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Abstract. Lung cancer (LC) is the second most prevalent type of cancer
worldwide and the deadliest, accounting for one in every five cancer-related
deaths globally. The chances of survival for patients detected with this type
of cancer increase considerably when the diagnosis is made early, with the
5-year survival rate reaching up to 70%. Radiologists perform LC diagnosis
through Computed Tomography (CT) images, but such diagnosis is a complex
and error-prone task. Through computer-aided tools, this diagnostic process
can be automated, reducing time and effort for specialists, as well as improving
confidence in the diagnosis. The objective of this work was to evaluate
and compare the effectiveness of Convolutional Neural Network (CNN) and
Transformer architectures in detecting small lung nodules (<15mm), where
the guiding research question of this work was “What is the impact of the
size of lung nodules on the detection accuracy of CNN and Transformer
architectures?”. The dataset used was based on the public database LUNAIG6,
filtering the test set to include only sections with nodules smaller than 15mm.
The models chosen for our comparisons were YOLOvVS, a CNN considered
state-of-the-art in object detection, and DEtection TRansformer (DETR), which
combines the transformer architecture with a CNN layer, where we obtained
results such as mAP50 = 0.70, Sensitivity = 0.91 and A = 0.85 for the DETR
and mAP50 = 0.90, Sensitivity = 0.83 and A = 0.77 for the YOLOVS. We also
assessed the impact of nodule size on the performance of both models, where
the performance of YOLOVS was impacted by the decrease in nodules size, while
DETR continued to show satisfactory results regardless of how small the nodules
were.



1. Introduction

Global Cancer Statistics indicate that lung cancer is the second most prevalent type of
cancer worldwide, with 2.2 million new cases, and the most lethal, with 1.8 million
deaths reported in the year 2020, representing approximately one in every 10 (11.4%)
cancer diagnoses and one in every 5 (18%) cancer deaths worldwide. Early diagnosis of
lung cancer is essential to increase the chances of patient survival, with a 5-year survival
rate reaching 70% when diagnosed at stage I [Blandin Knight et al. 2017]. Therefore,
programs aimed at early detection of pulmonary nodules must be implemented to increase
the survival chances of individuals affected by lung cancer.

Computed Tomography (CT) is the primary tool used by radiologists to detect
lung nodules as it provides high-resolution 3D images with contrast, reflecting differences
in intensity, texture, and shape of tumors. However, the process of diagnosing lung
nodules, especially in the early stages (with up to 15mm in diameter size) is a challenge
on CT images. Besides their small size, nodules may have low contrast at an early
stage compared to the lung tissue and can be attached to other complex lung structures,
increasing the difficulties [Lima et al. 2021].

Computer-aided diagnosis (CAD) systems are important tools that can
provide support for radiologist’s decision-making, functioning as a second opinion
[Halder et al. 2020]. CAD tools can automate the diagnostic process, reducing the time
and effort required for analysis and improving the task’s reliability and repeatability
[Ferreira et al. 2018, Choi and Choi 2013]. CAD systems involve both lesion localization
in medical images (CADe) and lesion classification as malignant or benign (CADX),
which brings various challenges to the field [Firmino et al. 2016].

Currently, Deep Learning (DL) techniques are the state-of-the-art in CAD
applications for lung nodule detection, and several studies [McBee et al. 2018,
Adams et al. 2021] have demonstrated the potential of DL in lung nodule detection, as
well as the cost-effectiveness of using CAD systems in healthcare centers. Among
DL architectures, Convolutional Neural Networks (CNNs) have emerged as the leading
architecture in the medical informatics field due to exceptional results obtained in
computer vision [Ravi et al. 2016]. However, despite the advances in CNN models, the
number of false positives in lung nodule detection remains a challenge for implementing
systems in medical clinics [Liang et al. 2021, Shaukat et al. 2019].  The complex
boundaries of lung nodules and visual similarity to surrounding tissues make accurate
detection of small lung nodules complex. Traditional CNN-based lung nodule detection
models focus on extracting local features from neighboring pixels and ignore global
contextual information, making detecting small lung nodules challenging [Li et al. 2022].

The Transformer is an encoder-decoder architecture that revolutionized the field
of Natural Language Processing (NLP) by presenting a simpler structure without the
need for convolutions, becoming state-of-the-art in translation tasks, and has since been
used in various areas. The Vision Transformer (ViT) emerged as an adaptation of the
Transformer for computer vision tasks, functioning in combination with traditional CNN
architectures or completely replacing them. In the area of nodule detection using ViT,
[Zhu et al. 2022] proposed an end-to-end architecture that utilizes a U-shaped residual
network in combination with the attention mechanism and achieved 95% sensitivity in
detecting pulmonary nodules with a significantly lower number of parameters compared



to CNN models while also reducing the number of false positives. [Niu and Wang 2022]
proposed a 3D ViT-based region model to identify pulmonary nodules in a set of candidate
regions. The proposed model achieved superior results (3% improvement) in nodule
detection compared to state-of-the-art 3D CNN models.

Despite a wide range of studies on the use of CAD in the detection of pulmonary
nodules, the early identification of these nodules, particularly those smaller than 15
millimeters (mm), is still a problem that needs further investigation.

In this context, the main goal of this work was to evaluate and compare the
effectiveness of Convolutional Neural Network (CNN) and Transformer architectures in
detecting small lung nodules (<15mm). The guiding research question of this work was
“What is the impact of the size of lung nodules (<15mm) on the detection accuracy of
Convolutional Neural Network (CNN) and Transformer architectures?”

2. Materials and Methods

The overview schema of this work is presented in Figure 1. The image dataset used for
model training was generated from LUNAI16, a 3D chest CT scans. The image dataset
was preprocessing (Figure 1-A), and specific slices from each CT scan were selected
to compose the training dataset; in addition to delimiting the bounding boxes of each
nodule, section 2.1 outlines each of the preprocessing steps undertaken to obtain the image
dataset for model training (Figure 1-B). The dataset was then split into training and test
sets, with an 80/20 ratio. Following this, an analysis of nodule sizes was performed
on the slices present in the validation set, keeping only the slices where the nodules
diameters were less than 15mm (Figure 1-C), described in section 2.2. Subsequently,
two models were trained: DETR and YOLOVS, undergoing a loop where both models
were trained, the results evaluated, and improvements in the hyperparameters were made
in order to enhance the performance of the models (Figure 1-D), section 2.3 elucidates the
motivation behind the choice of the models used in this work and section 2.4 illustrates
the configuration and execution of the training for both models. Finally, an analysis and
comparison of the results (Figure 1-E) obtained using the metrics described in section 2.5
were conducted. In this work, the Python programming language (version 3.7) was
utilized, along with the DETR [Carion et al. 2020] and YOLOvS8 [Jocher et al. 2023]
models, in addition to the Pytorch, Skimage, Scipy, Monai, and Ultralytics libraries.
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Figure 1. Methodology scheme applied in this work.



2.1. Database

The selected database for this study was LUNA16 (LUng Nodule Analysis 2016)
[Setio et al. 2017], a publicly available dataset of computed tomography (CT) scans of
the thoracic region from patients identified with lung nodules, containing 888 CT Scans
and 1186 nodule annotations.

In this work, we used 2D images due to the computational cost associated with
processing 3D images and the fact that one of the analyzed models (YOLOvS) does not
support 3D images. In constructing our 2D image database, it was essential to identify
which slices contained information about the nodules. Since all slices from the same CT
exam share the same properties (origin, spacing, direction matrix, directories, etc.), a class
was designed to store information related to the same examination.

Then, our 2D database was created with 4,098 images (sections) containing
one or more nodules. To adjust the brightness/contrast and highlight the lung region,
the window/level values were adjusted to 1200/-400, respectively, as suggested by
[Lima et al. 2020].

2.2. Dataset Organization

For the creation of our dataset, the database was split into training and testing sets, with
80% for training and 20% for testing. We mitigated data leakage by ensuring that images
of the same nodule were not included in the training and testing sets. In total, the training
set contains 3,255 images, while the testing set contains 832. The images were saved in
their original resolution (512 x 512) with 8 bits.

Thereafter, an analysis of the nodules in the test set was performed, selecting only
the slices of the CTs where the detected nodules had a diameter of less than 15mm, thus
characterizing them as small nodules. This process involved separating all the sections
belonging to the same CT scan in the test set and checking if the largest nodule in this set
of sections has a diameter smaller than 15 mm. Thus, all the set of slices was added to the
final version of the dataset, while those failing this check were removed. Consequently,
out of the originally 832 images in the test set, only 587 remained, which were utilized for
model validation. Furthermore, a subdivision was made in the dataset where three ranges
(R1, R2 and R3) of nodule diameters (d) were selected (table 1).

Table 1. Table showing the disposition of images within the determined ranges.

Diameter (d) Sections (Test Set)
R1: 15mm > d > 10mm 172
R2: 10mm > d > Smm 385

R3: 5Smm > d 30

2.3. Model Selection

In this work, we aimed to compare the results of two significantly distinct detection
models. The first is a type of neural network that has been gaining popularity over
the last years, known as Transformer, in this case, the DEtection TRansformer (DETR)
[Carion et al. 2020]. The other chosen model was You Only Look Once (YOLO)
[Jocher et al. 2023], a neural network maintained by Ultralytics that is well-known and



established in the field of object detection, currently in its eighth version, which was
utilized in this study.

The DETR employs the Transformer architecture in conjunction with a CNN
(Convolutional Neural Network) and simplifies the detection pipeline by not requiring
custom layers, making it easily reproducible in any framework containing a standard CNN
and Transformer classes [Carion et al. 2020].

The latest version of YOLO was chosen because, as mentioned earlier in this
section, it is an acclaimed object detection model in the field and considered state-
of-the-art. This model has demonstrated excellent results in various domains, and

has shown considerable performance improvements compared to its previous versions
[Jocher et al. 2023].

2.4. Model Training

The training for both models was conducted on a remote server running the Linux
operating system (Ubuntu 20.04 LTS) and equipped with an NVIDIA Tesla T4 graphics
card with 16GB of memory. The initial procedure for training involved creating a fork
of the DETR repository on GitHub to make the necessary modifications and adapt the
model for lung nodule detection. The number of layers was kept the same as in the
original model. The first modification involved changing the number of object queries,
which is the quantity of objects predicted per image where the number was decreased to
10 since the number of nodules in the same image is generally much smaller than 100
(default value). Other model hyperparameters were readjusted as training progressed.

One of the transformations performed by the model before training for better
generalization involves randomly resizing the images, following a list of sizes. The
maximum size for upscaling was set to 800 x 800. The batch size was set to 8. The
model was then trained for 400 epochs. The learning rate drop value was also increased
from 200 to 1000 due to the relatively small number of images in our database.

Continuing with training and utilizing the identified hyperparameters, we were
able to train the model for 400 epochs, with each epoch taking an average of 10 minutes
to complete, totaling approximately 66 hours of training.

The training of YOLOvS8 was straightforward, as Ultralytics provides a Python
package that greatly simplifies the training and model usage process. The training was
set to run for 400 epochs, similar to DETR. However, an early stopping mechanism was
implemented, whereby if no improvement was observed in training for the last 50 epochs,
the training would be stopped. Consequently, the model had its training stopped after
126 epochs. The training for this model occurred relatively quickly compared to DETR,
taking no more than 2 hours.

Due to the ease and speed of training, we decided to train a third YOLOv8 model,
this time applying data augmentation to the training set. Rotations of 90, 180, and
270 degrees were applied to random images in the original set, thereby increasing the
training set from 3,255 to 9,469 images. The training of this model was also conducted
with the same configurations as the previous one, stopping after 77 epochs and taking
approximately 80 minutes to complete.



2.5. Metrics and Evaluation

We evaluated the models using various statistical metrics, which includes: sensitivity
(Eq. 1), precision (Eq. 2), fl1-score (Eq. 3), mAP50, AUC-FROC and A.

TP
tivit )= =——— 1
Sensitivity(Recall) TP EN (1)
TP
Precision = ——— 2
recision TP+ FD 2)
Flscore — 2 x precision x recall 3)

precision + recall

Where TP is the number of true-positive samples, FN is the number of false-
negative samples and FP is the number of false-positive samples. Average Precision (AP)
is a numerical value that aids in comparing different object detection models. The general
definition of Average Precision is the area under the precision-recall curve. The COCO
evaluation method employs a 101-point interpolation for AP calculation along with the
mean over ten IoU (Intersection Over Union) thresholds. AP@[.5:.95] corresponds to an
average of AP for IoU ranging from 0.5 to 0.95 with intervals of 0.05. Finally, mAP50
represents the same as AP@[0.5].

The Free-Response Receiver Operating Characteristic (FROC) Curve is defined
as the relation between the Sensitivity and the False Positive Rate (FPR) of a detection
model, where we can calculate the Area Under Curve (AUC) score, which is an excellent
way to describe the effectiveness of an object detection model, with a higher AUC
indicating a better-performing model.

Although the area under the FROC curve summarizes the performance of the
FROC system for all decision thresholds, in some instances the area under the FROC
curve might be considered a suboptimal or, worse, a potentially misleading summary
index of the overall performance of the system [Bandos et al. 2009].

To address this issue, [Bandos et al. 2009] proposed a method to enhance this
metric by adding an augmentation of the FROC curve up to a specified FPR value and a
new curve representing a naive model that would only attempt to guess the values, called
guessed curve. Thus, the new metric would be the area under the augmented FROC curve
and above the guessed curve, with this value denoted by A.

3. Results and Discussion

3.1. Training Results

Figure 4 presents the results of the DETR models for class error and mAPS50 obtained after
training for 400 epochs for both datasets. Our DETR model is represented by the orange
curve. The class error values displayed in the image are not exact due to using fewer
predictions per image (10) than the original model (100). However, the curve is useful
for observing that the class error is decreasing throughout the training. The second metric
shown is the mAP50, which refers to the average precision using an IoU of 0.5, where we
can observe that the curve, exhibits a slight upward trend until the last recorded epochs,



indicating that with a few more training epochs, the bounding boxes could become even
more precise. We can observe the training results of the best YOLOvV8 model in Figure 3,
behaving similarly to the DETR graphs, however, achieving higher mAP50 values within
a relatively smaller epoch range. To compare the results more directly, Table 2 contains
the metrics described in 2.5 for all three trained models. Thus, it is easy to observe
that concerning model precision (mAP50), YOLOvS stands out considerably compared
to DETR, where the best YOLOv8 model achieved mAP50 = 0.896. Another interesting
comparison can be made by observing equation 3, which relates sensitivity and precision,
serving as a more reliable general indicator of the model’s effectiveness, where the results
of YOLOVS stand out once again.

3.2. Evaluation Results

For a more precise validation of the models, we will utilize the FROC curve, as described
in Section 2.5, to provide a more convincing comparison measure than mAP. Using the
Monai Python package, it was possible to plot the FROC curves for the five models. The
first observation is the AUC values of the models, where DETR clearly stands out, and
the sensitivity score values are also superior, as can be seen in Table 2. However, paying
closer attention to the metric of the DETR model, something slightly inconsistent is noted,
where the AUC of the model is almost twice as high as the best YOLOvV8 model, while
the false positive rate is significantly higher. Consequently, we can understand what the
authors of [Bandos et al. 2009] meant by stating that the AUC value of the FROC curve
can be a misleading value. To address this, a script was created to plot the guessed curve
and the augmented FROC curve following the equations described by the aforementioned
authors, truncating at the value of FPS = 1 for all models. The resulting graphs can be
observed in Figure 2, where the A metric seems to reflect more concisely what has been
observed from the previous metrics.

For the final comparison between the models, we will look at the values of TP,
FP, FN, Sensitivity, FROC AUC, and A for all trained models in Table 2. Using A as the
primary metric for model comparison, we observe that the best model was the DETR,
obtaining a A = 0.847, where an ideal model has a A = 1. An important observation is
to note which model had fewer false negatives, as in a medical context, this is a very
significant type of errors. In this case, we observe that out of a total of 595 nodules
present in the 587 sections of the validation set, the DETR model once again performed
the best, having the lowest occurrence of FN among the five models but presenting a high
value of FP compared with the YOLOVS, which is a tradeoff that can be studied further
in subsequent works.

Table 2. Table displaying values of some of the metrics described in Section 2.5,
with the optimal value for each metric highlighted.

Model mAP50 f1-Score TP FP FN Sensitivity FROC AUC A
DETR 0.703 0.772 542 156 53 0.910 0.222 0.847
YOLOv8 0.844 0.805 487 84 108 0.818 0.100 0.761
YOLOvVS - Aug. | 0.896 0.848 492 69 103 0.827 0.085 0.774
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DETR and YOLOv8 models.
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Figure 4. Plots of the DETR models training logs.

3.3. Inferences and Discussion

To perform inferences on the images, DETR allows us to load the generic model from
the TorchHub repository and update it with the weights obtained during training. Each
inference returns ten queries with ten predictions, but we retain only predictions with
confidence above 0.8. For YOLOVS, the process is simplified using the Ultralytics Python
package, where the model is automatically saved at the end of training, and this model can
be loaded directly for inference, setting the confidence above 0.8, similar to DETR. Some
examples of inferences were saved, where inferences made by the models are shown in
Figure 5. The blue bounding boxes represent the model’s inference, while the red boxes
show the ground truth values.

Figure 5. Model inferences (in blue) alongside ground truth values (in red).
YOLOv8 inferences on the left and the DETR ones on the right, with a zoom
in on the nodules for better visualization.



The detections obtained by all models showed good results in terms of bounding
box localization and size, closely approximating the values marked by radiologists. The
best-performing model in detecting small nodules observed in this study (DETR) occupies
1.9 GB of GPU memory, and each inference takes 0.6 seconds to execute (1.4 seconds to
perform the inference and plot the result). Therefore, we understand that the model could
be used on a standard computer with a simple GPU.

At the end of Section 2.1, it was mentioned that the test dataset was divided into
three categories: nodules between 15 and 10 mm in diameter (R1), 10 to 5 mm (R2), and
smaller than 5 mm (R3). It is important to note that our test set contained only 30 images
in R3, which makes the detection of these nodules extremely challenging. Besides the
minimal number of examples present in the dataset, a CT scan slice with such a nodule
would present very little information (pixels), thus hindering the generalization of the
models. To address the question posed at the end of Section 1, we will examine the
values of mAP50, Sensitivity, and A for both models in ranges R1, R2, and R3 (Table 3).
At first glance, we can observe that the results follow the same logic as those presented
in Section 3.2, where YOLOVS8 performs better in precision, while DETR stands out in
the other two. We can clearly see the impact of decreasing nodule size on YOLOVS,
where all metrics decrease as nodules become smaller, while DETR manages to remain
relatively stable across metrics, regardless of the range being evaluated. This is especially
evident when directly comparing the results of R1 (larger nodules, more images) and
R3 (smaller nodules, less images), where YOLOvVS8 experiences a sharp drop in mAP50
and a considerable decrease in the other two metrics, whereas DETR not only appears
unaffected negatively but even improves in mAP50 and sensitivity, remaining nearly
unchanged in A.

Table 3. Table displaying values of mAP50, Sensitivy and A,for both models in the
three diameters ranges, with the optimal value for each metric highlighted.

Model mAP 50 Sensitivity A

R1 R2 R3 R1 R2 R3 R1 R2 R3

YOLOVS - Aug. | 0.907 0.902 0.727 | 0.829 0.830 0.766 | 0.785 0.775 0.662
DETR 0.663 0.729 0.665 | 0.858 0.851 0.900 | 0.801 0.790 0.799

To evaluate the performance of our models with larger nodules, we conducted an
evaluation using the test dataset before filtering out small nodules, i.e., with nodules larger
and smaller than 15 mm. YOLOVS achieved an mAP50 of 0.907, similar to the metric in
R1, and a Sensitivity of 0.847, higher than all obtained in all ranges, which reinforces the
difficulty the model faces when reducing the size of nodules. On the other hand, DETR
achieved an mAPS50 of 0.866, significantly superior to all ranges, and a Sensitivity of
0.899, similar to R3.

After all these analyses, it becomes clear to note that YOLOvV8 excels in terms of
precision, indicating that the model has a low rate of false positives (FP), while DETR
stands out in sensitivity, presenting a low rate of false negatives (FN). Both types of errors
are relevant in the context of nodule detection; therefore, it would be up to the professional
to choose which model to apply for each case, depending on which type of error would
be less impactful.



Object detection models using the ViT architecture are relatively new and pose
some challenges to the research community. In the field of medical images, this challenge
is particularly heightened by the scarcity of medical images, especially annotated ones,
compared to other domains. In this work, we demonstrated that a lung nodule detection
model in CT images using a Transformer architecture achieved satisfactory results in
terms of mAP, sensitivity, and Fl-score. It also outperformed the YOLOvV8 model in the
analysis based on the FROC curves and exhibited bounding boxes in the inferences with
satisfactory alignment with the expected values. Transformer models, including DETR,
require a considerably high training time to achieve the best results, making it challenging
to experiment with various hyperparameter options—a clear disadvantage compared to
YOLOVvS, which offers a more simplified and faster training process.

4. Conclusion

In this study, we sought to evaluate the effectiveness of models based on CNN (YOLOVS)
and Transformer (DETR) architectures in detecting small lung nodules (<15mm) and
compare their results, where our best DETR model achieved values of mAP50 = 0.703,
Sensitivity = 091 and A = 0.847, results considered satisfactory, especially when
comparing with the results obtained by YOLOvVS, where it falls behind only in mAPS50.
The detected nodule bounding boxes also showed good alignment with ground-truth
values. The inferences made in this work were done using a Jupyter notebook, but
the models can easily be ported to be integrated into a more robust software pipeline
or even added to a mobile application, which opens up various possibilities for its use.
Considering the results achieved in this work, we can assert that a model with the
Transformer architecture is capable of achieving similar results to a CNN model in the
detection of small lung nodules, even outperforming YOLOvVS8. In terms of the impact
of nodule size on model performance, it was observed that DETR is not greatly affected
by decreasing size, achieving good results across all proposed diameter ranges, whereas
YOLOV8 performance drops as nodule size decreases. We also concluded that both
models have their limitations, with DETR exhibiting more cases of false positives and
YOLOvS8 showing more false negatives. This is something that should be taken into
consideration by professionals when choosing the most suitable model for each case.

This work was supported by Alagoas Research Foundation (FAPEAL).
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