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Abstract. Human Visceral Leishmaniasis (VL) is a fatal disease in over 95%
of untreated cases and predominantly affects populations with limited access to
healthcare. Parasitological techniques are the gold standard for diagnosing VL.
It involves the direct microscopic examination of the parasite amastigotes ap-
proximately 2–4µ m in diameter. However, this process can be time-consuming
and labor-intensive, necessitating a high level of expertise. We propose a novel
approach to the detection of these amastigotes by combining deep metric learn-
ing with supervised classification techniques. We outperform the state-of-art for
this detection problem achieving an f1-score of approximately 99% by tackling
poor segmentation and class imbalance drawbacks.

1. Introduction
Leishmaniasis is caused by species of the intracellular protozoan of the genus Leishmania.
It is a neglected and infectious vector-borne disease. It occurs in the poorest countries and
most vulnerable populations with impaired access to health services. Visceral leishmania-
sis (VL) is a more severe form of leishmaniasis. In humans, it is fatal in over 95% of cases
if not diagnosed and treated. According to the World Health Organization (WHO), it is
characterized by irregular bouts of fever, weight loss, enlargement of the spleen and liver,
and anemia. In the Americas, VL is endemic in 12 countries. South American countries
such as Brazil, Argentina, Colombia, Paraguay, and Venezuela have among the highest
case records. Most cases occur in Brazil [WHO TEAM 2023].

Diagnosis VL is a combination of laboratory diagnosis and clinical analysis. Lab-
oratory examination consists of DNA-based methods (Polymerase chain reaction (PCR)
and quantitative real-time PCR - qPCR) and non-DNA-based. However, these techniques
are complex and expensive, and in most VL-endemic countries, they are restricted to a
few teaching hospitals and research centers [Elmahallawy et al. 2014]. Among the non-
DNA-based, serological methods detect antibodies or antigens (such as proteins), and
parasitological methods is aboout the direct microscopic examination and culture from
adequate samples.

Parasitological techniques are the gold standard for diagnosing VL. It includes
the direct microscopic observation of the amastigote form of the parasite in the as-
pired/biopsied material, including bone marrow, lymph nodes, and spleen. Smears are



simple to prepare, and their direct examination is usually the best diagnostic method in
more impoverished areas where PCR is not available. Still, the sensitivity of this proce-
dure is about 60% to 85% [Elmahallawy et al. 2014].

Leishmania amastigotes are intracellular round or oval bodies, about 2–4 µm in
diameter. The miniature size of these amastigotes makes this a tedious task that can
be very time-consuming and require an expert skill level.Figure 1 presents an exam-
ple of Leishmania amastigotes in a bone marrow microscopic color image. Since the
VL diagnostic is time-consuming and requires costs and technical expertise, its sensitiv-
ity is relatively low. The more secure procedure is to obtain the biopsy from the bone
marrow, and the sensitivity of the bone marrow stained with Giemsa1 is about 60% to
85% [Elmahallawy et al. 2014].

Figure 1. Example of an image captured from bone marrow smears. The zoomed
circular area indicates the presence of Leishmania amastigotes.

Machine Learning (ML), particularly Deep Learning, has significantly impacted
diagnostic fields like radiology and pathology due to its ability to recognize patterns in
medical images [Lima et al. 2023, Santos et al. 2023]. Deep Convolutional Neural Net-
works (CNNs) are frequently employed for medical image classification tasks to over-
come limitations of manual approaches. In these fields, reproducibility among physicians
is often suboptimal [Van der Laak et al. 2021]. However, challenges such as inadequate
training data and class imbalance can lead to overfitting and reduced performance of
CNNs. To address these issues, recent approaches incorporate Deep Metric Learning
(DML) and Siamese Networks [Zhang and Peng 2019] or Triplet Loss to enhance model
robustness and handle class imbalance.

In this work, we propose a hybrid Deep Metric Learning and Support Machine
Vector (SVM) model to classify images from bone marrow smears as either containing the
amastigote or not. We undertook an image preprocessing pipeline for dealing with feature
discernibility and lopsided training dataset, thus overcoming limitations encountered in
previous studies.

1Giemsa’s staining solution is one of the most common microscopic stains, generally used in hematol-
ogy, histology, cytology, and bacteriology for in vitro diagnostic.



2. Related Work

Most parasitic protozoans in humans range less than 50 µm in size [Reimão et al. 2020]
and present a significant challenge to diagnosis from microscopy image examination. Sev-
eral approaches have been proposed for parasite examination from microscopy images in
recent years [Zhang et al. 2022]. Classification methods include cell type differentiation
and are typically used for object detection and segmentation.

Recent works have proposed methods for malaria parasite detection in thick blood
smears using smartphones. [Yang et al. 2020], presents a method in two steps: first they
applied an intensity-based Iterative Global Minimum Screening (IGMS), which performs
a fast screening of a thick smear image to find parasite candidates. Afterward, a cus-
tomized CNN classifies each candidate as a parasite or background. [Fuhad et al. 2020]
deployed the miniaturized model in mobile phones and a server-backed web application.
[Soberanis-Mukul et al. 2013] proposed a method for automatic detection Trypanosoma
cruzi in digital microscope images obtained from peripheral blood smears treated with
Wright’s stain. They propose a combination of image pre-processing algorithms with a
K-Nearest Neighbors (KNN) classifier applied over a segmented region from the original
image.

Few works in the state of the art implement an automated leishmania examina-
tion over images from bone marrow smears. In [Farahi et al. 2015], the authors uti-
lize morphological and CV level set methods to segment Leishmania bodies in digital
color microscopic images captured from bone marrow samples. In [Salazar et al. 2019],
a semiautomatic segmentation strategy is proposed to obtain the segmentation of the
evolutionary shapes of VL parasites. Smoothing filters and edge detectors enhance
the optical microscopy images, and a region-growing algorithm does the segmenta-
tion. [Isaza-Jaimes et al. 2021] propose a detection method that uses image process-
ing techniques, like low-pass filters, gradient operators, and gradient modules based
on polar maps of the pixel intensities. [Górriz et al. 2018] trained a U-net model
that successfully segments leishmania parasites and classifies them into promastigotes,
amastigotes, and adhered parasites. Along the same lines, [Gonçalves et al. 2023] em-
ployed a U-Net architecture to automatically pinpoint the pixels of interest in the im-
ages, in this context, those containing Leishmania parasites. This process was guided
by binary masks annotated by specialists. The experiments of [Farahi et al. 2015,
Salazar et al. 2019, Isaza-Jaimes et al. 2021] were performed over a public dataset pro-
vided by [Farahi et al. 2015] whereas [Ronneberger et al. 2015] and [Górriz et al. 2018]
conducted their experiments in non-public datasets.

These approaches were selected through a comprehensive search of relevant works
on scientific databases, such as Google Scholar and Web of Science. We identified that
most of the work falls short by not effectively addressing the challenge of significant
class imbalance, a problem we tackle through the application of deep metric learning.
Moreover, our proposed method eliminates the necessity for preprocessing assistance in
the segmentation of leishmania amastigotes. This is achieved by employing a patch-based
approach, which remains unaffected by potentially poor segmentation.



3. Datasets and Pre-processing
We analyze two different image datasets of microscopy images from bone marrow as-
pirates. This section discusses the collection, annotation, and pre-processing of all the
datasets used to validate our experiments.

3.1. Datasets
The Dataset I, as described by [Farahi et al. 2015], comprises 45 light-microscope im-
ages of human patients with VL slides of bone marrow aspirates. Imaging was con-
ducted using a Sony high-resolution digital camera (DSC-H9) coupled to an Olympus
CH40RF200 microscope, yielding images at a 100x magnification with a spatial reso-
lution of 3840 × 2880 pixels. The images are in 24-bit RGB color format and JPEG
compression.

Dataset II consists of 76 shots from myelogram slides of 20 patients diagnosed
with VL. The images have a spatial resolution of 3024 × 4032 pixels and are in 24-bit
RGB color format. They were captured using an iPhone 8 coupled with light microscopy
equipped with an oil immersion objective at 100x magnification. Each smear underwent
a thorough examination by a physician for at least an hour, with only confirmed cases of
VL included in the research.

An example of images from both datasets, along with its corresponding mask
indicating Leishmania parasites, is depicted in Figure 2.

Figure 2. From top left to bottom right: Example of the original RGB color image
and its associated label for the image Datasets I and II, respectively. This
figure is for visual purposes only; the objects are out-of-scale.

3.2. Image Pre-processing
Considering I as the union of the images from Datasets I and II and assuming that our
detection method is patch-based defined, each example xi ∈ X that feeds our algorithm
will be an RGB color image patch of size 96x96 extracted from an image of I. We
performed some transformation over the images as shown in Figure 3. They include
filtering and identification of the Region of Interest (RoI). These steps aim to segment the
circular RoI, given the image smoothed with a Gaussian convolution filter with a 25x25
kernel size to remove some noise generated by the capture process. After that, we used a
Circle Hough Transform (CHT) to identify arbitrary circular shapes in the blurred image.
Next, we applied linear interpolation to improve contrast in both datasets.



3.3. Patches Generation
The Leishmania parasite represents a small dot on the image, with a proportion of 3% to
5% of the image size. Then, using images with original dimensions (set I) on our model
implies the problem of losing information about the amastigotes’ pixels. We adopted a
patch-based approach generating 96x96 patches (set X ) by traversing the binary masks
with the locations of amastigotes in RGB images [Gonçalves et al. 2023]. When a marked
area is encountered in the mask, the step of the sliding window is decreased to an eighth
of its original size. Subsequently, the area of the Leishmania within this region is ana-
lyzed. If this area exceeds a predetermined threshold, the resulting patch is categorized
as belonging to the positive class. Conversely, if the area falls below this threshold, it is
classified as negative. Figure illustrates the image pre-processing steps followed by our
proposed patch generation approach.

Figure 3. From left to right: A CHT is applied over the RGB images to identify
our RoIs and linear interpolation is applied to contrast enhancement (left);
patches of 96x96 are extracted according to the algorithm (right). This
figure is for visual purposes only, and the objects are out-of-scale.

By implementing the conditional window stride size and generating as many pos-
itive patches as possible, our work innovates, avoiding relying too heavily on synthetic
data as a means of resolving class imbalances. Additionally, we adapted the algorithm to
preprocess images under varying conditions that may be encountered in different datasets,
such as the presence of the microscope eyepiece (Figure 3).

3.4. Class Balancing
Taking into account both datasets, the set of patches denoted as X comprises a total of
67,889 patches with dimensions of 96x96x3, among which 4,316 contain leishmania bod-
ies. This situation elucidates that we are dealing with an imbalanced classification prob-
lem. Data augmentation is a technique used to generate additional training samples by
applying transformations to existing data.



To address our class imbalance and simultaneously avoid the pitfall of overfitting,
we produced synthetic data for one class and downsampled the other. For the positive
class, we applied a set of specified geometric transformations, such as rotating each image
by up to 120 degrees, applying both horizontal and vertical flips, and zooming up to 10%.
Downsampling involves randomly removing k samples from the majority class. We set
k to be a number that k = N − 2P , with N and P being the size of the negative and
positive classes, respectively. This process achieved a dataset proportion of 1:2, with
43.468 negative patches and 21.734 positive.

4. Method

Figure 4. Schematic representation of the proposed method.

As shown in figure 4, we propose a novel hybrid patch-based classification model
to assist the VL diagnostic. Our method can be divided into three modules: (i) New rep-
resentation of data: a CNN with DMel model to extract embeddings containing amastig-
otes characteristics from bone marrow smears; (ii) Dimensionality Reduction: Performing
Principal Component Analysis (PCA) on the new representation data to reduce its dimen-
sionality and data complexity; (iii) Embeddings Classification: using classical supervised
method, Support Vector Machines (SVM), to classify the embeddings and therefore assist
the VL diagnostic.

4.1. Module 1: New representation of data for Leishmania Parasite Detection

DMeL quantifies the similarity between two elements based on the data context. These
approaches find a new representation of the data so that objects with the same classes
are grouped. Furthermore, unlike traditional classification model training, the training
loss is computed based on the new representation space obtained from multiple patch
images. We selected Triplet, Circle, MultiSimilarity, and NPairs [Schroff et al. 2015,
Sun et al. 2020, Wang et al. 2019, Sohn 2016] as DMeL loss functions for the perfor-
mance comparison effect. Each model is a CNN and its output is significantly influenced
by the choice of the loss function during training.



4.2. Module 2: Dimensionality Reduction

The underlying principle of PCA is based on the understanding that the informative rank
of the data is typically less than the number of original variables. We aimed to enhance the
ability of classical models to carry out the classification task by performing dimensional-
ity reduction on the novel embedding representation of the data. We checked the variance
measurement along each principal component to identify and determine the optimal quan-
tity of dimensions for our reduced embedding vector, ensuring the best representation of
the data. Through a comparison of the relative importance of each dimension, we elected
to retain only the number of principal components necessary to capture 90% of the vari-
ance in the data.

4.3. Module 3: Embeddings Classification

Finally, we conducted classification with a widely used algorithm for classification tasks.
SVMs identify optimal hyperplanes in high dimensions for effective class separation and
generalization. The classifiers underwent tuning via Grid Search with cross-validation
to optimize regularization parameters and kernel coefficients for each CNN model. The
search utilized recall macro as the scoring metric and was executed in parallel for compu-
tational efficiency. The resulting SVM classifiers efficiently categorized the transformed
embeddings with high recall rates.

5. Experimental Setup and Results
Training deep learning networks requires using different sets of data, including training,
validation, and testing for maximal efficacy. For this experiment, we used 70% of the data
for training, 15% for validation, and 15% for testing. The training phase was conducted
with a batch size of 32 images and 100 epochs monitored by an early stopping mechanism.
We set a initial learning rate of 0.001 and then dynamically adjusted using a learning
rate scheduler that reduced the rate by a factor of 0.1 if the validation loss reached a
plateau. The output is a vector of size 128. Each CNN model was trained with the same
architecture, with the only difference being the loss function utilized.

The CNN architecture consists of three 2D convolutional layers with increasing
channel depths, specifically 32, 64, and 128, respectively. Each convolutional layer uti-
lizes a kernel size of 3 and a stride of 1. Following each convolutional layer, a batch
normalization layer, corresponding to its channel depth, is incorporated to stabilize the
learning process by normalizing the output of each layer. Rectified Linear Unit (ReLU)
activation functions are applied after each convolutional and batch normalization layer.
Additionally, two max-pooling layers, each with a window size of 2x2, are implemented
after the second and third convolutional layers to reduce the spatial dimensions of the
feature maps. To prevent overfitting, we integrated two dropout layers, namely dropout1
with a rate of 0.25 and dropout2 with a rate of 0.5. Finally, the architecture includes two
linear layers, fc1 and fc2. The former reduces the dimensionality to 512, while the lat-
ter maps these features to the specified embedding size, 128. In the context of the loss
functions underlying distance metric, specifically, the Triplet, MultiSimilarity, and Circle
utilized cosine similarity. While the Npairs loss function utilized the dot product.

Concerning the individual parameters within each DMel function, we decided to
set a value of 0.3 for the margin hyperparameter of Triplet loss. Positive examples are



closer to the anchor than the negative examples by at least this margin. Our module fol-
lowed [Sun et al. 2020] recommendation for fine-grained image retrieval setup for Circle
loss. The relaxation factor, which controls the radius of the decision boundary, was set
to 0.4 and 80 for the gamma parameter. For MultiSimilarity, we used an alpha of 2 and
a beta of 50, enhancing the model’s focus on informative pairs. The margin parameter
lambda was established at a value of 1.

As previously stated, we used recall macro as the evaluation metric of the exhaus-
tive search for SVM parameter optimal values. Across the four loss functions analyzed,
all were trained with C set to 10 and Gamma set to 1. The scores varied among the differ-
ent models, with the Circle loss function achieving the highest score of 0.9994, followed
by Triplet with 0.9915, MultiSimilarity with 0.9750, and NPairs with 0.9441.

To have a baseline for comparing the proposed method, we also implemented three
classic feature extraction algorithms, namely SIFT, ORB, and Haralick, each of them
paired with the SVM and K-Nearest Neighbors (KNN) classifiers, as well as classical
CNN models (VGG19 and DeCaf).

The SIFT algorithm was configured with the number of octaves as 8, the number
of scales as 3, and an upsampling of 2, meaning that before the feature detection stage, the
image is upscaled by a factor of 2 and in each octave the image is repeatedly convolved
with Gaussian blurs, being the number of convolutions equal to the number of scales.
After each octave, the Gaussian image is downsampled by a factor of 2, repeating this
process the number of octaves defined. The ORB algorithm was configured with the
number of scales as 8 and the number of key points as 500, meaning that each image
would be created as an image pyramid where each level of the pyramid is the image of
the previous layer downscaled by a factor of 2, with the pyramid having a total number of
layers equal to the number of scales, and the algorithm will try to find up to 500 key points
in the images. For the Haralick algorithm, the parameter to compute the 14th feature was
set to false, as this feature is considered unstable and unreliable, and the parameter to
ignore zeros is also set to false, as we want to consider black pixels in the images.

The VGG19, a CNN with 16 convolutional and 3 fully connected layers, is used
to extract visual features from images. Instead of relying on the final classification output,
DeCaf (Deep Convolutional Activation Feature) leverages activations from earlier layers
within the pre-trained VGG19. These earlier layers capture more general visual features
like edges and textures, making them well-suited for feature extraction tasks.

5.1. Results

All trained models were loaded and tested against the same data set. Predictions were
made using the appropriate classifier on scaled embeddings, and metrics such as preci-
sion, recall for positive class (Sensibility, which measures the proportion of true positives
correctly identified), recall for negative class (Specificity, which measures the propor-
tion of true negatives correctly excluded), F1-score and Matthews Correlation Coefficient
(MCC). MCC is a binary classification performance indicator that provides a fair assess-
ment even when the classes are unequal in number [Chicco and Jurman 2020]. The MCC
yields a result between -1 and 1, with 1 representing a perfect prediction and achievable
only if the result performed well in all four confusion matrix categories, proportionally to
the number of positive and negative items in the dataset. We chose the final two metrics



Table 1. Performance results for each loss function examined.

Loss Function Precision Sensibility Specificity F1-Score MCC
Triplet 0.963 (0.004) 0.828 (0.011) 0.984 (±0.001) 0.890 (0.007) 0.8467
Circle 0.987 (0.002) 0.983 (0.004) 0.993 (±0.001) 0.985 (0.002) 0.9775
Multisimilarity 0.886 (0.016) 0.961 (0.005) 0.937 (±0.010) 0.922 (0.008) 0.8818
NPairs 0.894 (0.008) 0.950 (0.011) 0.943 (±0.004) 0.921 (0.008) 0.8806

due to the unbalanced nature of our dataset and its property of considering the number of
samples correctly classified as negative.

Table 1 presents the performance analysis for DMel for each studied loss func-
tion. Since we applied stratified cross-validation on the test set, the values are about the
averages and standard deviations (in parenthesis) of these metrics then computed from the
sum of all the folds’ outputs.

By carefully examining the data, it is found that while the Triplet loss function
demonstrated a balanced proficiency in distinguishing negative examples, as evidenced
by its high recall in the negative class, it also demonstrated a tendency toward higher false
negatives in the positive class, as evidenced by the lower recall shown in Table 1. This
also influences its MCC score of 0.8467, which, despite being the lowest of the examined
functions, still demonstrates a high level of performance.

On the other hand, MultiSimilarity stands as an improvement of Triplet and
falls behind the Circle model. Despite possessing the lowest specificity, which suggests
some challenges in correctly identifying all negative instances, its sensibility outperforms
Triplet by 13%. A fair trade, since the nature of VL treatment is more tolerable to errors
than missing a critical diagnosis. This is theoretically consistent with the MultiSimilar-
ity function’s objective of simultaneously pulling together similar examples and pushing
apart dissimilar ones within the same batch, which may account for its relatively strong
discriminative power.

According to these results, one can infer that the overall performance of the CNNs
modified versions was excellent, with the Circle Loss model demonstrating superior per-
formance across all classification assessments.

Notably, the proposed model, utilizing Circle loss, demonstrates superior perfor-
mance with higher precision, sensitivity, specificity, and F1-score even when compared to
classical methods and other CNN architectures, as shown in Table 2. Table 3 underscores
the efficacy of leveraging advanced techniques such as DMel for improved classification
outcomes in image processing tasks.

Table 2. Comparative classification performance for our model and other classi-
cal methods.

Type of
classification Models Precision Sensibility Specificity F1-Score

Handcrafted
feature
extraction

SIFT + SVM 0.8347 (± 0.009) 0.7615 (± 0.010) 0.8797 (± 0.007) 0.7964 (0.005)
ORB + SVM 0.7709 (± 0.004) 0.7299 (±0.006) 0.7730 (±0.009) 0.7498 (±0.003)
Haralick + KNN 0.6709 (±0.008) 0.7078 (±0.007) 0.8267 (±0.006) 0.6888 (±0.005)

CNN
Classification Models

VGG19 0.3750 0.5000 - 0.425
DeCaf 0.3750 0.5000 - 0.425

Our
Classification Model DMel with Circle 0.987 (±0.002) 0.983 (±0.004) 0.993 (±0.001) 0.985 (±0.002)



Table 3. The proposed method’s performance in comparison to the state-of-the-
art.

Technique Models Dice Sensibility Specificity F1-Score
Detection
Image Processing

[Isaza-Jaimes et al. 2021] - 0.787 - -

Segmentation
U-Net

[Górriz et al. 2018] 0.777 0.823 - -
[Salazar et al. 2019] 0.850 - - -

Classification
CNN + Circle loss + SVM Our Classification Model - 0.983 (±0.004) 0.993 (±0.001) 0.985 (±0.002)

Figure 5. From top to bottom, left to right: t-SNE Embedding visualization of Cir-
cle, Triplet, NPairs and MultiSimilarity. Blue class indicates the amastigote
presence, orange the absence.

For data separability analysis, we applied t-Distributed Stochastic Neighbor Em-
bedding (t-SNE), and Figure 5 reveals that the Triplet method exhibits reasonable class
separation, forming dense clusters with some overlap areas. However, inconsistencies be-
tween the validation data and other sets are observed, despite measures against overfitting.
Circle Loss demonstrates exceptional performance by focusing on challenging pairs and
optimizing class margins, resulting in distinct and consistent clusters in the training and
test categories. In contrast, MultiSimilarity embeddings, exhibit less compact but notice-
able class separation. The MultiSimilarity and NPairs loss functions, prove particularly
sensitive to intraclass variance, making it more useful in scenarios where such diversity is
relevant as in predicting the parasite evolutionary form.

6. Conclusion and Future Work

The evaluation of various deep metric learning methods highlighted their promising This
project was developed in partnership with the Ministry of Health, and the model has be-
come ready for usage on smartphones. Circle Loss emerged as the clear winner, achieving
impressive performance across all classification metrics, particularly sensitivity (98.3%)
and specificity (99.3%). This success can be attributed to two key factors. The prepro-
cessing of the images by segmenting them into smaller patches enhances the visibility
of crucial features for the models. The SVM algorithm effectively translates the learned
features into actionable diagnostic insights.

While encouraging, the evaluation also revealed areas for improvement. For in-
stance, the Triplet loss function had a higher false negative rate. This indicates that more



exploration is required in image background pre-processing and model fine-tuning to re-
duce false negatives. The performance of model may be influenced by the limited size of
the training dataset, which may not be representative of all possible scenarios. Addition-
ally, it is vital to evaluate the proposed model’s effectiveness in diagnosing other parasitic
infections, such as malaria or Chagas disease, to understand its full potential. Building
on these findings, future research will focus on optimizing the generated models for even
greater effectiveness in the field of parasitological diagnostics.
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