DC, HC, and NA cases. SML algorithms
such as AdaBoost, Decision Tree, Ensemble Learning, Gradient Boost (GBO), kNN, Logis-
tic Regression (LRE), Multilayer Perceptron, Naive Bayes, RFO, and SVM were applied in
these studies. Mean performance values greater 0.75 for metrics such as accuracy, precision,
and Area Under the ROC Curve (AUC) were also reported by the researchers.

Deep Learning applications using CMRI images as input data for classifying cases
of heart disease, including DC and HC, has also been explored in recent scientific research,
as we can see in Snaauw et al. [2019], Xiao et al. [2020], and You et al. [2021]. These
researchers applied algorithms such as Convolutional Neural Networks, Recurrent Neural
Networks, and their variations, obtaining mean performance values greater than 0.90 for
accuracy and AUC.

In general, results presented in related works have shown us that CMRI image fea-
tures have great potential to enable effective CAD approaches for cardiomyopathies. Al-
though several approaches have already been proposed, the development of new feature
descriptors and the comparative study of different classification models are relevant contri-
butions to the area and increase the list of approaches and techniques available that can be
applied and reused in different contexts.

3. Materials and Methods
In this section, we describe the materials and methods applied in this research. In Sec-
tion 3.1, we present essential information about the CMRI exams used. In Section 3.2, we
present the features that made up the dataset. In Section 3.3, we present the classification
model building process. Finally, in Section 3.4, we present the algorithms, strategies, and
frameworks applied.

3.1. Materials
We used in this research a total of 384 CMRI exams from the archive of the Heart Insti-
tute of the Hospital das Clı́nicas of the Faculdade de Medicina da Universidade de São
Paulo (InCor/HCFMUSP). To use these images, we obtained approval and authorization
from the Committee for Ethics in Research on Human Beings of the School of Arts, Sci-
ences and Humanities of the University of São Paulo (Certificate of Presentation for Ethi-
cal Consideration No. 49049021.1.0000.5390), as well as from the Committee for Ethics
in Research of the HCFMUSP (Certificate of Presentation for Ethical Consideration No.
49049021.1.3001.0068).

Each exam has a diagnosis associated with it given by a specialist from In-
Cor/HCFMUSP. HC, DC, and NA correspond to the diagnosis associated to 171, 112, and
101 cases, respectively. We used the slices and frames from the short axis view of each exam
throughout the entire cardiac cycle. The region of interest of each image has dimensions of
256x256, covering the LV ventricular wall.

To compose the dataset, in addition to image features (Section 3.2), we also used the
demographic data of patients’ age and sex (Table 1) available in the CMRI exam metada.



Bergamasco et al. [2022] presented more details about the CMRI exams used, such as imag-
ing specifications and the distribution of cases by age and sex.

Table 1. Demographic features.

ID Feature Description
F1 Age Patient’s age in years (min.=2, max.=87, avg.=46.9, std. dev.=17.1, med.=46).
F2 Sex Patient’s sex according exam metadata (#female=265, #male=119).

3.2. Dataset Features
We represented each CMRI exam through a vector of 31 features, including age and sex
(Table 1), accompanied by its target class (the diagnosis associated with the exam). Eigh-
teen of these features were computed using the descriptors presented by Delmondes [2022]
(Table 2), which extract shape and motion features from the LV ventricular wall segmented
in slices and frames of the exam.

Table 2. Features computed using the descriptors presented by Delmondes [2022].

ID Features Description
F3 to F8 Mean endo-

cardium motion
Mean endocardium motion and respective standard deviation along the frames during the com-
plete cardiac cycle (F3 and F4), systole (F5 and F6) and diastole (F7 and F8) considering
all slices of the exam.

F9 to F17 Endocardium
motion

Endocardium motion along the frames of the basal, medial and apical slices, considering the
complete cardiac cycle (F9, F10, and F11), systole (F12, F13, and F14), and diastole
(F15, F16, and F17).

F18 to F20 Mean ventricular
wall area

Mean ventricular wall area considering all exam slices at the time points of end-diastole
(F18), mid-systole (F19), and end-systole (F20).

Source: adapted from Delmondes [2022, p. 53].

We also developed 11 new feature descriptors with the objective of complementing
and extending the discriminative ability of the descriptors presented by Delmondes [2022],
as presented in Table 3.

Table 3. Features computed using the new descriptors developed in this research.

ID Features Description
F21 to F23 LV cavity volume LV cavity volume at the time points of end-diastole (F21), mid-systole (F22) and

end-systole (F23).
F24 to F25 Variation in LV cavity vol-

ume
Difference between the largest and the smallest LV cavity volume observed in sys-
tole (F24) and diastole (F25).

F26 Mean endocardium area Mean endocardium surface area considering all exam frames.
F27 to F30 Mean endocardium min-

imum and maximum
diameters

Mean and respective standard deviation of the endocardium minimum diameters
(F27 and F28) and maximum diameters (F29 and F30) computed throughout
the entire cardiac cycle.

F31 Variation in ventricular wall
thickness

Difference between the maximum thicknesses of the ventricular wall computed in
systole and diastole.

3.3. Classification Model Building Process
We applied the general classification model building process presented in Figure 1. This
process is composed of five subprocesses, namely: A) segmentation; B) feature extraction;
C) dataset preprocessing and splitting; D) SML algorithm hyperparameter tuning; and, E)
classification model building. We conducted subprocesses D and E through an adaptation
of the nested (or double) cross-validation [Stone 1974].

Segmentation (Subprocess A). Bergamasco et al. [2022] performed the segmenta-
tion of the LV ventricular wall applying a semi-automatic method to identify the contours



Figure 1. Classification model building process.

of the endocardium and epicardium (outermost layer of the pericardium), using the Med-
viso Segment software [Heiberg et al. 2010]. In Figure 2, we present examples of regions
of interest from CMRI slices highlighting a NA case (Figure 2a), a DC case (Figure 2b),
and a HC case (Figure 2c). The contours of the ventricular wall are shown in the images
(epicardium in green and endocardium in red).

(a) NA (b) DC (c) HC

Figure 2. Region of interest from a CMRI slice for each diagnosis.

Feature extraction (Subprocess B). From the segmented images, we extract fea-
tures applying the descriptors presented in Section 3.2.

Dataset preprocessing and splitting (Subprocess C). We normalized each dataset
feature (Step C.1) adjusting the values in the range [0.0, 1.0] using the Min-Max strategy
[Pedregosa et al. 2011]. For the nominal attribute sex, we replaced the nominal values
“female” and “male” with the numerical values 0.0 and 1.0, respectively. Next, we split the
preprocessed dataset into k stratified folds (Step C.2). We applied k = 10 for all process
executions.

SML algorithm hyperparameter tuning (Subprocess D). For each SML algorithm
hyperparameter to be tuned, we defined a set of values to be tested. Then, we computed all
possible combinations among the predefined hyperparameters values. With each combina-
tion of values, we performed a k-fold cross validation run with fold reservation.

In each cross validation round, we reserved a fold that was not used in either the
training or testing of the classifier. From the remaining k − 1 folds, we used the union of
k − 2 folds to train the SML algorithm in the round and the last remaining fold to test the
classifier resulting from training. In each of the k rounds, a distinct fold was reserved. Still
in each cross validation round, based on the test of the classifier built, we computed the



weighted macro-averaged F1-score, considering the One-versus-the-Rest (OvR) approach
for analyzing confusion matrices [Manning et al. 2008; Bishop 2006]. At the end of exe-
cuting the k rounds, we computed the simple arithmetic mean of the k values of weighted
macro-averaged F1-score.

After executing all k-fold cross validations, one for each combination of hyperpa-
rameter values, we selected the set of hyperparameter values that maximized the mean of
the k values of weighted macro-averaged F1-score.

Classification model building (Subprocess E). We built the final classification
model to be evaluated through a new k-fold cross validation, this time without fold reser-
vation, applying the combination of SML algorithm hyperparameter values selected in Sub-
process D.

In each round of this new cross validation, we trained the SML algorithm with the
set of samples resulting from the union between the training and testing folds used in the
corresponding round of Subprocess D cross validations. For testing the classifier built in
the round, we used the reserved fold in the corresponding round of Subprocess D cross-
validations.

From the predictions provided by the classifier built in each round, we computed
the weighted macro-averaged precision, recall, and F1-score values, as well as the over-
all accuracy and the macro-averaged Receiver Operating Characteristic (ROC) curve, with
its respective AUC value [Manning et al. 2008; Bishop 2006]. After the execution of the
k rounds, we computed the simple arithmetic mean of the k values of each performance
metric, as well as the mean macro-averaged ROC curve.

3.4. Algorithms, Strategies, and Frameworks

In this research, we used the Python programming language, version 3.11.0, as well as the
open source libraries Scikit-Learn [Pedregosa et al. 2011], version 1.3.0, and Imbalanced-
Learn [Lemaı̂tre et al. 2017], version 0.11.0. Through different executions of the process
presented in Section 3.3, we built, evaluated and compared 120 different classification mod-
els, exploring all possible combinations among the algorithms and strategies presented in
Table 4.

Table 4. Algorithms and strategies applied in this research.

SML
algorithm Feature subset Strategy of dimension

reduction
Strategy of class

balancing

GBO
GPR
LRE
RFO
SVM

A = { Image features }
B = { Age, Image features }
C = { Sex, Image features }

D = { Age, Sex, Image features }

None
LDA

None
Undersamplig
Upsampling

We applied five SML algorithms, namely: Gaussian Process (GPR) [Rasmussen and
Nickisch 2010], Gradient Boosting (GBO) [Zhang et al. 2023], Logistic Regression (LRE)
[Izquierdo et al. 2021; Zhang et al. 2023], Random Forest (RFO) [Antonopoulos et al. 2021;
Izquierdo et al. 2021; Liu et al. 2023; Zhang et al. 2023], and Support Vector Machine
(SVM) [Izquierdo et al. 2021; Liu et al. 2023; Zhang et al. 2023]. The feature subsets
tested consisted of combinations among the union of the features presented in Tables 2
and 3 (image features) and patients’ demographic features (Table 1). To better reference the



feature subsets, we named the four combinations of features explored in this research using
the letters A, B, C and D, as presented in Table 4.

Since the dataset is unbalanced, we also performed variations of the process by ap-
plying class balancing strategies only to the training folds in the cross-validation rounds. To
this end, we applied the random undersampling and the SMOTE [Chawla et al. 2002] ap-
proaches. We also applied different dimensionality reduction strategies to the training and
testing folds in each cross-validation round. In this paper, we only address the dimension-
ality reduction strategy that generated the best results, Linear Discriminat Analysis (LDA)
[Hastie et al. 2009].

In order to analyze the statistical significance of the differences observed among the
performances of the different classification models built and evaluated, we applied the pair-
wise Mann-Whitney U Test [MacFarland and Yates 2016], testing the veracity of the null
hypothesis H0: the arithmetic mean among the k performance values achieved in the respec-
tive k cross-validation rounds applied to build the classification model is equal for the two
classification models compared to each other. We applied a two-sided alternative hypoth-
esis and p-value < 0.05. For each classification model, we considered as a sample the set
of ten mean performance values computed, respectively, in the ten cross-validation rounds
referring to the classification model building subprocess (Subprocess E). In this paper, we
highlight the results of the pairwise Mann-Whitney U test applied to the performance values
computed through the weighted macro-averaged F1-score.

4. Results and Discussion

In Table 5, we present the performance values achieved by the best classification model per
SML algorithm and per feature subset applied. In general, most models achieved good mean
classification performance, with mean values of F1-score, precision, recall, and accuracy
greater than or equal to 0.80, as well as AUC greater than or equal to 0.90. The metrics used
are traditional in classification studies and were chosen based on the literature [Moreno et al.
2019; Liu et al. 2023; Izquierdo et al. 2021].

The individual or joint application of the demographic features of age and sex com-
bined with the image features (feature subsets B, C or D) resulted in classification models
with higher mean performance values when compared to the models built with the appli-
cation of only image features (feature subset A). The best classification models resulted
from the joint application of age, sex and image features (feature subset D). The best model
overall was the one built on the SVM algorithm that achieved mean performance values
F1-score = 0.85± 0.05, accuracy = 0.85± 0.04, and AUC = 0.94± 0.02. Once a specific
feature subset is fixed, we can observe that the difference among the mean performance val-
ues achieved by the classification models is low, comparing the different SML algorithms.
This difference is at most 0.30 for the models represented in Table 5.

In Fig. 3, we present the mean ROC curves per class and the mean macro-averaged
ROC curve computed for the best classification models highlighted in gray shading in Ta-
ble 5. Considering the mean macro-averaged ROC curves of the best classification models,
the performance variability when comparing the different applied SML algorithms was low.
The ROC analysis by class also allowed us to observe that, although most classification
models performed better in discriminating NA cases in relation to the other classes, the
discriminative ability for all classes was good for all models (AUC greater than 0.90).



Table 5. Mean performance values and respective standard deviations achieved by the
best classification model per SML algorithm and per feature subset. In gray shad-
ing we highlight the line referring to the best model per SML algorithm. In bold,
we highlight the values referring to the best classification model overall.

SML
algorithm Features F1-score Precision Recall Accuracy AUC

GBO A 0.76± 0.10 0.78± 0.11 0.76± 0.10 0.76± 0.10 0.89± 0.06
GBO B 0.83± 0.06 0.84± 0.06 0.83± 0.06 0.83± 0.06 0.92± 0.04
GBO C 0.79± 0.06 0.81± 0.06 0.79± 0.06 0.79± 0.06 0.91± 0.03
GBO D 0.83± 0.06 0.85± 0.06 0.84± 0.06 0.84± 0.06 0.94± 0.04
GPR A 0.79± 0.03 0.81± 0.04 0.79± 0.03 0.79± 0.03 0.91± 0.03
GPR B 0.81± 0.05 0.83± 0.06 0.82± 0.05 0.82± 0.05 0.92± 0.03
GPR C 0.80± 0.05 0.82± 0.05 0.80± 0.05 0.80± 0.05 0.91± 0.04
GPR D 0.84± 0.07 0.86± 0.06 0.84± 0.07 0.84± 0.07 0.94± 0.04
LRE A 0.79± 0.07 0.81± 0.06 0.79± 0.07 0.79± 0.07 0.90± 0.04
LRE B 0.82± 0.06 0.83± 0.06 0.82± 0.06 0.82± 0.06 0.92± 0.04
LRE C 0.81± 0.04 0.84± 0.04 0.81± 0.04 0.81± 0.04 0.91± 0.04
LRE D 0.84± 0.07 0.86± 0.06 0.84± 0.07 0.84± 0.07 0.93± 0.04
RFO A 0.77± 0.08 0.79± 0.07 0.77± 0.08 0.77± 0.08 0.90± 0.06
RFO B 0.82± 0.06 0.83± 0.06 0.82± 0.05 0.82± 0.05 0.92± 0.04
RFO C 0.78± 0.09 0.80± 0.09 0.79± 0.09 0.79± 0.09 0.90± 0.05
RFO D 0.83± 0.05 0.84± 0.05 0.83± 0.05 0.83± 0.05 0.93± 0.02
SVM A 0.78± 0.05 0.80± 0.04 0.78± 0.05 0.78± 0.05 0.91± 0.04
SVM B 0.81± 0.08 0.83± 0.07 0.81± 0.08 0.81± 0.08 0.93± 0.04
SVM C 0.81± 0.05 0.83± 0.05 0.81± 0.05 0.81± 0.05 0.91± 0.05
SVM D 0.85 ± 0.05 0.87 ± 0.05 0.85 ± 0.04 0.85 ± 0.04 0.94 ± 0.02

(a) GBO (b) GPR (c) LRE

(d) RFO (e) SVM

Figure 3. Mean ROC curves per class and mean macro-averaged ROC curve computed
for the best classification model by SML algorithm.

In figures from 4a to 4e, we illustrate the results of the pairwise Mann-Whitney U
tests that we applied to all classification models built and evaluated per SML algorithm.
Green and red colors indicate statistically non-significant and significant differences, re-



spectively. These models are the results of different combinations among feature subsets,
dimensionality reduction strategies, and class balancing strategies, presented in Table 4. In
Figure 4f, we illustrate the results of the application of the pairwise Mann-Whitney U test
to the 20 classification models represented in Table 5.

(a) GBO (b) GPR (c) LRE

(d) RFO (e) SVM (f) The best models

Figure 4. Results of the pairwise U test of the null hypothesis H0 on all classification
models built and tested by SML algorithm (figures from 4a to 4e), and on the 20
models presented in Table 5 (Figure 4f).

The U tests we carried out showed us that the difference among the mean perfor-
mances of most classification models, obtained through different combinations between
SML algorithm, feature subset, dimension reduction strategies, and class balancing strate-
gies, was not significant. This fact highlights the robustness of the presented results in terms
of performance of the classification models.

In previous work, Delmondes [2022] presented a Content-Based Image Retrieval
(CBIR) approach to retrieve DC, HC or NA cases similar to a case given as a reference.
The researcher applied the same images that we used in this work and the features presented
in the Tables 2 and 1. One of the limitations that Delmondes [2022] observed regarding
the CBIR approach was the need to stratify cases by patients’ age and sex to achieve good
retrieval performance.

In Table 6 we present the difference between the performance values observed in the
CBIR approach of Delmondes [2022] and in our classification approach when the applica-
tion of only image features is compared with the application of image features in conjunction
with demographic features.

Even though this is a qualitative and indirect comparison, since the approaches are
different, we observed that our classification approach enabled models with higher perfor-
mance. Furthermore, our classification approach is less dependent on the demographic fea-



Table 6. Best performance values achieved in the CBIR approach of Delmondes [2022]
and in our classification approach for each feature subset applied.

Task Performance metric Features DC HC NA Mean

CBIR [Delmondes 2022] PxR∗ AUC Table 2 0.48 0.50 0.33 0.44
Tables 1 and 2 0.83 0.69 0.46 0.66

Classification (our approach) ROC AUC
Table 2† 0.83 0.80 0.95 0.86

Tables 1 and 2† 0.83 0.81 0.95 0.86
Tables 1, 2, and 3 0.93 0.92 0.96 0.94

∗ Precision versus Recall curve.
† We do not present or discuss these results in detail in this paper.

tures of age and sex, since most classification models did not present statistically significant
performance differences when compared to each other, as we evidenced through the applica-
tion of the pairwise Mann-Whitney U test. Our best mean classification performance value,
considering only the features presented in tables 2 and 1 applied together (AUC = 0.86), was
30.3% better than the best mean retrieval performance observed by Delmondes [2022] with
the application of the same features (PxR AUC = 0.66). The difference between the mean
performance values, comparing the application of only the image features from Table 2 with
their application together with the demographic features, was 50.0% in the CBIR approach
(PxR AUC increased from 0.44 to 0.66), and 0.0% in our classification approach (the mean
AUC value maintained at 0.86). Thus, the classification approach that we present in this pa-
per also contributes as a better option for application in CAD systems for cardiomyopathies
than CBIR approaches, taking CMRI images as input.

Furthermore, it is important to acknowledge some limitations of our study. Firstly,
our research is constrained by a limited number of cases, which hinders the use of more
advanced techniques such as Deep Learning (DL), for example. Additionally, we face the
challenge of class imbalance, which we attempted to mitigate by applying a balancing tech-
nique with upsampling. Another point to be highlighted is that our study is single-center,
and studies with more diversified and multicentric databases are necessary for a better as-
sessment of the models’ generalization capability.

5. Conclusion

We evaluated and compared 120 SML classification models for discriminating DC, HC,
and NA cases based on CMRI image features. Results showed us that, even though the
demographic features of age and sex increasing performance values when comparing models
that used them with models that did not use them, there was no statistically significant
difference among the performances achieved by the most classification models built and
compared to each other.

The best classification model built and evaluated, based on SVM and the application
of all available features, achieved F1-score = 0.85 ± 0.05, accuracy = 0.85 ± 0.04, and
AUC = 0.94± 0.02. Our results are promising, indicating the potential of the approach for
practical applications. An important next step would be the development of clinically viable
interfaces for effective implementation. As future work, we intend to combine the approach
presented in this paper with LV segmentation and content-based retrieval approaches for
cardiomyopathy cases, also under development in other researches in our laboratory, to
implement a CAD system of cardiomyopathies applicable in medical routine.
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