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Abstract. Due to the rapid popularization of wearable computers such as smart-
watches, Health Monitoring Applications (HMA) are becoming increasingly
popular because of their capability to track different health indicators, includ-
ing sleep patterns, heart rate, and activity tracking movements. These applica-
tions usually employ Photoplethysmography (PPG) sensors to monitor various
aspects of an individual’s health and well-being. PPG is a non-invasive and
cost-effective optical technique based on the detection of blood volume changes
in the microvascular bed of tissue, capturing the dynamic physiological changes
in the body with continuous measurements taken over time. Analyzing PPG as
a time series enables the extraction of meaningful information about cardiovas-
cular health and other physiological parameters, such as Heart Rate Variability
(HRV), Peripheral Oxygen Saturation (SpO2), and sleep status. To enable re-
liable health indicators, it is important to have robustly sampled PPG signals.
However, in practice, the PPG signal is often corrupted with different types of
noise and artifacts due to motion, especially in scenarios where wearables are
used. Therefore, Signal Quality Assessment (SQA) plays a fundamental role in
determining the reliability of a given PPG for use in HMA. Considering this,
in this work, we propose a novel PPG SQA method focused on the balance be-
tween storage size and classifier quality, aiming to achieve a lightweight and
robust model. This model is developed using recent advances in attention-based
strategies to significantly improve the performance of purely Convolutional Neu-
ral Network (CNN)-based SQA classifiers.

1. Introduction
The increasing impact of continuous health monitoring on the market of smart wear-
able devices, particularly smartwatches, is noteworthy. The health monitoring applica-
tions integrated into these devices are increasingly used for estimating various physio-
logical factors from users, including Heart Rate Variability (HRV), Peripheral Oxygen
Saturation (SpO2), and sleep quality. Photoplethysmography (PPG) signal serves as a
central component for estimation in these applications, due to its non-invasiveness and
cost-effective on-device operation. Smart wearable devices, equipped with PPG sensors,
have gained a widespread adoption, ranging from fitness bands to smart rings. According
to [Cisco 2019], the global surge in wearable usage is evident, with estimates project-
ing over 1 billion wearables worldwide by 2022. Additionally, [Gartner 2021] shows an
annual spending surpassing U$80 billion globally. These devices offer the flexibility to
customize and incorporate various sensor types, transmission units, and remote comput-
ing resources, providing end-to-end health solutions to users. Within this context, PPG



emerges as a convenient technique, playing a substantial role in wearable health mon-
itoring systems. It continuously delivers physiological parameters that can be used to
estimate health information, including heart rate, respiratory rate, and oxygen saturation,
contributing to the comprehensive nature of these health-focused wearables.

PPG operates by emitting a luminous signal onto the surface of the user’s skin and
capturing its reflection/transmission, which variate proportionally to the blood volume
in the tissue. This measurement provides valuable information about the cardiovascular
system. One challenge affecting the on-device performance of PPG is its vulnerability
to noise, including motion artifacts [Chatterjee et al. 2022], which can distort the signal’s
morphological properties and lead to erroneous estimation of the physiological variables.
Due to the potential life-threatening consequences associated with erroneous assessments
derived from these signals, such unreliable performance is unacceptable in real-world
applications. The presence of noisy signal fragments is the primary motivation behind
the development of Signal Quality Assessment (SQA) techniques. This is essential to
prevent misinterpretation by discerning between dependable and undependable segments
in PPG. In other words, to enhance the reliability of such application, a Signal Quality
Classifier (SQC) step is typically employed, allowing the distinction of high-quality signal
segments, suitable for variable estimation, from low-quality ones.

Due to the importance of the task of classifying signal segments into reliable
or unreliable, some researchers have invested valuable efforts in developing classifica-
tion techniques for signal quality assessment, as reviewed by [Gambarotta et al. 2016].
For instance, [Elgendi 2016] suggested a technique utilizing indices to assess quality.
[Selvaraj et al. 2011] introduced a statistical method that involves calculating kurtosis and
Shannon Entropy to identify motion artifacts and noise in PPG data. [Li and Clifford 2012]
introduced an alternative statistical approach, utilizing dynamic time warping to elongate
each heartbeat for alignment with a dynamic template. This method integrates various
features associated with signal quality. In the classification phase of Li & Clifford’s ap-
proach, a multi-layer perceptron is employed to understand the correlations among pa-
rameters in the context of both high- and low-quality pulses. [Sun et al. 2012] introduced
an approach that utilizes the morphological features of the signal for evaluating its quality.
[Li et al. 2011] identified four waveform characteristics to evaluate signal quality through
the application of a decision tree. Likewise, [Sukor et al. 2011] utilized a basic decision-
tree classifier to determine, with pulse-by-pulse precision, whether a specific pulse is
suitable for use or not. [Naeini et al. 2019] introduced one of the initial methods based
on Machine Learning (ML) to categorize the signal into ‘reliable’ or ‘unreliable’ cate-
gories. In a recent development, [Freitas et al. 2023b, Freitas et al. 2023a] introduced a
SQA technique that transforms PPG signals into bi-dimensional representations and sub-
sequently employs a vision transformer to evaluate their quality.

[Lucafo et al. 2022] proposed a categorization of SQA techniques in “rule-based”
and “learning-based” methods. This categorization is general enough to distinguish be-
tween the most of the aforementioned papers in the literature. Other taxonomies, such as
the one proposed by [Zhang et al. 2022], which divide SQA methods into “rule-based”,
“machine learning-based”, and “deep learning-based”, are subsets of Lucafo’s catego-
rization. According to this classification, rule-based methods computes several features
from PPG, then use a set of thresholds to distinguish corrupted signals from reliable ones.



One example of this approach was proposed by [Vadrevu and Manikandan 2019] that in-
troduced SQC by computing the absolute amplitude, zero-crossing rate, and autocorrela-
tion features. [Reddy et al. 2020] presented another rule-based technique to reduce false
alarms through the detection of signal saturation and sensor saturation. Differently to
rule-based methods, the methods based on ML and Deep Learning (DL) extracted various
features and then fed these features into a classifier to distinguish PPG segments into qual-
ity classes. For instance, [Chong et al. 2014] employed a support vector machine using
time-domain features to perform the signal classification. Similarly, [Pereira et al. 2019]
use support vector machine, k-nearest neighbors, and decision trees to model a SQC.
[Azar et al. 2021] proposed the use of a deep autoencoder to perform PPG SQA.

From the literature, it is noticeable that learning-based methods are usually supe-
rior in terms of classification precision. However, these methods are commonly complex,
computationally expensive, and time-consuming, in a way that in this case it is necessary
to analyze the trade-off between computational cost, algorithm performance and storage
availability on the wearable device. On the other hand, rule-based methods are fast and
easy to implement, although their lack of generalization to unseen signal data. This gen-
eralization issue arises from the fact that their decision rules are formulated based on
anticipated signal characteristics, and their thresholds are determined through empirical
methods. In other words, these rule-based models have been crafted according to specific
data characteristics, leading to reduced accuracy when confronted with unseen data.

In order to take advantage of the best aspects of both approaches and mitigate
the drawbacks of each, [Lucafo et al. 2022] proposed a hybrid SQA model based on both
rules and learning. Lucafo’s method aims at reducing power consumption, which is highly
desirable for constrained hardware, using a CNN only in specific cases when the quality
of the signal is not easily determined by its waveform. In spite of their effort, Lucafo’s
method presented negligible influence on the quality metrics, even though reducing the
estimated energy consumption for PPG SQA. Taking this into account, [Lima et al. 2023]
contemplated a novel approach based on Neural Architecture Search (NAS) to find a DL
model that consumes few computational resources and does not require specific thresholds
or previously known signal characteristics to classify signals. Despite the similarity in
approach, our goal is to discover a model for performing SQA, whereas [Lima et al. 2023]
employed NAS to discover a neural architecture for classifying whether a given peak in
PPG signals is systolic or not.

Finally, in this paper, we propose and explore the use of attention-based ap-
proaches [Bahdanau et al. 2015, Luong et al. 2015, Vaswani et al. 2017] in conjunction
with the aforementioned NAS strategy to find an efficient SQC under strict memory-
performance trade-off and power consumption considerations, enabling us to develop a
compact SQC for deployment in embedded devices and real-time HMA.

2. Proposed Method

PPG offers numerous advantages to wearable-based health monitoring applications, es-
pecially those worn on the wrist. It is easy to configure, convenient, low in complexity,
and cost-effective. Modern PPG devices commonly feature a solitary optical sensor that
combines a near-infrared emitter and detector. This sensor is incorporated into a reusable
and comfortable design that seamlessly integrates with computational resources. This
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Figure 1. Illustrations of reliable and unreliable PPG signals. A ‘reliable’ signal
exhibits symmetric, well-defined, and periodic patterns. Conversely, ’un-
reliable’ signals shows asymmetric patterns with reduced redundancy and
increased entropy between intervals. These visualizations were generated
using signals from the ICON dataset ([Fioravanti et al. 2024]).

Convolutional Neural Network (CNN)

Signal classification: “Good” or “Bad”
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Figure 2. Our attentive-CNN method for PPG signal quality classification. We
combine an optimized convolutional model with additional attention mech-
anism steps to improve the ability of the resulting model in distinguishing
high quality segments from low quality ones, so that only the high quality
ones may be used for extracting reliable indicators, such as heart rate, in
real-time wearable applications.

configuration enables uninterrupted measurements, making it beneficial for continuous
monitoring solutions in wearable electronics, including fitness trackers and smartwatches.
Despite of these advantages, PPG signals are susceptible to significant degradation caused
by various factors, particularly motion artifacts. Excessive movement of the PPG sensor
may cause morphological disruptions in the waveform, thereby affecting the subsequent
analysis of the signal. Figure 1 shows some examples of reliable (with significant infor-
mation) and unreliable (disrupted) PPG signals. Unreliable signals can lead to erroneous
decision-making and misjudgments, which is unacceptable for HMA. Hence, methods for
assessing the quality of PPG signals are crucial to avoid misinterpretation, enabling the



differentiation between reliable and noisy signals. Our work builds on ML models to gen-
erate robust and well-performing models to classify PPG segments for SQA estimation
purposes. We employ NAS techniques, combined with attention mechanisms, to discover
neural network solutions that are lightweight yet deliver competitive performance within
strict memory and computational limitations, as succinctly depicted in Figure 2.

CNN were initially proposed for Computer Vision domain, as a way of automat-
ically extracting local and global features of a given image or frame for posterior tasks,
such as classification. Their usage eventually extended to other domains, such as time
series classification, including biomedical ones [Lucafo et al. 2022]. On the other hand,
attention mechanisms were initially proposed in the Natural Language Processing do-
main, as a way of circumventing the commonly found problem of vanishing gradients in
long-term dependency learning of sequential models[Bahdanau et al. 2015], such as Re-
current Neural Networks, and found widespread applicability, as well as state-of-the-art
performance, in several domains, such as Large Language Models[Brown et al. 2020] and
Vision-related tasks[Freitas et al. 2023a].

Our goal is to improve the capabilities of a compact CNN with the assistance of
attention mechanisms for quality classification of PPG sensor data, which is a function-
ality widely employed in several wearable applications, pertaining to heart rate and sleep
assessment, just to mention a few. Our baseline CNN, described in Figure 3a, was dis-
covered to a NAS procedure similar to the one in [Lima et al. 2023], albeit focused in
the PPG signal quality assessment, and not on systolic peak classification. Our three pro-
posed additional attention mechanisms, namely, Additive Attention Layer, Dot Product
Attention Layer and Scaled Dot Product Attention Layer, will be further described in the
following subsections.

2.1. Additive Attention Layer
The first proposed attention mechanism, namely Additive Attention Layer (AAL), was
introduced by [Bahdanau et al. 2015] as a way to compute context vectors for captured
relevant information from a sequential input. This mechanism uses a linear transformation
followed by a nonlinear activation function:

Φ(s) = ψ(W ⊙ s+ b), (1)

where Φ(·) is denoted the “Bahdanau Function”, W and b are learnable vectors of the
same dimensions as the s vector, which corresponds to the output of the previous layer,
and ⊙ represents the element-wise product. ψ(·) is a nonlinear activation function, here
chosen as hyperbolic tangent. The “Bahdanau Function” output is further transformed by
a “Softmax function”, to obtain the Attention Scores η(s):

η(s)i = σ(Φ(s))i =
eΦ(s)i∑
j e

Φ(s)j
, (2)

Finally, we multiply the same encoding vector s by the attention scores, so that we can
obtain the context vectors z:

z = s⊙ η(s) (3)

Our work consists of replacing the Global Pooling Layer (GPL) in the original model (see
Figures 2 and 3b) by the AAL.



(a) The baseline CNN model discovered via Neural Architecture Search using
the ICON dataset ([Fioravanti et al. 2024]). The network processes in-
formation sequentially through the layers without incorporating an at-
tention mechanism.

(b) Our proposed improved attention-based model. The attention mechanism
enables the network to focus on specific parts of the input data, en-
hancing its ability to learn and process information more effectively.

Figure 3. Comparison of Neural Network Architectures with and without Attention
Mechanism

Figure 4. Dot Product Attention Layer (DPAL). The softmax function in uses the
result of the dot product between the query and key vectors as argument.



2.2. Dot Product Attention Layer
[Vaswani et al. 2017] proposed DPAL, a crucial component in many deep learning mod-
els, particularly in Natural Language Processing (NLP) tasks. DPAL computes attention
scores between a query vector and a set of key vectors, typically derived from the input
sequence. These attention scores represent the importance or relevance of each element
in the input sequence to the query. It works with basis on four concepts:

• Each token in the input sequence is associated with three vectors: a query vector, a
key vector, and a value vector. These vectors are typically learned during training.

• Dot product: For each query vector, the dot product is computed with every key
vector. This results in a set of scores representing the similarity between the query
and each key.

• Softmax: The dot product scores are inputs of softmax function to obtain a dis-
tribution of attention weights, ensuring that they sum up to 1 and represent the
importance of each key vector relative to the query.

• Weighted Sum: Finally, the attention weights are used to compute a weighted sum
of the corresponding value vectors. This weighted sum represents the representa-
tion of the input sequence with respect to the query.

Mathematically, DPAL can be expressed as attention(Q,K, V )=softmax (QK⊺)V , where
Q represents the query matrix, K represents the key matrix, and V represents the value
matrix. The DPAL allows the model to efficiently capture long-range dependencies in the
input sequence by attending to relevant information, making it a powerful tool for various
NLP tasks.

2.3. Scaled Dot Product Attention Layer

Figure 5. Scaled Dot Product Attention Layer (SDPAL). The softmax function uses
the result of the dot product between the query and key vectors multiply
by a normalization parameter dk as argument.

The SDPAL is a variation of DPAL which apply a normalization factor
√
dk (see

Figure 4), and was also described in [Vaswani et al. 2017]. As in the case of AAL, we
also replaced the GPL of Figure 3a with a distinct operation, the SDPAL, which is slightly
more complex, and requires three additional learnable vectors: query (q), key (k) , with
the query and the key vectors of the same dimensions, given as a hyperparameter of the
model, and vector values (v), with a size which is also given as a hyperparameter. Its
steps are concisely described in Figure 5. As in the case of AAL, these auxiliary variables
aim to map the cross-importance between each element of the sequence input, generating
as output the ith attention weight of each corresponding jth element of the sequence data.
The dk is a normalization operation over the output from the previous steps.



3. Experimental Setup
We evaluate the performance of the proposed architectures described in Figure 3 by com-
paring the found neural network classifiers with the state-of-the-art SQC using the same
procedure. This comparison was conducted using the ICON dataset [Fioravanti et al. 2024].
This dataset comprises 46 subjects, corresponding to PPG signals collected at 25Hz, last-
ing 45-60 minutes per subject using a Samsung Smartwatch Galaxy Watch Active 2©.
These subjects include 9 volunteers with permanent atrial fibrillation, 16 volunteers with
normal sinus rhythm, and 21 volunteers with other non-specified arrhythmias. For each
subject, the PPG sensor on the non-dominant wrist was strategically placed over the radial
artery to ensure optimal signal capture. The data collection adhered to a protocol under
resting conditions, with participants advised to either sit or recline in a calm environment.
The PPG signals, capturing baseline heart rate and blood flow, were recorded during pe-
riods of relaxation. The quality of the signals in the ICON dataset was manually labeled
by experts according to their waveforms and according to the aim of this dataset, which
is to allow the measurement of Interbeat Intervals (IBIs).

The PPG signals were divided into 3-second windows, each consisting of 75 sam-
ples with a 5-sample overlap. These segments of signal were normalized using min-max
normalization within the range [0, 1]. In preparation for the learning phase, each segment
was labeled based on a threshold d representing the proportion of samples annotated as
high quality within the segment. Subsequently, the segment was categorized as ‘reliable’
if the fraction of high-quality signal exceeded d, and ’unreliable’ otherwise. Specifically,
d = 0.8 was used to create these labels in the experiments.

In our experiments, we split the data into training and test sets. The validation
subsets were randomly sampled as a subset of training set. During the training phase,
we utilize the data and corresponding annotations from 64% of the subjects within each
assessment group. For validation purposes, we opt for data from 16% of the subjects in
each assessment group. The remaining 20% of the subjects in each group are employed
to test the proposed methods and the overall pipeline. It is important to emphasize that
the signal segments comprising the experiments reported here are all grouped according
to the subject to which the signal belongs. This means that signal segments from subjects
in the training set do not overlap with those in the testing set, and vice versa. This subject-
based split was chosen to prevent training bias from also being present in testing. This
type of split allows us to simulate how the model would perform with an individual who
is not present in the dataset.

The DL models were implemented using Keras 2.8.0 and Python 3.8. All models
were trained using 20 epochs. To test the performance of the proposed and the state-of-
the-art methods, we compare the predicted quality indices with the pre-labeled indices
provided in the benchmark dataset using the accuracy, precision, recall, and f1-score met-
rics. More details about these metrics are available at [Dalianis and Dalianis 2018].

4. Experimental Results
Table 1 shows the results obtained using the compared state-of-the-art methods, namely
‘Lucafo1’, ‘Lucafo2’, ‘RP+ViT’, ‘MTF+ViT’, and ‘Hao & Bo’. All results in this ta-
ble were attained using the ICON dataset with the same experimental conditions. From
this table, the first noticeable achievement concerns the performance of the baseline. By



Table 1. Performance comparison of the baseline model (Figure 3a), its variations
including an attention layer (Figure 3b), and state-of-the-art methods using
ICON dataset.

Method Reference Accuracy(%) Precision(%) Recall(%) F1-Score(%)

Lucafo1 [Lucafo et al. 2022] 89.8 88.6 95.9 91.9
Lucafo2 [Lucafo et al. 2022] 89.9 87.5 97.1 92.0
Hao & Bo [Hao and Bo 2021] 80.6 75.7 90.5 82.4
RP+ViT [Freitas et al. 2023b] 89.9 95.1 90.3 92.6
MTF+ViT [Freitas et al. 2023b] 90.3 91.2 94.1 92.6

NAS-CNN (Baseline) [Lima et al. 2023] 92.2 95.1 93.0 94.1
NAS-CNN + AAL 92.7 95.1 93.9 94.5
NAS-CNN + DPAL 91.7 95.6 91.9 93.7
NAS-CNN + SDPAL 92.1 95.4 92.5 94.0

adopting the approach described by [Lima et al. 2023] but adapting it to our problem, we
discovered a tiny CNN that is able to surpass the state-of-the-art in almost all performance
metrics but notably in terms of accuracy, precision, and f1-score. Moreover, based the re-
sults, we can also notice the benefit of the addition of attention layers. In other words,
the addition of an attention layer to the baseline model effectively improved all its per-
formance metrics. Specifically, the AAL exhibited significant improvements with only a
minimal increase in the total number of model parameters. While SDPAL and DPAL also
delivered competitive results, they necessitated a higher number of parameters.

5. Conclusions

In this paper, we investigated an approach for generating efficient CNN architectures to
classify whether a given PPG signal segment is suitable for use or not using the ICON
dataset. This task is addressed as a binary classification problem and is crucial to en-
able reliable HMA, especially in the context of wearables devices. Using NAS-based
technique, we found a baseline CNN architecture that are tiny enough to be deployed in
embedded devices to enable real-time wearable HMA. Moreover, we show that the used
baseline CNN had its performance improved through additional attention layers, espe-
cially for the AAL, which proved to be efficient in its proposal to improve the baseline
accuracy without increasing the computational cost of the application.
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