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Abstract. Signal quality assessment is essential for health monitoring appli-
cations, as good signal quality is needed to reliably inform about the medical
conditions of the patient. To achieve this, machine learning algorithms such as
convolutional neural networks may be applied. However, the signal needs to
be transformed into a 2D representation, which can be done using time series
imaging techniques such as Gramian Angular Field (GAF), Markov Transition
Field (MTF), and Recurrence Plot (RP), as well as by aggregating their results,
which we refer to as Projection Mix. After preprocessing the dataset, Brno Uni-
versity of Technology Smartphone PPG (BUTPPG), into these images, various
convolutional neural networks were trained and tested using such data, while
also selecting hyperparameters through heuristic searching. The results indi-
cate that our proposal performed better than the state-of-the-art methods.

1. Introduction
Cardiovascular diseases such as coronary heart disease and stroke stand as a major global
public health concern, claiming the lives of millions each year, as indicated by [Kap-
toge et al. 2019]. In this context, the number of hypertensive patients will continue to
increase worldwide, directly impacting any health system. In this scenario, the measure-
ment of physiological parameters related to cardiac behavior, such as oximetry and heart
rate, emerges as essential information that can be used for the control and prophylaxis
of patients suffering from chronic diseases. While consistent monitoring of cardiovas-
cular patterns is crucial for hypertensive individuals receiving home care or hospitalized
patients, it necessitates precise and cost-effective equipment that prioritizes comfort. Cur-
rently, the gold standard method for conducting these measurements typically demands
the expertise of a trained professional and provides an immediate assessment. However,
it still exhibits various limitations attributed to its physical dimensions.

[Schmith et al. 2023] states that, considering public health concerns regarding
cardiovascular diseases and practicality in clinical settings, numerous literature reports
highlight automatic cuffless methods utilizing devices for measuring Photoplethysmo-
gram (PPG) signals. With the advancement of Internet of Things (IoT) devices, wearable
devices have become highly popular. They are now even smaller, smarter, more sensitive,
scalable, and user-friendly. These devices can incorporate a wide range of sensing re-
sources to continuously observe physiological functions. Among these sensing resources,
PPG is a noteworthy sensor type since it can monitor various physiological parameters,
such as heart rate, hypovolemia, blood oxygenation, respiration rate, and more. More-
over, PPG is worthy of attention because it is a simple optical method that consists of
only two components placed on the skin. The first component is a light source used to



reflect light to the skin surface. The second component is a photodetector that collects the
light reflection. As the PPG signal is composed of these optical components, it enables
the continuous, non-invasive monitoring of physiological parameters. It is easy to imple-
ment, energy-efficient, and highly convenient for many clinical and commercial wearable
devices.

Despite its undeniable advantages, PPG signals can be compromised by noises
stemming from motion artifacts, signal acquisition, and other environmental sources.
These noises have the potential to adversely affect signal quality, compromising the relia-
bility of extracted health parameters. Such unreliable measurements could result in false
alarms with potentially life-threatening consequences in healthcare applications. Con-
sequently, Signal Quality Assessment (SQA) has emerged as an active research field in
recent years. Several researchers have proposed techniques for evaluating PPG signals to
analyze and optimize signal quality assessment performance.

In the literature, researchers investigated the PPG Signal Quality Index (SQI) by
proposing assessment methods to discriminate ‘reliable’ and ‘unreliable’ parts of the sig-
nal. Among these methods, [Elgendi 2016] presents a comparison of eight evaluation
metrics for signal quality based on perfusion, kurtosis, skewness, power, stationarity, zero
crossing, entropy, and the matching of systolic wave detectors. It is a purely statistic-
based approach. [Vadrevu and Manikandan 2019], [Reddy et al. 2020], and [Alam et al.
2021] described SQA using different signal features, also based on statistics, but consid-
ering additional constraints to enable the use of their methods in real-time applications
on low-resource devices. Other studies presented machine learning approaches. For in-
stance, [Li and Clifford 2012] employed a multi-layer perceptron to classify the quality
status of PPG signals. [Pereira et al. 2019] investigated a set of machine learning ap-
proaches for quality assessment in 30-s segments of PPG, including k-nearest neighbors,
decision trees, and support vector machines. Recently, deep learning methods based on
2D projections have emerged, converting the one-dimensional temporal-series raw PPG
signal into bi-dimensional representations. [Naeini et al. 2023] employ one customized
one-dimensional and three 2D Convolutional Neural Networks (CNN) to train models
to assess PPG signals. In a similar fashion, [Freitas et al. 2023b, Freitas et al. 2023a]
proposed a SQA method that converts PPG signals into two-dimensional representations,
similar to 2D images. Subsequently, a vision transformer assesses the quality of these
representations.

In this paper, we adopt a similar approach to the previously mentioned studies.
Specifically, we extend the work of [Freitas et al. 2023a, Freitas et al. 2023b, Naeini
et al. 2023] by incorporating all GAF, MTF, and RP projections within the same frame-
work. Unlike previous works, our proposed approach combines these projection methods
to create a composite, transforming them into a multi-channel (hyperspectral) image. In
other words, we convert the temporal-series problem into a hyperspectral Computer Vi-
sion (CV) problem. To the best of our knowledge, no previous work has explored this
composition of projections yet. Moreover, in contrast to the preceding papers, we con-
sider the Computer Vision Classifier (CVC) as a hyperparameter of the overall framework.
This means that, instead of using only Visual Transformer (ViT) as a classifier, we explore
how different classifiers impact the performance of the overall framework, expanding the
amount of possible CVC models that could be used for SQA.



Figure 1. Block diagram of the proposed signal quality assessment pipeline.
Different algorithms, namely GAF (with two variants, GASF and GADF),
MTF, and RP project the one-dimensional raw signal onto two-dimensional
image representations. Then, this hyperspectral image feeds a computer
vision classifier. After training and evaluating the classifier, it can predict
the signal quality indices (SQIs).

2. Proposed Method
Figure 1 depicts the summarized pipeline of the proposed method. This pipeline contains
three main steps: (1) application of multiple 1D-to-2D signal projections; (2) hyperspec-
tral image representation; and (3) image classification that employs a CVC to perform
quality index estimation.

2.1. 1D-to-2D Projections

Mathematically, we can represent a PPG signal as a continuous function X(t), where t
is time. X(t) represents the amplitude (intensity) of the PPG at any given point in time.
In practice, sensors often sample the signal at discrete time points. Specifically, we may
have a discrete representation X[i], where i is the sample index. Thus, the PPG signal
can be described as a time series x = x1, x2, · · · , xn of n samples, where all values
are in the interval [−1, 1] and xi ∈ R. These one-dimensional temporal series can be
projected onto a two-dimensional representation, such as GAF, MTF, and RP, offering
advantages in visualization of temporal patterns, interpretability, applicability to computer
vision techniques, and invariance to time warping.

Due to these advantages, in this paper, we combine three frameworks used to
encode 1D PPG signals into 2D projections. The first type of projection, RP, represents
a time series in a recurrence state in a phase space. It facilitates the representation of the
phase-space trajectory in 2D, relying on its recurrence. The relationship between instants i
and j is encoded in a 2D matrix, with elements assuming values of 0 or 1. The second type
of projection, MTF, aims to generate a Markov matrix based on quantile bins, encoding
transition probabilities within a quasi-Gramian Matrix. The third type of projection, GAF,
represents time series data, such as a 1D signal, in a two-dimensional space by encoding



the pairwise angles between vectors in the original time series, visualized as an image.

2.1.1. Recurrence Plots

[Eckmann et al. 1987] introduced Recurrence Plots (RP) in 1987. In the original paper,
the authors explored the use of recurrence as a tool for visualizing and analyzing the
behavior of dynamical systems. Since then, RPs have become a valuable technique in the
field of nonlinear time series analysis and have found applications in various scientific
disciplines [Marwan 2008].

A RP is a projection that depicts the distances between trajectories extracted from
the original time series. In a RP, the matrix elements correspond to the times at which a
state of a dynamical system recurs. Specifically, columns and rows correspond to specific
time pairs, capturing instances when the trajectory of the dynamical system traverses a
region within the phase space that is approximately consistent.

Mathematically, for a signal x, the extracted trajectories are represented as x⃗i =
xi, xi+ τ , · · · , xi+τ ·(m−1), where i ∈ 1, · · · , n− (m− 1) · τ , n is the number of samples,
m is the dimension of the trajectories, and τ is a time delay. The recurrence linking at
instants i and j can be expressed by the following formula:

Rij = H(ε− ∥x⃗i − x⃗j∥) =

{
1 if ∥x⃗i − x⃗j∥ ≤ ε

0 otherwise,
(1)

where H is the Heaviside step function, ε is a recurrence threshold, and ∥ · ∥ is a norm.
Applying this expression creates a chart R that represents x⃗i = x⃗j on the horizontal
and vertical axes, respectively. It encodes recurrences through a binary depiction, where
Rij = 1 signifies the presence of recurrence, and Rij = 0 indicates its absence.

2.1.2. Markov Transition Field

[Campanharo et al. 2011] introduced the MTF model to encode the statistics of dynam-
ical transitions, preserving sequential Markov transition probabilities to retain temporal
information. For the PPG signal x, the MTF identifies m quantile bins and assigns each
xi to the corresponding bin qj . Consequently, the MTF constructs a weighted adjacency
matrix W of size m×m by tracking transitions among quantile bins, akin to a first-order
Markov chain along the time axis. The coefficients wij denote the frequency with which
a point in quantile qi succeeds a point in quantile qj . Following normalization, where∑

j wij = 1, the result is the Markov transition matrix. This matrix is designed to be
insensitive to the signal distribution and temporal dependencies on time steps ti. To retain
crucial temporal dependencies and prevent excessive information loss in matrix W , MTF
is given by

M =


wij|x1∈qi,x1∈qj · · · wij|x1∈qi,xn∈qj
wij|x2∈qi,x1∈qj · · · wij|x2∈qi,xn∈qj

... . . . ...
wij|xn∈qi,x1∈qj · · · wij|xn∈qi,xn∈qj

 (2)



The construction of the m×m Markov transition matrix W involves partitioning the mag-
nitude into m quantile bins. The symbols qi and qj denote the quantile bins corresponding
to the magnitude at instants i and j, respectively. This implies that the element Mij in
MTF matrix represents the probability transition from qi to qj . To clarify, the transition
probability along the magnitude axis in the matrix W is translated into the MTF matrix
by accounting for temporal positions.

2.1.3. Gramian Angular Field

[Wang and Oates 2015] introduced GAF as a technique for converting time-series data
onto image data to obtain spatial correlation on time-series signals. This technique en-
compasses both the Gramian Angular Summation Field (GASF) and the Gramian An-
gular Difference Field (GADF). GASF represents the summation of the cosine values of
the pairwise angles formed by vectors in the time series data. It provides a 2D projec-
tion where each element of the matrix corresponds to the cosine of the angle between the
corresponding time points in the original series. GASF emphasizes the global patterns
and similarities in the time series data. The resulting GASF projection is symmetric and
captures overall trends. On the other hand, GADF represents the absolute differences be-
tween the sine values of the pairwise angles, focusing on capturing local variations and
changes in the time series and highlighting details in the time series that might indicate
transitions or fluctuations, making it sensitive to changes in the dynamics of the system.
Through the conversion of one-dimensional time-series data into two-dimensional image
data, the resultant projection image preserves the temporal correlations inherent in the
original data. This enables the application of deep representation learning techniques to
conduct deep feature learning and classification on the transformed image data.

Mathematically, The method initially rescales the original time-series data range
to [−1, 1] using

x̃i =
(xi −max(X)) + (xi −min(X))

max(X)−min(X)
. (3)

Then, the scaled data is converted into a polar coordinate system as expressed by

ϕi = arccos(x̃i), −1 ≤ x̃i ≤ 1

r =
ti

N
, ti ∈ N,

(4)

where ti is the timestamp, r stands for the polar coordinate radius, and N is a regular-
ization factor to stretch over the polar coordinate system. Since the data scaling range
is [−1, 1], then the transformed angle range ϕi ∈ [0, π]. It means that this conversion is
a bijection, implying that it produces a unique result in the polar coordinate system and,
therefore, it has a distinctive inverse mapping. Subsequently, this conversion executes a
process akin to the inner product operation in Cartesian coordinates. The relationships
between time points are established by computing the angles (both sum and difference)



between distinct sample points as follows:

GASF = x̃⊺ · x̃−
(√

1− x̃2
)⊺

·
√
1− x̃2

= {cos(ϕi + ϕj)}i,j

=


cos(ϕ1 + ϕ1) · · · cos(ϕ1 + ϕn)
cos(ϕ2 + ϕ1) · · · cos(ϕ2 + ϕn)

... . . . ...
cos(ϕn + ϕ1) · · · cos(ϕn + ϕn)

 ,

(5)

and
GADF =

(√
1− x̃2

)⊺
· x̃− x̃⊺ ·

√
1− x̃2

= {sin(ϕi − ϕj)}i,j

=


sin(ϕ1 − ϕ1) · · · sin(ϕ1 − ϕn)
sin(ϕ2 − ϕ1) · · · sin(ϕ2 − ϕn)

... . . . ...
sin(ϕn − ϕ1) · · · sin(ϕn − ϕn)

 ,

(6)

where 1 = [1, 1, · · · , 1]⊺ the unit row vector with the same length of x̃. Following the
conversion of the temporal-series signal into the polar coordinate system, two categories
of GAF can be established utilizing the inner products ⟨x, y⟩ = x ·y−

√
1− x2 ·

√
1− y2

and ⟨x, y⟩ =
√
1− x2 ·y−x ·

√
1− y2. These inner products are quasi-Gramian matrices

due to the non-linearity of the defined functions ⟨x, y⟩ within the inner-product space.

2.2. Signal Quality Classification

Figure 2 depicts two examples of PPG signals and how these temporal-series signals relate
to the bi-dimensional projections. In this figure, the first row contains the waveforms
of an ’unreliable’ and a ’reliable’ signal. The second row depicts their corresponding
2D projections produced via RP, MTF, and GAF algorithms. From these pictures, it is
possible to notice that both RP, MTF, and GAF projections produced from the ’unreliable’
PPG signal present more irregularity and chaotic visual patterns (higher entropy). On the
other hand, the ’reliable’ signal generates regular and symmetric visual patterns. These
RP, MTF, and GAF encoding maps illustrate how distinct the ’reliable’ and ’unreliable’
quality status of the PPG signals can be compared to their 2D projections.

The correlation among the encoding maps of RP, MTF, and GAF with the quality
of PPG signals was noted by [Freitas et al. 2023a, Freitas et al. 2023b]. In these works,
the authors investigated how each of these projections, used individually, performs in the
task of signal quality classification when employed as input for a ViT classifier. Despite
the promising results, the authors investigated the performance of each projection indi-
vidually. However, the combination of these projections remained an open question. In
this paper, we investigate how this combination affects the performance of different clas-
sifiers in discriminating the quality of ’reliable’ or ’unreliable’ signals. For this purpose,
we computed the projections separately for each of the MTF, GAF, and RP algorithms. In
the case of GAF, we considered both GASF and GADF variants, described, respectively,
in Equations 5 and 6 of Section 2.1.3.



(a) Unreliable signal (b) Reliable signal

RPu MTFu GAFu RPr MTFr GAFr

Figure 2. Example of signals and their corresponding 1D-to-2D encoding maps
(projections). An ‘unreliable’ signal (a) generates asymmetrical encoding
maps with less redundancy and higher visual variation, as we can observe
from its RPu, MTFu, and GAFu encoding maps. On the other hand, a ‘reli-
able’ signal (b) produces symmetric encoding maps with a more redundant
pattern for all its RPr, MTFr, and GAFr projections.

After generating the four independent projections (1 MTF, 1 RP, and 2 GAFs, one
for GASF and one for GADF), the proposed method stacks those projections to compose
a hyperspectral image (multi-channel). In other words, for a signal with n samples, the
method transforms each of these four independent projections with dimensions n×n× 1
into a tensor of dimension n × n × 4. Then, we input these tensors into a CVC algo-
rithm to predict the actual quality index (i.e., ’reliable’ or not). In this work, we focus
on deep-learning based CVCs, but other types could also be considered. To train the
quality classifier, we map the input tensor to actual quality labels provided in the quality
databases: Q(PPG) = C(y,M), where C(·, ·) represents a CVCs algorithm, M is the
trained model, and Q(·) is the quality score predicted using the model.

3. Experimental Results
We performed the tests using the BUTPPG database proposed by [Nemcova et al. 2021].
In this database, 48 PPG signals were recorded from the index fingers of 12 subjects. The
recordings included three sessions while the subjects were seated and one session while
they were walking [Nemcova et al. 2021]. This database can be accessed through the
Physionet interface using the wfdb Python package. The PyTS library [Faouzi and Janati
2020] provided implementations for generating GAF, MTF, and RP representations. We
used the PyTorch library [Paszke et al. 2019] for training and classification operations,
focusing on classifying PPG signals. Additionally, we employed hyper-parameter opti-
mization using the Optuna library [Akiba et al. 2019]. To balance the training dataset, we
applied random oversampling using the imbalanced-learn library [Lemaı̂tre et al. 2017].
Furthermore, we utilized transfer learning by initializing the weights of neural networks
pre-trained on the ImageNet dataset and fine-tuning them using the BUTPPG data.

The neural models chosen in our study were AlexNet, DenseNet, EfficientNet,
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Figure 3. Violinplots illustrating the distribution of performance metrics for differ-
ent models. Plots depict the variability scores across the model ensemble.

MNASNet, MobileNet, RegNetX, RegNetY, SqueezeNet, SwinTransformer, VGG11, and
ViT. All these models were provided by TorchVision. Since the Projection Mix approach
requires 4 channels in the input layer, we modified the models to meet this requirement.



Table 1. Performance Metrics for Neural Models with Different Projections. Con-
sidering each metric separately, the best results in terms of maximum ab-
solute value are boldfaced, while the best results for each neural model
contains an asterisk.

Neural model Projection Accuracy F1 Score Precision Recall

AlexNet GAF 0.750 0.849 0.750 1.000*
MTF 0.708 0.827 0.773 0.833
RP 0.771 0.819 0.910 0.812
Mix 0.938* 0.955* 0.944* 0.979

DenseNet GAF 0.729 0.795 0.799 0.819
MTF 0.729 0.837 0.729 1.000*
RP 0.771 0.917 1.000* 0.646
Mix 0.896* 0.932* 0.910 0.979

EfficientNet GAF 0.729 0.828 0.778 0.924
MTF 0.667 0.806 0.694 0.812
RP 0.812 0.856 0.882 0.889
Mix 0.875* 0.916* 0.896* 0.972*

MNASNet GAF 0.438 0.812 0.552 0.458
MTF 0.646 0.798 0.681 0.819
RP 0.625 0.787 0.843 0.590
Mix 0.771* 0.866* 0.848* 0.861*

MobileNet GAF 0.625 0.758 0.765 0.743
MTF 0.604 0.777 0.806 0.583
RP 0.667 0.838 0.818 0.715
Mix 0.875* 0.908* 0.910* 0.938*

RegNetX GAF 0.625 0.831 0.778 0.708
MTF 0.646 0.773 0.729 0.868
RP 0.917 0.938 0.944* 0.951
Mix 0.938* 0.955* 0.944* 0.979*

Neural model Projection Accuracy F1 Score Precision Recall

RegNetY GAF 0.729 0.823 0.771 0.910
MTF 0.583 0.690 0.729 0.757
RP 0.938* 0.955* 0.944* 0.979*
Mix 0.917 0.943 0.924 0.979*

ResNet GAF 0.750 0.807 0.861 0.819
MTF 0.708 0.799 0.771 0.889
RP 0.896* 0.926* 0.924* 0.951
Mix 0.854 0.908 0.868 0.979*

SqueezeNet GAF 0.604 0.819 0.700 0.833
MTF 0.625 0.794 0.646 0.861
RP 0.896 0.914 0.972* 0.903
Mix 0.938* 0.955* 0.944 0.979*

SwinTransformer GAF 0.667 0.765 0.771 0.847
MTF 0.688 0.806 0.736 0.924
RP 0.833 0.897 0.833 1.000*
Mix 0.938* 0.955* 0.944* 0.979

VGG11 GAF 0.729 0.840 0.811 0.833
MTF 0.667 0.790 0.729 0.896
RP 0.833* 0.855 0.944* 0.840
Mix 0.833* 0.895* 0.840 0.979*

ViT GAF 0.750 0.844 0.785 0.951
MTF 0.688 0.790 0.729 0.889
RP 0.896 0.913 0.944* 0.924
Mix 0.938* 0.955* 0.944* 0.979*

Table 2. Memory usage of each model in terms of its parameters and buffers.

Neural Network
Memory

Size (MB)

AlexNet 228
DenseNet 27
EfficientNet 16

Neural Network
Memory

Size (MB)

MNASNet 3
MobileNet 16
RegNetX 20

Neural Network
Memory

Size (MB)

RegNetY 15
ResNet 44
SqueezeNet 2

Neural Network
Memory

Size (MB)

SwinTransformer 110
VGG11 515
ViT 349

For most of them, we added a convolution layer with a kernel size of 1 and 4 input chan-
nels so that its output dimensions match those of the original first layer. In the case of
RegNet, we adjusted the number of input channels in the stem layer. For the standard
projection methods, we replicated the projection into the 3 input channels without adding
extra layers.

For the purpose of testing those models, we separated the dataset using a k-fold
cross-validation training-test strategy. This strategy divides the dataset into k sets of equal
size. The model is then trained using k − 1 of the folds and validated in the remaining
kth fold. Figure 3 and Table 1 present the results of this approach. Figure 3 contains
violin plots where the correlation score of each fold for a given metric is a point of the
distribution. In that sense, if the shape of the violin is larger at a certain location and
its length is shorter, it indicates consistent model performance across different measure-
ments. Such behavior is very recurrent in the Mix method, which achieves results where
most fold scores concentrate in the median of all folds in all metrics. Furthermore, for a
given model and metric, that median often achieves higher scores than the other projection
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Figure 4. Boxplots where each point is the total inference time in milliseconds of
each combination of neural model and projection method. The measured
time includes the 1D-to-2D projection step.

methods, as seen in the accuracy score of AlexNet. These signs indicate that the proposed
mix/composite method achieves higher performance. A visible exception occurs for the
ResNet model, which achieves the best results with RP.

On the other hand, Table 1 reveals that, even though the PC mostly outperforms for
the majority of the models, there are cases where other projections surpass it, such as for
ResNet and RegNetY, where the Recurrence Plot obtains better results for most metrics.
Additionally, the same table shows that the Mix method achieves the globally best scores
for Accuracy and F1-Score, which contrasts with the fact that the other methods achieve
the best Precision and Recall scores, but without achieving high scores in both metrics
simultaneously.

Additionally, we measured the inference time and the memory consumption, as
shown in Figure 4 and Table 2, respectively. Figure 4 was generated using 500 predic-
tion/assessing time measurements. From this figure, it is noticeable that the speed of
certain neural models stands out, such as the speed of AlexNet, ResNet, SqueezeNet, and
VGG11. As for memory consumption, we see that some models consume a low amount
of memory, such as MNASNet and SqueezeNet.

Considering all the information presented, a special case stands out: the combi-
nation of SqueezeNet and the Projection Composition (PC). In this case, Figure 3 shows
that the PC is less scattered and has higher values than other approaches, showing a close
competition with RP. However, Table 1 demonstrates that the PC has higher metric values
than RP, except for Precision, where RP surpasses the PC, despite the PC having a value
greater than 90%. Also, in Table 1, integrating SqueezeNet and PC gives the best average
for the metrics Accuracy and F1 Score compared to all other combinations. Moreover, all
metrics have values exceeding 90%. Finally, as seen before, this combination has high
inference speed and low memory consumption.

The acceptance of these analyses needs to consider a series of limitations present
in this procedure. Firstly, the dataset size is insufficient for training deep-learning models,
which typically require large amounts of data. Secondly, we balanced the dataset using
a simple technique, without exploring other alternatives specifically developed for time
series data. Additionally, we did not explore the hyperparameters of the projections, such
as the number of dimensions in the RP and the number of quantile bins in the MTF. Fur-



thermore, we only explored one of the multiple possible ways of constructing a composite
projection from these individual projections.

4. Conclusion

This work presented a SQA method for PPG signals by projecting them into 2 dimensions
using the RP, GAF, and MTF. In addition to these projection methods, we also proposed
the use of a composition of them. Results indicate that the composition improves certain
classification metrics and the generalization capabilities of the ensemble.
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