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Abstract. In Brazil, skin tumors represents the type of neoplasm with the highest
incidence rate among the population. Because of this, this study explores the in-
vasiveness of this disease using computational techniques to understand how
specific patient characteristics influence its progression. Through the analysis
of data provided by the Cancer Hospital Registry (RHC) of the National Can-
cer Institute José Alencar Gomes da Silva (INCA), and with the aid of Artificial
Intelligence (AI) algorithms explained by the SHapley Additive exPlanations
(SHAP) approach, the study reveals that the invasiveness of skin cancer is affec-
ted in a significantly different way by the individual characteristics of patients
compared to analyses based on more general attributes. These findings under-
line the importance of personalization in medicine, suggesting that a deeper
understanding of individual characteristics can lead to more accurate diagno-
ses and more effective treatments. Furthermore, the research highlights the role
of XAI in clarifying these relationships, pointing to the need for more refined
approaches in prevention, treatment, and the formulation of public health poli-
cies aimed at combating skin tumors, despite limitations such as data imbalance
encountered during the study.

1. Introduction
Skin tumor, defined as a disease resulting from the unrestrained proliferation of skin cells,
was cited as the most prevalent type of tumor in Brazil and the world in 2021, according
to [BRAZIL’S MINISTRY OF HEALTH 2021]. This ailment may manifest in diverse
forms, influencing various strata of the epidermis. Additionally, the proliferation of these
tumors can amplify the pain in individuals owing to the compression exerted on surroun-
ding tissues and the resultant inflammatory reaction, as indicated in [Fidler 2003]. Hence,
distinguishing between invasive and non-invasive tumors is deemed essential for the pre-
cise diagnosis and therapy, profoundly impacting in the patient’s quality of life, longevity
and the treatment’s success. In Brazil, skin cancer constitutes 27% of all malign tumors,
with projections indicating approximately 220,490 new instances annually from 2023 to
2025, as suggested by [Santos et al. 2023]. In the year 2022, the Brazilian Unified He-
alth System (SUS) dedicated around BRL 47 million to chemotherapy treatments for skin
cancer, as documented in [BRAZIL’S MINISTRY OF HEALTH 2022].

In this scenario, the INCA, which operates under the aegis of the Brazil’s Mi-
nistry of Health, assumes a pivotal role in the ongoing surveillance and support of in-
dividuals diagnosed with cancer through the utilization of the RHC. As detailed by
[Lopes et al. 2021], this comprehensive system, which has been integrated into hospi-
tal infrastructure, is designed to collect, store, efficiently process, and rigorously analyze
patient-specific data.



Furthermore, in the current technological environment, there is a notable advan-
cement in the adoption of AI across various research fields, notably in the diagnosis and
analysis of cancer, as mentioned in [Subasi et al. 2022]. Statistical models, developed
from AI and built through the training of machine learning algorithms with data, facilitate
efficient processing and selection of information, resulting in highly accurate predictions.
However, beyond the precision of these forecasts, the capability to interpret these models
holds crucial importance, as indicated in [Molnar 2020]. In this setting, as discussed in
[Silva et al. 2022], the SHAP approach stands out for its ability to assess the impact of
each feature on the predictions of a model, showing how specific characteristics influence
the outcomes. This contributes to a better understanding of how different attributes affect
the predictive dynamics of the model.

Within this context, the study delves into the prediction of skin tumors invasi-
veness in Brazil, focusing on how specific tumor characteristics influence this invasive-
ness. Rather than merely examining the overall impact of attributes, this work scrutinizes
how each feature within an attribute affects the progression of tumors across the country.
This approach facilitates a deeper understanding of skin tumors in Brazil and may lead
to more personalized prevention and treatment methods. By identifying the factors that
cause some tumors to invade, healthcare professionals can create more effective treat-
ment plans. Furthermore, the study contributes to the advancement of oncology research
by improving the understanding of skin tumors in Brazil, potentially leading to more per-
sonalized prevention and treatment methodologies.

2. Related Works
The studies linked to this research adopt machine learning models and focus on impro-
ving the interpretability of medical predictions, taking advantage of the SHAP approach.
Each investigation explores a different application of these tools in the context of cancer,
demonstrating the versatility and effectiveness of SHAP in revealing the decisive factors
in different contexts of the disease.

The study of [Sorayaie Azar et al. 2022] conducted an in-depth analysis on ova-
rian cancer survival prediction using the SEER database, implementing Random Forest
and XGBoost machine learning models. The study utilized the SHAP approach to iden-
tify and quantify the contributions of significant attributes such as histologic type of the
tumor and year of diagnosis. This analysis highlighted the robust performance of Ran-
dom Forest and XGBoost for classification and regression tasks, respectively, showcasing
SHAP’s role in enhancing model interpretability and decision-making transparency.

[Lee et al. 2022] focused on assessing the risk of developing a second primary
cutaneous tumor in skin cancer survivors, analyzing data from 1248 patients across five
cancer registries. The researchers applied various machine learning algorithms, notably
achieving optimal results with Random Forest. To address data imbalance, the Synthetic
Minority Over-sampling Technique (SMOTE) was employed. The SHAP approach was
pivotal in this study, revealing critical predictive attributes such as age, cancer stage, gen-
der, and regional lymph node involvement, thus providing deeper insights into the model’s
predictive dynamics.

[Alsinglawi et al. 2022] explored the prediction of ICU stay durations for lung
cancer patients using the comprehensive MIMIC-III database. The study faced challen-



ges related to data imbalance, which were addressed by employing SMOTE and Adaptive
Synthetic (ADASYN) techniques. Predominantly utilizing Random Forest, the applica-
tion of the SHAP approach enabled the identification of key clinical attributes that signi-
ficantly influence the prediction of ICU stay durations.

3. Materials and Methods

This study employs a dataset comprising 4,680,029 anonymized patient samples diagno-
sed with cancer, covering 47 attributes. The data originate from RHC, managed by INCA.
An initial exploratory analysis of the dataset was conducted to deepen the understanding
of the intrinsic characteristics of the collected data and to identify the phenomena repre-
sented by the attributes. Subsequently, a screening of the samples was carried out, as
illustrated in the flowchart of Figure 1, reducing the initial number of 4,680,029 samples
to 48,331. This final dataset includes 46,983 cases of invasive skin tumors and 1,348 cases
of non-invasive tumors.

Primary database
(n = 4,680,029)

Samples referring to skin
tumors (n = 777,625)

Consistent samples (n = 87,746)

Single samples (n = 49,463)

Samples used on the re-
search (n = 48,331)

Samples not referring to
skin tumors (n = 3,902,404)

Samples with any null or in-
consistent* value (n = 690,879)

Duplicated samples (n = 37,823)

Samples with the same pre-
dictive attribute but different

dependent attribute (n = 1,132)

SAMPLE SCREENING

EXCLUSION

* Inconsistent values, for example, entries of ’3’ in the sex attribute - where ’1’ represents male and ’2’
female, as defined in the data dictionary - were considered inconsistent and led to the exclusion of the 
corresponding samples.

Figure 1. Screening flowchart of the samples
Source: Compiled by the author with data extracted from the research.

  In addition to sample selection, new attributes were derived from the original data 
to align with the specific objectives of the study. For instance, the dependent attribute of 
this study, the invasive behavior of the tumor, was derived from the histological type of 
the tumor attribute. The original attribute consists of a five-digit code, where the last digit



ATTRIBUTE DOMAIN AND CODE

Primary
Tumor Location

Eyelid (0); External ear (1); Face (2);
Scalp and neck (3); Trunk (4);
Upper limbs (5); Lower limbs (6);
Skin overlay lesion (7)

Geographic Region Midwest (0); North (1); Northeast (2);
Southeast (3); South (4)

Age Group
000-009 (0); 010-019 (1); 020-029 (2); 030-039 (3);
040-049 (4); 050-059 (5); 060-069 (6); 070-079 (7);
080-089 (8); 090-103 (9)

Marital Status Single (0); Married (1); Widower (2);
Separate (3); Stable union (4)

Education
None (0); Incomplete fundamental (1);
Complete fundamental (2); High School (3);
Incomplete higher education (4); Complete higher (5)

Race White (0); Black (1); Yellow (2);
Brown (3); Indigenous (4)

History of Alcohol
Consumption Never (0); Former consumer (1); Yes (2)

History of Tobacco
Consumption Never (0); Former consumer (1); Yes (2)

Origin of
Forwarding SUS (0); No SUS (1); Came on its own (2)

Case Type Analytical (0); Non-analytical (1)
Family History
of Cancer Yes (0); No (1)

More than One Tumor Yes (0); No (1)
Gender Male (0); Female (1)
Invasiveness
of the Tumor Invasive (0); Non-Invasive (1)

Source: Compiled by the author with data extracted from the research.

1Cramér’s V is a statistical measure that quantifies the association between two nominal variables, ran-
ging from 0 (indicating no association) to 1 (indicating perfect association), based on chi-square statistics.
It is utilized to identify potential redundancies among variables within statistical models.

indicates the tumor’s biological behavior. After deriving the new attribute, the original 
attribute was excluded from further analysis in the next step.

  A screening process was also undertaken to ensure the relevance and utility of the 
attributes in predictive modeling, whereby attributes with negligible variation, deemed 
irrelevant for prediction, or found to be redundant due to dependency on others were sys-
tematically excluded. Following this culling process, the domains of the remaining attri-
butes were encoded, making them suitable for detailed statistical analysis. The Cramér’s
V method1 was employed to examine the associations between attributes, leading to the 
identification of attributes with high associations. Attributes with high association were 
identified, and to avoid redundancies in the model, only one attribute from each pair with 
strong association was retained.

  Table 1 presents all the attributes used in this study. For each listed attribute, the 
table displays its domain, elucidating the possible characteristics it can assume. Moreover,
to facilitate analysis in machine learning models, each characteristic is associated with a 
specific numeric code in parentheses.

Table 1. Coding of attribute domains



Model Best Hyperparameters
Random Forest criterion = entropy, max depth = 10, min samples leaf = 4,

min samples split = 10, n estimators = 200, class weight = ba-
lanced

Decision Tree criterion = gini, max depth = 10, min samples leaf = 4,
min samples split = 5

XGBoost colsample bytree=1.0, gamma = 0.1, learning rate = 0.2,
max depth = 7, n estimators = 200, subsample = 0.5,
scale pos weight = 46331/1348

Naı̈ve Bayes alpha = 0.0
k - Nearest Neighbors n neighbors = 4
Neural Networks activation = relu, learning rate = 0.0001, hidden layer sizes =

200, solver = adam, batch size = 64, class weight = balanced
Ma-Support-Vector

chine
C = 0.1, gamma = 0.01, kernel = rbf, class weight = balanced

Source: Compiled by the author with data extracted from the research.

For evaluating the performance of the models, the following metrics were selec-
ted: F1 Score, highlighting the harmony between precision and recall; Area under the
ROC Curve (AUC), evaluating the model’s ability to effectively distinguish between clas-
ses; and Precision, focusing on the accuracy in identifying positive cases. The choice of
these metrics was influenced by studies by [Yu et al. 2021] and [Taghizadeh et al. 2022].
Given the imbalanced data in this research, Balanced Accuracy was also used because, as
discussed by [Luo et al. 2019], this metric is effective in measuring the model’s capability
to predict outcomes in imbalanced data.

Among the evaluated models, as seen in Table 3, the Support Vector Machine
stood out as the most effective. This result is particularly noteworthy regarding its Balan-
ced Accuracy, highlighting its ability to handle the existing imbalance in the data. Despite
the low F1 Score, the significant AUC and Precision values confirm the suitability of this
algorithm for accurate and reliable predictions in the context of this research.

3.2. Creation of Explainability Models through the SHAP Approach

To understand which attributes most influence the predictions of machine learning mo-
dels, the SHAP approach was chosen, based on the work of [Lundberg and Lee 2017].
This approach uses Shapley Values to measure the impact of each attribute on predicti-
ons. According to [Shapley et al. 1953], these values show the contribution of an attribute
considering all possible combinations of attributes, ensuring a fair assessment of its im-
portance.

3.1. Implementation of the machine learning algorithm

The algorithms selected for analysis include XGBoost, Support Vector Machine, Random 
Forest, k-Nearest Neighbors, Neural Networks, Naive Bayes, and Decision Tree. This 
selection was based on previous works by [Ghazal et al. 2022] and [Liu et al. 2021], who 
utilized these algorithms in similar contexts. Following these works, the approach of 
10-fold cross-validation was adopted for the selection of the optimal hyperparameters 
for each algorithm. The hyperparameter tuning process took into account the imbalance 
present in the data. The results of this tuning are showed in Table 2.

Table 2. Best Hyperparameters for Each Model



Algorithm Balanced Accuracy F1 Score AUC Precision
Support-Vector Machine 0.65758 0.77442 0.72635 0.98576
Random Forest 0.63428 0.91048 0.71612 0.98090
Decision Tree 0.63141 0.80450 0.64472 0.98255
k - Nearest Neighbors 0.50528 0.98429 0.53275 0.97238
XGBoost 0.50000 0.98586 0.50000 0.97211
Naı̈ve Bayes 0.50000 0.98586 0.65652 0.97211
Neural Networks 0.50000 0.98586 0.64297 0.97211

Utilized Attributes Utilized Attributes
1st Primary Tumor Location 8th Family History of Cancer
2nd Geographic Region 9th History of Tobacco Consumption
3rd More Than One Tumor 10th Race
4th Gender 11th Referral Origin
5th Age Group 12th History of Alcohol Consumption
6th Education Level 13th Type of Case
7th Marital Status

Source: Compiled by the author with data extracted from the research.

Figure 2 displays strip plots of the five most impactful attributes on the model, with
the features in the charts aligned vertically and the Local SHAP Values on the horizontal
axis. Positive values suggest a greater probability of predicting tumor invasiveness, while
negative values indicate the opposite. The proximity of these values to the zero axis
highlights the intensity of each feature’s impact on specific cases. This figure details the

Table 3. Ranking of models on a national scope

Source: Compiled by the author with data extracted from the research.

  The SHAP approach distinguishes between local SHAP values, which show the 
contribution of an attribute on a specific prediction, and global SHAP values, which indi-
cate the overall impact of an attribute on the dataset. Local SHAP values can be positive 
or negative, indicating whether the presence of the attribute increases or decreases the 
chance of the prediction. Global SHAP values are calculated by the absolute average of 
local SHAP values, showing the overall importance of the attribute.

  After selecting the Support Vector Machine algorithm, a model was trained with 
all the data to improve accuracy and explainability, as performed in the official SHAP 
documentation by [Lundberg et al. 2020]. Implementing this approach creates an explai-
nability model that identifies and explains the impact of the most significant attributes on 
the model’s predictions.

4. Results and Discussion

Table 4 organizes the attributes in order of impact on prediction, based on global SHAP 
values. It begins with the primary tumor location as the most influential attribute, down 
to the type of case. This ordering highlights the sequence or priority given to each cha-
racteristic by the model, emphasizing the relative importance and specific role that each 
attribute plays in the outcome of the predictions.

Table 4. Classification of attributes using global SHAP values.



manner in which the characteristics of the most significant attributes contribute to the
model’s predictions, with each point on the charts representing the unique impact of each
sample in the dataset.

(a) Primary Tumor Location (b) Geographic Region

(c) More Than One Tumor (d) Gender

(e) Age Group

Figure 2. Variation of characteristics contributions
Source: Compiled by the author with data extracted from the research.

  Figure 2a demonstrates the significance of anatomical locations in contributing to 
the prediction of skin tumor invasiveness. Anatomical sites above the neck, including the 
eyelid and face, contribute to a higher likelihood of a tumor being classified as invasive,
whereas locations such as the lower limbs and trunk contribute to it being predicted as 
non-invasive. The variability of values indicates the complexity of predicting the nature 
of the tumor based on its anatomical location. Meanwhile, Figure 2b displays the impact 
of geographic regions on the model’s prediction. Regions such as the Southeast and South 
are linked to a lower probability of the tumor being predicted as invasive, while the North 
and Northeast regions increase this chance, especially the North. The Midwest region 
presents significant variability in these values, contributing to both predictions of invasi-
veness. Figure 2c compares patients with a single tumor to those with multiple tumors.
Patients with one tumor tend to have values indicating a prediction of non-invasiveness,



Invasive Tumor Non-Invasive Tumor

1st Skin overlay lesion
(Primary Tumor Location)

Upper limbs
(Primary Tumor Location)

2nd Eyelid
(Primary Tumor Location)

Trunk
(Primary Tumor Location)

3rd Face
(Primary Tumor Location)

Lower limbs
(Primary Tumor Location)

4th External ear
(Primary Tumor Location)

No
(Occurrence of More Than One Tumor)

5th 030 - 039
(Age Group)

Female
(Gender)

6th None
(Education Level)

Incomplete Bachelor’s Degree
(Education Level)

7th 020 - 029
(Age Group)

Incomplete Bachelor’s Degree
(Education Level)

8th 000 - 009
(Age Group)

Married
(Marital Status)

9th 090 - 103
(Age Group)

High School
(Education Level)

10th 010 - 019
(Age Group)

070 - 079
(Age Group)

Source: Compiled by the author with data extracted from the research.

5. Findings
In Figure 2a, it was found that one of the most relevant factors for predicting a tumor as
invasive is the primary tumor’s location above the neck. This pattern is corroborated by

whereas those with multiple tumors show a slightly higher tendency towards the prevision 
of invasiveness.

  Figure 2d illustrates how gender contributes to the predictive analysis of skin tu-
mor invasiveness. The female gender is associated with a tendency towards contributing 
to the prediction of non-invasive tumors, albeit with variations that may influence this 
trend. Conversely, the male gender is more strongly linked to contributions predicting 
tumor invasiveness. Similarly, Figure 2e highlights the significant role of age groups in 
determining the classification of skin tumors. Individuals aged between 70 and 103 years 
exhibit a pronounced contribution towards the prediction of invasiveness, contrasting with 
those in the 60 to 79 years age bracket, who have a mean contribution leaning towards 
non-invasiveness. Younger individuals, particularly those up to 49 years, display an op-
posite tendency, contributing to a higher likelihood of their tumors being classified as 
invasive, underscoring the nuanced impact of age on the predictive model.

  Table 5 highlights the top ten features out of a set of fifty-eight, based on their 
degree of impact on the model’s predictions. These features are ranked according to 
the average of their individual contributions across all analyzed samples, allowing for a 
visualization of how each uniquely impacts the model’s ability to predict outcomes. The 
table not only provides an ordered list of these principal features but also serves as a 
reflection of the interrelationship of the different weights exerted by the SHAP.

Table 5. Ranking of attribute features on a national scope



the article from [AMERICAN ACADEMY OF DERMATOLOGY 2023], which empha-
sizes the anatomical complexity of the head and neck region. These areas have a dense
network of blood vessels and lymph nodes, increasing the possibility of tumor invasion
when it originates in these areas.

Furthermore, the information in Figure 2d indicates that the male gender is more
associated with the prediction of invasive skin tumors, and the female gender with
the prediction of non-invasive tumors. This aligns with studies, such as the one by
[Schwartz et al. 2019], which found a higher incidence and mortality from skin cancer
in men than in women. The reasons for these differences may include hormonal factors,
behavioral habits, and immune responses, such as men’s lower tendency to perform skin
self-exams, which can lead to late diagnoses and worse prognoses.

The analysis of the data from Table 4 and Table 5 reveals nuances in the contri-
bution of attributes to the model’s prediction that are not immediately evident through
traditional attribute explainability analysis by their impacts on the model. This observa-
tion suggests an alternative perspective in interpreting the predictive model. For example,
while education ranks sixth in the hierarchy of twelve attributes, a specific characteris-
tic from this domain ”none”, indicating the absence of education, stands out in the same
position but within a broader spectrum of fifty-eight characteristics demonstrated in Ta-
ble 1. This characteristic stands out, for example, in relation to all the characteristics of
the attribute referring to the patient’s geographic region, which, despite being the second
most impactful in the list of attributes, does not have the same degree of impact when
considering the breakdown by individual characteristics. This contrast provides a more
detailed analysis of the algorithm’s behavior in its predictive task.

6. Conclusion

This study assessed the impact of attributes at the domain level on the prediction of tu-
mors invasiveness using XAI, employing the SHAP approach. A difference was found
between the impact of the attributes on the model and the specific impact of the charac-
teristics within their domains. The findings also highlight important contributions in the
field of oncology, underscoring the characteristics with the greatest influence on disease
prediction.

Regarding threats to validity, the higher incidence of invasive tumor cases compa-
red to non-invasive ones in the database constitutes an internal threat due to the possibility
of generating bias in the predictive model. To mitigate this threat, the selection of the ma-
chine learning algorithm was primarily based on its ability to achieve effective Balanced
Accuracy, a measure that takes into account the precision of predictions for different states
of the dependent attribute. Strategies were also adopted for the tuning of hyperparameters
of the algorithms used, in order to mitigate potential biases.

As for future research, it is suggested to expand the application of this
study methodology to other types of tumors with high incidence in Brazil,
such as breast and prostate tumors, exploring another particularities. The data
used in this study were collected on 03/28/2023 and are available at the URL
”https://irhc.inca.gov.br/RHCNet/visualizaTabNetExterno.action”.
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