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Abstract. Extracting information from medical reports can be challenging due
to the large volume of data. Therefore, this study proposes a method that uses
a hierarchical classification approach with two levels, each consisting of a neu-
ral network instance. One for extracting clinical anatomical or observational
entities along with their levels of uncertainty, and another for classifying the re-
lations that exist between these entities. For this research, 600 radiological re-
ports from the RadGraph dataset were used. The entity extraction task achieved
an F1-score of 91%, while the entity classification and relation classification
tasks achieved 88% each. Our hierarchical method enhances entity and relation
classification performance by filtering and double checking classified entries.

1. Introduction
A medical report is a record that gathers information about a patient’s health. These kinds
of reports generally lack specific writing standards, leading to a wide variety of formats,
presentations, or unstructured data [Jain et al., 2021, Jensen et al., 2012]. Furthermore, the
large volume of reports that exist, on account of their preservation over time, presents an
additional challenge when attempting to retrieve data and extract information. To address
these challenges, automated data extraction methods have been developed, as proposed
by Jain et al. [2021], Solarte-Pabón et al. [2021], Sugimoto et al. [2021], Yim et al. [2016].
These methods are capable of taking unstructured data as input and providing entities,
relations, or both as output data.

Hierarchical structures provide a natural and convenient way to organize a dataset
and extract relevant information, as each element within it is a generic type of its subordi-
nate elements while simultaneously being a specific subset of the main element [Naik and
Rangwala, 2018]. Therefore, based on free texts from unstructured radiology reports, this
study aims to develop a hierarchical classification method with two levels: a higher level
entity recognition task and a lower level relation classification; each employing a Con-
volutional Neural Network (CNN) capable of extracting anatomical and observational
entities, along with their levels of uncertainty, and identifying the relations between them.

This study utilizes the structured data from the RadGraph dataset, as provided by
Jain et al. [2021]. The radiology reports in RadGraph dataset were originally from Irvin
et al. [2019](CheXpert) and Johnson et al. [2019] (MIMIC-CXR) datasets, where three
board-certified radiologists manually labeled 600 reports.



The importance of the information extracted from radiology reports through the
developed method lies in providing data that can be reused for other complex tasks, such
as classification or automatic report generation. Additionally, the extracted entities and
relations can be used to retrieve information from previous patient reports for compari-
son with current patients. In this article, we present the extracted entities and relations
highlighted in the text, which enhances their visibility.

2. Related Works

Over the past decade, significant strides in Machine Learning have opened doors to effec-
tively tackle numerous Natural Language Understanding (NLU) tasks within the realm of
Natural Language Processing (NLP) [Hapke et al., 2023]. One illustrative example lies in
healthcare applications, where the objective might revolve around extracting pertinent in-
formation from radiology reports [Casey et al., 2021, Landolsi et al., 2023]. These reports,
often presented in free text format, serve as critical documentation to convey diagnostic
imaging findings [Pons et al., 2016].

Faced with the diverse array of NLP tasks, particularly those centered on named
entity recognition (NER) and relation extraction (RE), convolutional neural networks
(CNNs) have consistently demonstrated reliable performance. For instance, in the do-
main of RE, the Att-Pooling-CNN model, as proposed by Wang et al. [2016], achieves an
F-score of 88.0%. Similarly, Santos et al. [2015] and Liu et al. [2013] utilized CNNs for
relation classification through ranking (CR-CNN), achieving an F-score of 84.1%. How-
ever, the most notable advancement has been with Bidirectional Encoder Representations
from Transformers (BERT). BERT, based on a transformer architecture, is specifically
designed to comprehend text bidirectionally, incorporating contextual information from
both left and right contexts, as demonstrated by Devlin et al. [2018].

BERT has served as the foundation for various research endeavors targeting NER
and RE tasks Solarte-Pabón et al. [2021]. For instance, Wu and He [2019] proposed three
BERT-based models for NER in Spanish radiology reports, achieving exact F1 and lenient
F1 scores of 73.27% and 78.47%, respectively. In the realm of RE, Zeng et al. [2014]
introduced R-BERT, a model that leverages pre-trained BERT with entity information,
outperforming other approaches such as Deep Neural Network (DNN) - Softmax, with an
F1 score of 89.25% compared to 82.7%.

Joint extraction models, like those combining BERT and R-BERT, have signifi-
cantly improved performance in both NER and RE tasks, yielding noteworthy F1 scores.
In our study, we follow a similar strategy, presenting a hierarchical model comprising two
classifiers. The first classifier identifies entities, while the second classifier predicts the
type of relation between two recognized entities. Our neural networks are constructed
using Keras Dense Layers, Embedding Layers, and leverage the RadGraph database ob-
tained from PhysioNet, enabling the simultaneous extraction of entities and relations.

3. Materials and Methods

3.1. Dataset

RadGraph is a dataset available on the PhysioNet platform, was created to train and eval-
uate Natural Language Processing (NLP) models focused on the extraction of clinical



entities and relations in radiology reports [Jain et al., 2021]. This dataset, which con-
tains reports in English from MIMIC-CXR (MIMIC Chest X-ray) and CheXpert (Chest
eXpert), has manually annotated details by radiology and linguistics experts about the
examination performed, radiological findings and patient diagnostic impressions [Jain
et al., 2021].

For this research, a total of 600 reports were sourced from the RadGraph dataset.
These reports were then segregated into two distinct datasets for different purposes. The
first dataset comprised 500 reports (train and dev dataset partitions) exclusively from
the MIMIC-CXR subset. These reports were utilized for tasks such as entity and rela-
tions recognition. Specifically, this subset contained 14,579 entities and 10,889 relations.
Among these reports, 320 were allocated for training the models. The remaining reports
were split into 100 for testing and 80 for validation purposes. On the other hand, the sec-
ond dataset (test), comprising 100 reports, including 50 reports each from MIMIC-CXR
and CheXpert datasets. These reports were employed to highlight the identification of
entities and relations, potentially offering insights into how the trained models performs.

It is important to emphasize that each radiology report encapsulates clinical en-
tities (one or more adjacent words), categorized as anatomical body parts (ANAT) or
observations (OBS), as depicted in Figure 1a. These observations can encompass visual
characteristics, identifiable pathophysiological processes, or a definitive disease diagno-
sis [Jain et al., 2021]. Furthermore, each observation has a graded level of uncertainty,
ranging from definitely present (OBS-DP), uncertain (OBS-U), to definitely absent (OBS-
DA). Correspondingly, ANAT-DP signifies the unambiguous presence of an anatomical
concept.

(a) Radiology Report Structure. (b) The relations between entities, adapted
from Jain et al. [2021].

Figure 1. Ontology of entities and relations used to label anatomic and observa-
tion entities.

The relations between entities, Figure 1b, can be categorized into three types:
“suggestive of”, representing the relation between two observation entities; “located at”,
indicating the relation between observation and anatomy entities; and “modify”, corre-
sponding to the relation between two observations or two anatomical entities [Jain et al.,
2021]. Furthermore, each report data is stored in a dictionary, each of them being acessed



with the highest level key. All the reports contains a key named “text” containing the
report descriptions, a “data split” key, “data source” and a dictionary of labeled “enti-
ties”. Each “entity id” key within the dictionary contains the following fields: “tokens”
are tokens of any entity, “labels” are anatomy or observations with the uncertainty level,
“start ix” and “end ix” are the position of the first and last token and “relations” is a list
of relation labels and the related entity ID.

3.2. Pre-processing

Our experiments were conducted using the Python programming language. In the pre-
processing phase, we began by merging the train and dev files. The resulting file named
merged contained 500 reports, which were then iterated through to extract annotated enti-
ties and their corresponding labels. These annotated report strings were saved in a Python
list. Additionally, each entity was processed to extract its token and label, along with any
relations it had with other entities.

We utilized the SpaCy library to tokenize both entities and non-entities within the
report texts. These texts, alongside their corresponding entities and non-entity tokens, un-
derwent preprocessing to eliminate non-alphanumeric characters, redundant whitespaces,
and to normalize all characters to lowercase. The same preprocessing procedures were
applied to the test data, resulting in a total of 933 final tokens. Subsequently, we em-
ployed the Keras Tokenizer to map the vocabulary of entity tokens to integer values, a
necessary format for inputting into the embedding layer of our proposed Neural Network.
In cases where tokens were out-of-vocabulary, they were represented by “1”.

RadGraph text reports consist of two primary sections: the first contains techni-
cal details regarding image acquisition or patient-specific information, while the second
presents specialized findings in free text format. Typically, these sections are delineated
by one of three keywords: FINDINGS or IMPRESSION. Nonetheless, not all reports
adhere to this pattern; occasionally, the FINDINGS keyword may be absent, or entity la-
beling may occur before the IMPRESSION keyword, resulting in missed labeling before
this point. To address this inconsistency, we conduct a token count within the delimited
report. If FINDINGS is absent but IMPRESSION is present, the number of entities in the
report must match the number of labeled entities. Consequently, we define that following
any of these keywords, any unclassified text should be designated as a non-entity. By
implementing this method, 439 out of 500 reports from merged file and 96 out of 100
reports from test file were accurately segmented and are now prepared for tokenization.
Additionally, for each unlabeled token in these JSON files, a new “non-entity” label was
created as explained in the following section.

3.2.1. The non-entity Class

The MIMIC-CXR dataset comprises a total of 14,579 entities, with 339 entities spanning
multiple tokens, which were subsequently excluded, resulting in 14,240 entities along
with their corresponding labels. It is crucial to note that each radiology report consists
of a sequence of tokens, some of which are labeled while others remain unlabeled. In
order to equip our proposed model with the capability to handle unlabeled tokens within
the unstructured text reports, we made a strategic decision to augment the dataset by



introducing a negative class. This entailed automatically labeling each token that was not
assigned a specific class label within the reports as “non-entity”. Tokens that were already
labeled retained their original classifications. This enhancement to the dataset forms a key
component of our contribution.

Given that the total number of tokens significantly exceeds the count of labeled
entities, simply selecting all non-labeled tokens to form the negative class would lead to
an imbalanced dataset, with a much larger proportion of data in this new non-entity class.
To address this imbalance, a sample equivalent to the number of occurrences of the most
frequent entity label was randomly selected from the non-entity data. This resulted in
6,216 non-entity tokens being added to the 14,240 already labeled entities, yielding a total
of 20,456 tokens for training our entity recognition model. These sampled non-entities
were labeled as “N-ENT”, as illustrated in Figure 2a.

3.2.2. The non-relation Class

As elaborated in the preceding section, the incorporation of a non-entity class serves a
crucial purpose in our hierarchical methodology. This addition prevents the initial clas-
sifier from forwarding pairs of tokens to the second level of classification if one or both
tokens are not genuine entities. This cautionary step is essential since the secondary clas-
sifier in the hierarchy is tasked with identifying relationships between pairs of entities. In
simpler terms, if there is a misidentification of at least one of the two entities, the response
from the second classifier becomes inaccurate. This is because the second classifier relies
on accurate entity identification to correctly label relationships between the two entities.
More details about our hierarchical classification model are given in section 3.3.

In real-world scenarios, the risk of misclassifying a non-entity as an entity intro-
duces the possibility of a false positive, subsequently passed on to the second level of
classification. Consequently, the second classifier independently assigns a label to the re-
lationship, making it challenging to rectify errors originating at the first level. To improve
the resilience of the second classifier against false positives from the initial classification
stage, we have chosen to introduce a new label for relationships involving either an en-
tity and a non-entity or between two non-entities. This additional label aligns with the
negative class concept discussed earlier but now encompasses pairs of tokens labeled as
“non-relation”. Figure 1b depicts this new relation ontology.

To enhance training for the relation classifier, we collected a total of 10,598 exam-
ples featuring positively related pairs of entities along with their corresponding relation
labels. Subsequently, akin to the entity pre-processing phase, we generated examples of
non-related pairs and labeled them as “N-REL”, effectively creating a new negative class.
The negative relation dataset comprises two types of pairs: an entity token paired with an
Out-Of-Vocabulary token, and an entity token paired with another entity token that is not
related. This introduction of a new label constitutes another aspect of our contribution to
the research. The composition of the Relation Classifier data is illustrated in Figure 2b.

In summary, two types of entity pairs are now labeled as non-relation: the first
type consists of an entity token paired with an Out-Of-Vocabulary token (representing
unknown words), while the second type involves a pair of entities that are unrelated. This



(a) New ontology of the radiology report
dataset.

(b) New relation data composition schema.

Figure 2. Figures a and b show the incorporation of a new negative class. The
blue branches represent the extension achieved through our methodology.

latter case helps prevent misclassification of erroneous relations between pairs of true
positive entities. All pairs were generated through random sampling. However, to ensure
that randomly formed pairs do not overlap with the list of positively related entities, we
conduct a thorough check. Ultimately, the number of non-relations equals the count of
the most frequently occurring class of true relations, which is 6,426 labeled as “modify”,
to keep the balance between classes.

3.3. Hierarchical classifier

Our method employs a hierarchical classification approach comprising two levels. In
the first level, all tokens are processed to discern their entity types, while the second level
analyzes only pairs of tokens positively classified by the first level, identifying the relation
between them. This hierarchical setup, known as “hierarchical classification”, offers a
key advantage: the initial level acts as a filter for the subsequent classifier, enhancing
the likelihood of achieving a more precise final outcome; the last level acts as a double
checker, negatively classifying a relation that includes a unfiltered non-entity. Figure 3
visually depicts this structure, with each level consisting of a neural network instance.

The Entity Classifier is the initial model in the hierarchical process. It takes token
integers as inputs and outputs tokens classified into four positive classes (ANAT-DP, OBS-
DA, OBS-DP, OBS-U). Hyperparameters include an input dimension of 934 (vocabulary
size), an output dimension of 96 (dense vector size), and an input length of 1 (handling
one token at a time). The output of the Embedding Layer connects to a Flatten Layer,
then to a Dense Layer with 5 output neurons and a softmax activation function for class
probabilities. The model compiles using Adam optimizer, Categorical Crossentropy loss
function, and accuracy metrics.

The second model in the hierarchy is the Relation Classifier, which takes pairs of
token integers as inputs and predicts the presence or absence of a relation between them.
Its architecture includes two Input layers, receiving two integers for each pair of tokens.
The Embedding Layer converts these integers into dense vectors, with hyperparameters
as: 934 for input dimension, an output dimension of 96, and an input length of 2. The



Figure 3. Architecture of the Hierarchical Model.

output vectors are then flattened and connected to Dense Layers. The final Dense Layer
has 4 output neurons corresponding to the three types of relations and non-relation, each
with a softmax activation function for class probabilities. The model is compiled using the
Adam optimizer, Categorical Crossentropy loss function, and accuracy as the evaluation
metric.

3.4. Proof of concept

In this section, we aim to apply the model trained with merged data in test data. With this,
we aspire to evaluate the Entity Classifier on performing entity extraction on a unseen
free-text scenario. We will apply the entity model to every token in the texts, defining
which are entities (ANAT-DP, OBS-DU, OBS-DP, OBS-U) and non-entities.

The process starts when the report text is split into sentence fragments separated
by periods, Figure 3. Then, using the Keras texts to sequences tokenizer function along
with spaCy tokenizer, we transform each word of the fragmented sentences into inte-
gers. The Keras tokenizer is responsible of transforming every token obtained by spaCy
tokenizer into an integer. Thus, entities are designated by values greater than 1, while
non-entities are represented by the value 1. Afterward, every obtained token is passed to
the Entity Recognizer model, each returning the probability for each of the five classes
(ANAT-DP, N-ENT, OBS-DA, OBS-DP, OBS-U). Subsequently, the tokens are stored in
arrays along with the most probable label.

Afterward, every obtained token is passed to the Entity Recognizer model, each
returning the probability for each of the five classes (ANAT-DP, N-ENT, OBS-DA, OBS-
DP, OBS-U). Subsequently, the tokens are stored in arrays along with the most probable
label. It is important to note that entities that are from the same fragmented sentences are
stored together. For the relations between the extracted entities, a function that receives
the list of entities and generates all possible combinations up to a certain range in the



same section of text, which in this case is divided by periods. Then, the pairs are passed
to Relation Classifier that returns the probability for each class. In the end, the pair is
stored along with the most probable label.

3.5. Evaluation methodology and highlighting entities and relations process

The evaluation methodology involves comparing entities identified by the first classifi-
cation level in each report to form an expected list, with alphabetic entities recognized
and classified by the developed Entity model. An identified entity is considered correct
only if both the token and its label have a corresponding match in the expected list. If an
identified entity lacks a counterpart in the expected list of labels, it is counted as a false
negative. Conversely, if an entity is identified that is not present in the expected list, it is
counted as a false positive. Finally, if an identified entity token lacks an expected corre-
sponding entity token, it means that the token is not an entity. In this case, it is recorded
as a false negative for the “N-ENT” label and a false positive for the incorrectly predicted
label.

We will use displaCy dependency visualizer along with the extracted data of the
radiology reports to finally represent and better emphasize the relevant information found
in each medical report. SpaCy is used to tokenize the report text, transforming it into
a Doc object. Then, each token in the obtained Doc is checked if it is present in the
extracted entity list. If yes, the entity token is tagged with its label, and its index is saved
for the arcs elaboration. Using the entity token indexes obtained and the pairs of entities
obtained in previous sections, arcs are defined and labeled to represent the dependencies
(relations) between words (entities).

4. Results

4.1. Entity model results (First level)

The model’s results are available in both Figure 4a and Table 1, where P stands for pre-
cision, R for recall and F1 for F-score. These results indicate that the model accurately
predicted 1,138 instances for the ANAT-DP class, with 53 false positives and 66 false
negatives, resulting in a precision of 96%, a recall of 95%, and an F1-score of 95%. For
the N-ENT class, similar metrics were obtained, with 1,196 instances correctly predicted,
62 false positives, and 99 false negatives, resulting in 95% precision, 93% recall, and
95% F1-score. Nevertheless, a less favorable scenario is observed for observational enti-
ties. The model shows preference towards the OBS-DP class, which is the class with the
largest number of instances, obtaining 1,018 true positives, 259 false positives, and 123
false negatives, resulting in a precision of 80%, a recall of 89% and an F1-score of 84%.

The OBS-DA is the second most frequent Observational class in the training data,
comprising 345 test instances. Out of these, 249 were correctly labeled, 96 were false
negatives (with 88 predicted as OBS-DP), and 104 were false positives (66 of which
actually belonged to OBS-DP). As a consequence, the precision was 70%, the recall of
72%, and an F1-score of 71%. The OBS-U is the least represented class in the database
with 134 test instances. Among these, only 26 instances were correctly classified, 108
were false negatives (80 of these being classified as OBS-DP), and 12 false positives,
resulted in a precision of 68%, a recall of 19%, and an F1-score of 30%. Despite its low
F1 score, its accuracy is enough to filter out erroneous tokens and not pass them to the



(a) Entity recognition. (b) Relation Classifier.

Figure 4. Confusion matrices of the every levels of the classifier.

Class P R F1 Support
ANAT-DP 0.96 0.95 0.95 1204
N-ENT 0.95 0.93 0.94 1268
OBS-DA 0.70 0.72 0.71 345
OBS-DP 0.80 0.89 0.84 1141
OBS-U 0.68 0.19 0.30 134
Accuracy 0.88 4092
Macro Avg 0.82 0.74 0.75 4092

Table 1. Classification Met-
rics for Entity Model.

Class P R F1 Support
N-REL 0.84 0.88 0.86 1273
located at 0.94 0.92 0.93 743
modify 0.90 0.87 0.88 1280
suggestive of 0.90 0.74 0.81 109
Accuracy 0.88 3405
Macro Avg 0.89 0.85 0.87 3405

Table 2. Classification Metrics
for Relation Model

second-level classifier. Overall, these results present an accuracy of 88%, justifying the
excellent performance of the first level of the proposed hierarchical classifier.

4.2. Relation model results (Second level)
The results of the relation classifier can be found in Figure 4b and in Table 2. The “mod-
ify” class contains 1,119 correctly predicted test instances, 118 false positives, and 161
false negatives, resulting in 90% precision, 87% recall, and 88% F1-score. For the N-REL
negative class, the second most frequent, 1,125 instances were correctly predicted by the
model, with 204 false positives (145 are ’modify’ entities) and 148 false negatives (94 are
“modify” entities), resulting in a precision of 84%, a recall of 88% and an F1-score of
86%.

Similar metrics were obtained for the other two classes, even though they contain
fewer training instances. The “located at” relation class, obtained 685 true positives, 56
false positives (42 of which were N-REL), and 58 false negatives (41 of which were
classified as N-REL), resulting in a precision of 94%, a recall of 92% and an F1-score
of 93%. The “suggestive of” is the least represented relation class in the test data with
109 test instances. In this case, 83 instances were correctly classified, 26 false negatives,
and 15 false positives, resulting in a precision of 90%, a recall of 74%, and an F1-score
of 81%. For the developed solution, similar metrics were obtained for all four classes,
although the “suggestive of” class has a slightly lower number of test and train instances,
as well as a lower Recall and F1-score compared to the others.



4.3. Proof of concept results
The hierarchical evaluation method results are shown in Table 3. As showcased, the
most represented positive class, ANAT-DP, is correctly predicted 1,040 times, with 49
false negatives and 101 false positives, resulting in 91% of precision, 96% of recall and
93% F1-score. For the N-ENT class, our negative class, 4,102 instances were correctly
predicted, with 154 false positives, and 217 false negatives, resulting in 96% precision,
94% recall, and 95% F1-score. We would like to emphasize that the incorporation of this
negative class constitutes a significant aspect of our contribution. Its inclusion greatly
enhances the performance of the hierarchical classifier, leading to exceptionally favorable
results.

Class P R F1 Support
ANAT-DP 0.91 0.96 0.93 1089
N-ENT 0.96 0.94 0.95 4319
OBS-DA 0.79 0.64 0.70 378
OBS-DP 0.77 0.87 0.82 983
OBS-U 0.60 0.24 0.34 83
Accuracy 0.91 6852
Macro Avg 0.80 0.73 0.75 6852

Table 3. Classification Metrics for Entity Model in test data.

Similarly as seen in Section 4.1, the observational entities got a worse result com-
pared to the others. Again, the model tends towards OBS-DP class, which had more
instances for training, obtaining 860 true positives, 123 false negatives, and 256 false
positives, resulting in a precision of 77%, a recall of 87% and an F1-score of 82%. The
OBS-DA class had 378 instances. Out of these, 242 were correctly labeled, 64 were false
positives (interestingly, none of it was ANAT-DP), and 136 were false negatives. For this
class, the precision is 79%, recall of 64%, and an F1-score of 70%. The OBS-U is the
least frequent class evaluated, with only 83 instances. Of these, 20 instances were true
positives, 63 were false negatives, and 13 were false positives, resulting in a precision of
60%, a recall of 24%, and an F1-score of 34%.

Entities extracted from the radiological report text can be effectively highlighted
and integrated within the report itself using the displaCy visualizer, as illustrated in Fig-
ure 5 with two examples of reports: “The lungs are clear. No acute process. Aorta shows
no abnormalities.” and “Cardiomegaly is stable . No acute intrathoracic process.”. This
exemplifies our final summarized report, as it will be presented to healthcare profession-
als.

5. Conclusion
The proposed design scheme for entity recognition in radiological reports seamlessly in-
tegrates entity classes (ANAT-DP, OBS-DA, OBS-DP, OBS-U) with a dedicated nega-
tive class (N-ENT). This approach simplifies the recognition task by enabling both entity
identification (determining if it is an entity or not) and classification into one of the four
specified classes. Additionally, the relation model addresses the classification of relation-
ships between entities by incorporating a negative class (N-REL) to identify non-related
entities. This inclusion facilitates relation classification in a manner akin to the entity



Figure 5. Used displaCy dependency viewer to highlight entities and relation-
ships after employing our trained hierarchical classifier.

model. The incorporation of these two new negative classes significantly enhances the
learning capabilities of our model, effectively preventing trivial mistakes.

Our hierarchical method, employing two levels of classification, offers a distinct
advantage. By initially categorizing all tokens to discern their entity types and subse-
quently focusing on positively classified pairs for relation identification, we significantly
enhance the precision of our final outcomes through meticulous filtering and double-
checking.

The entity recognition and classification model proposed enabled the extraction of
2,162 entities and 4,102 non-entities from a total of 96 reports in the test dataset, yielding
a micro F1-score of 0.91. Furthermore, when solely performing entity classification on
the merged dataset without the need to tokenize the text, as done in the test dataset, the
model achieved a micro F1-score of 0.88%. Regarding the relation model, conducting the
relation classification task on the merged dataset resulted in a micro F1-score of 0.88%.

Our proof of concept effectively showcases the capability of the proposed models
to extract entities from text reports not seen during training. Moreover, the extracted
data can be seamlessly integrated with the displaCy dependency visualizer to emphasize
relevant information from each report. Ultimately, this innovative scheme holds promise
for various medical applications related to natural language processing (NLP), including
automated report generation.

In future work, we could leverage Large Language Model (LLM) architectures to
improve the contextual capabilities of our model and achieve better entity recognition.
Furthermore, we could explore the effectiveness of Med-Gemini – specialized in medical
tasks – in carrying out the proposed tasks.
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