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Abstract. This study addresses the critical need for prompt detection of life-
threatening ventricular arrhythmias. We explore the application of neural net-
works within the constraints of Implantable Cardioverter Defibrillators to im-
prove early arrhythmia detection. Our proposed neural network methodology
leverages multitask learning, aiming to enhance detection efficiency by concur-
rently learning to identify ventricular arrhythmias and estimate RR intervals from
intracardiac electrograms. Implemented on the NUCLEO-L432KC board, with
limited memory and processing capacity, our approach achieved an Fβ score of
0.88, with a low inference latency of 59.96 ms. These results demonstrate the fea-
sibility of integrating advanced neural network capabilities within Implantable
Cardioverter Defibrillators (ICDs).

1. Introduction
Ventricular tachycardia (VT) and ventricular fibrillation (VF) stand as critical indicators
in the context of Sudden Cardiac Death (SCD), with VF being particularly feared due to
its rapid progression and severe implications. These arrhythmias account for more than
60% of out-of-hospital cardiovascular fatalities [Physiopedia 2022], with VF precipitating
immediate disruptions in cardiac electrical signaling, leading to uncoordinated heart muscle
contractions and damaged blood circulation. The urgency for prompt rhythm correction is
paramount, highlighting the critical need for rapid and precise detection of such arrhythmic
events [Myerburg et al. 1992, Zipes and Wellens 1998].

Implantable Cardioverter Defibrillators (ICDs) are sophisticated devices surgically
inserted beneath the skin (subcutaneously) that continuously monitor cardiac activity to
identify ventricular tachyarrhythmias and administer electrical countershocks to revert
the heart to its normal rhythm when needed [Mirowski 1985]. ICDs have become indis-
pensable in the management of patients at high risk for Sudden Cardiac Death (SCD),
providing a critical intervention to prevent mortality [DiMarco 2003]. Timely detection and
intervention are crucial for enhancing survival prospects, therefore specialized algorithms
are paramount [Zanker et al. 2016, Madhavan and Friedman 2013].

In recent years, neural networks have emerged as highly effective tools for identi-
fying complex patterns in diverse domains, including those in medical and physiological
research [Mousavi and Afghah 2019]. Inspired by the vast literature on automatic arrhyth-
mia classification using electrocardiogram (ECG) data [Luz et al. 2016], this study posits
a hypothesis: neural networks can be efficiently implemented on hardware suitable for



integration into ICDs, yielding performance that rivals traditional methodologies and, more
importantly, on time. To explore this hypothesis, we propose a neural network methodology
to operate within the resource constraints of an NUCLEO-L432KC [STMicroelectronics
2020]. This microcontroller board, characterized by its 256KB Flash memory, 64KB
SRAM, and 80 MHz CPU, is suitable for computational tasks in ICDs as presented by [Jia
et al. 2023]. Figure 1 presents the STM32L432 processor, measuring a 5.30 mm by 5.30
mm.

STM32L432 5.30 mm

5.30 mm

Figure 1. The NUCLEO-L432KC board against a human hand for scale, emphasizes
the remarkably compact size of STM32L432 with dimentions 5.30 mm by
5.30 mm.

The methodology outlined in this work incorporates an approach known as mul-
titask learning. Multitask learning is a paradigm that seeks to enhance model training
efficiency and scalability by leveraging commonalities across various tasks. This approach
is particularly advantageous in scenarios where data is scarce, as it utilizes shared fea-
tures among different tasks to facilitate more effective training and to achieve superior
model performance by exploiting the inherent patterns present within the data [Caruana
1997, Baxter 1997, Ruder 2017]. Thus, with the multitask learning framework, the learning
process is designed for the simultaneous detection of ventricular arrhythmias (VAs) and
also the estimation of RR intervals from one-channel intracardiac electrograms (IEGMs).
This approach is predicated on the rationale that engaging the model in concurrent learning
tasks—specifically, VA detection and RR interval regression—enhances its performance
on each task by leveraging the intrinsic relationship between them. The selection of this
approach is driven by the goal of deploying the model on an embedded system (NUCLEO-
L432KC) with stringent memory constraints, necessitating the use of compact models
in terms of parameter size. The additional task of RR interval prediction is posited to
facilitate the model in learning crucial patterns relevant to cardiac rhythm, given that the
arrhythmias in focus are intimately linked to heart rate variability.

The proposed approach, designed for the STM32L432, reached a detection capabil-
ity with an Fβ score of 0.88, an overall accuracy of 93.55%. The inference latency is small
with 59.96 ms, and demonstrated efficient resource utilization with memory consumption
well within the microcontroller’s capacity.

This paper is structured as follows: Section 2 reviews the literature, establishing the



groundwork for our approach. Section 3 articulates our proposed method. The experimental
procedures and results discussion are outlined in Section 4. Section 5 offers conclusions
and suggests potential research trajectories, charting a course for further inquiry in the
field.

2. Related Works
Recent progress in arrhythmia detection technologies has been advanced through the
application of multi-task learning and deep learning, particularly in the context of wearable
and embedded systems. In this context, we explore four foundational studies that have
been crucial for the development of this work.

In the first study, [Soto and Ashley 2020], the authors introduce a method that
uses multi-task learning to evaluate the signal quality and detect arrhythmias in wearable
devices simultaneously. The system’s performance metrics, achieving precision and recall
rates of 0.94 and 0.98 respectively for atrial fibrillation detection, highlight its effectiveness.
The methodology leverages unsupervised transfer learning with convolutional denoising
autoencoders, significantly outperforming traditional single-task approaches.

In [Medhi et al. 2023], the researchers extend multi-task learning applications
across various ECG databases. The study demonstrates an accuracy enhancement of up to
5.2% on the MIT-BIH arrhythmia database, validating the benefits of multi-task learning
in complex bioelectrical signal analysis scenarios. The methodology employs a detailed
comparative analysis across different datasets, underscoring the flexibility and robustness
of the proposed multi-task learning framework.

In [Torres-Soto and Ashley 2020], the authors further affirm multi-task learn-
ing’s potential in cardiac health monitoring, specifically within wearable device contexts.
Achieving high metrics—sensitivity of 0.98 and specificity of 0.99—this research de-
lineates a robust framework for atrial fibrillation detection, leveraging the inherent data
complexity in wearable devices for nuanced and accurate classification.

It is explored in [Geng et al. 2023] the integration of a Contextual Transformer
(CoT) block within a multi-task learning schema, evaluated on the CPSC2018 and PTB-XL
datasets. Achieving F1 scores of 0.827 and 0.833 respectively, this approach underscores
the CoT block’s ability to dynamically model ECG sequences for enhanced classification,
offering a substantive advance in ECG analysis precision.

Incorporating RR interval analysis in a multi-task learning model provides essential
temporal information about heart mechanics. This integration improves the model’s
accuracy, offers a deeper understanding of heart dynamics over time, and enhances its
ability to generalize and handle variability in data, making it more effective for diagnosing
and monitoring cardiac conditions. This approach allows the model to capture both the
static and dynamic aspects of cardiac function, resulting in more accurate predictions,
particularly in diagnosing and monitoring cardiac conditions.

3. Methodology
In this section, we explain the methodology adopted for multitasking in the context
of IEGM recordings. Utilizing a custom-built deep learning architecture, we integrate
multitask learning strategies to simultaneously address various aspects of cardiac signal



interpretation. The methodology is twofold, data handling and multitask neural network
process. The neural network architecture is designed to be compact with a low footprint,
facilitating integration into the NUCLEO-L432KC where resources are limited.

3.1. IEGM Database
The IEGM database is constructed based on the IEGM recordings provided by Singu-
larMedical [Suzhou Singular Medical Co., Ltd. 2023], which was used in the 2022
ACM/IEEE TinyML Design Contest [Jia et al. 2023]. Intracardiac electrogram (IEGM)
recordings from 90 patients with single-chamber ICDs, captured at a sampling rate of
250 Hz, were segmented and analyzed. The recordings were segmented using a 5-second
sliding window approach, with 150 points offset at each step, yielding segments comprising
1250 data points. Each 5-second signal segment provided a detailed representation of
the heart’s rhythm during that interval, enabling a thorough categorization of the cardiac
conditions.

These segments were classified into two primary groups: ventricular arrhythmias
(VAs) and non-VAs, which were further subdivided into eight specific rhythm categories:
Atrial Fibrillation (AFb), Atrial Flutter (AFt), Sinus Rhythm (SR), Supraventricular Tachy-
cardia (SVT), Ventricular Fibrillation (VFb), Ventricular Flutter (VFt), Ventricular Pre-
mature Depolarization (VPD) and Ventricular Tachycardia (VT). For the category of
life-threatening VAs, the corresponding sub-category labels include VT, VFb and VFt. For
the non-VAs, the segments are labeled with a sub-category label other than VT, VFb, and
VFt. Figure 2 presents two signals. The one above is a Non-VA beat and the other is a VA
one.

Figure 2. Representation of a non-VA signal (figure above) and a VA signal (figure
below). Source: adapted from [Jia et al. 2023].

To validate the robustness of AI/ML algorithms in practical, real-world scenarios,
these IEGM signals were allocated into training and testing sets on a patient-wise basis.



This approach ensured no patient data was present in both training and test sets, with
85% of the signals designated for algorithm training and the remaining 15% set aside
for evaluation, according to the training and testing data already provided by the 2022
ACM/IEEE TinyML Design Contest [Jia et al. 2023].

3.2. Data Handling and Preprocessing

The IEGM database is comprised of single-lead recordings from RVA-Bi leads of ICD
devices, each being extended over 5 seconds and sampled at a rate of 250 Hz, resulting
in 1,250 data points per recording being obtained. While labels for various classes of
arrhythmic beats are provided within this dataset, specific information on RR intervals is
not included. Given the necessity of RR interval data for the secondary task in the multitask
learning approach, this information is required to be computed for the training dataset.
The well-known Pan-Tompkins algorithm [Pan and Tompkins 1985] is utilized for peak
detection in this context. The algorithm is divided into several stages: (i) bandpass filtering
is applied to isolate the frequencies characteristic of QRS complexes, (ii) differentiation is
performed to enhance the slopes of the QRS segments, (iii) squaring is done to intensify
peak signals, (iv) moving-window integration is employed to consolidate these peaks,
and (v) adaptive threshold, coupled with decision logic, is used for precise QRS peak
identification. Additional refinement steps are taken to rectify potential errors, thereby
ensuring the reliable detection of QRS complexes under diverse conditions.

3.3. Multitasking

In the domain of machine learning, particularly in the context of neural network designs,
Multitask Learning (MTL) [Ruder 2017] emerges as a strategy that enables a model to
address multiple learning tasks simultaneously. Unlike traditional single-task learning
approaches that develop separate models for each task, multitask learning advocates for a
unified approach, optimizing a single model across various tasks. This learning strategy
tends to improve learning efficiency, elevate model generalization capability, and enhance
task-specific accuracy [Ruder 2017].

In the context of IEGM signal analysis, the multitask approach is designed for a
convolutional neural network. An initial series of shared convolutional layers, which extract
and refine signal features, is followed by the network branching out, with distinct pathways
being dedicated to different but related tasks: one for the classification of arrhythmias and
another for the quantification of a regression task: inference of RR-interval duration.

The general scheme of multitask learning is illustrated in Figure 3, showcasing
how shared and task-specific learning components interact within the network to foster
a richer understanding of the data. In this work, only the final class for classification is
specific, all the other layers are shared over all tasks.

3.4. IEGMNet

The work presented in [Hannun et al. 2019] demonstrated the efficacy of compact neural
network architectures in arrhythmia detection, which aligns with our goal to implement a
model with a limited number of convolutional layers. By adopting a multitask learning
strategy within a lightweight neural network, we aim to improve the model’s predictive
accuracy and ability to learn ECG signal patterns.
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Figure 3. A general scheme of multitask learning. Source: adapted from [Ruder
2017].

In this context, the IEGMNet is a convolutional neural network (CNN) designed
to process IEGM segments from ICD devices. The structure and Layers of IEGMNet is
presented in Figure 4.

conv 1     out_channels=3     kernel = (6,1)   ReLU

conv 2     out_channels=5    kernel = (5,1)   ReLU

conv 3    out_channels=10     kernel = (4,1)   ReLU

conv 4     out_channels=20     kernel = (4,1)   ReLU

conv 5    out_channels=20     kernel = (4,1)   ReLU

fc1 (256)  Linear

(1 x 1250 x1)

Figure 4. Architecture of the IEGMNet.



The IEGMNet can be summarized as follows:

• Network Input: IEGMNet accepts as input a one-dimensional tensor representing
a fixed-size IEGM segment (1250 data points). This data is reshaped into an input
tensor with dimensions [1, 1250, 1], preparing it for convolutional processing.

• First Convolutional Layer (conv1): This layer employs (6, 1) convolutional filters
to extract features from the input signal. It increases the input tensor’s depth to
three channels. ReLU activation and batch normalization are applied to enhance
training stability and efficiency.

• Second Convolutional Layer (conv2): Uses (5, 1) filters to deepen to five channels.
Continues with ReLU and batch normalization.

• Third Convolutional Layer (conv3): Utilizes (4, 1) filters, increasing the depth to
ten channels. Maintains ReLU and batch normalization.

• Fourth Convolutional Layer (conv4): Employs (4, 1) filters, expanding depth to
twenty channels. Again applies ReLU and batch normalization.

• Fifth Convolutional Layer (conv5): Keeps (4, 1) filters and depth at twenty
channels. Uses ReLU and batch normalization.

• First Fully Connected Layer (fc1): After convolutional layers, the network flattens
the tensor and processes data through a dense (fully connected) layer. Incorporates
dropout for regularization and overfitting reduction. Outputs a 256-element feature
vector.

3.5. Hydranet: A multitasking network

IEGMNet is selected as the foundational architecture for our analytical methodology,
specifically designed for the analysis of IEGM signals following preprocessing. This
convolutional neural network (CNN) is characterized by a sequence of convolutional
layers, which are followed by the application of ReLU activation and Batch Normalization.

Based on IEGMNet, the HydraNet is further developed as an architecture that
adopts multi-task learning to cope with this work analysis. HydraNet is an evolution
of IEGMNet, characterized by its division into two distinct branches after the feature
extraction phase, each targeting a specific output: one branch is dedicated to Arrhyth-
mia Classification (AC), focusing on discerning arrhythmic patterns, and the other to
Regression-Related metric (RR-interval prediction). This bifurcation allows the model
to leverage a wider spectrum of signal insights, thereby facilitating a more comprehen-
sive interpretation of IEGM data. Figure 5 displays the proposed multitask HydraNet
architecture.

The HydraNet takes the IEGMNet 256-feature output vector as input to each branch.
Each HydraNet’s branch is a sequence of dense (fully-connected) layers and a specific
activation according to the task-specific output. The RR branch uses a linear layer followed
by ReLU activation and another linear layer to produce the final output, employing a
Mean Absolute Error (MAE) loss function suitable for regression tasks. Similarly, the
AC branch uses a linear layer followed by ReLU and another linear layer, utilizing binary
cross-entropy loss to the classification task.

The training process for HydraNet integrates a unified loss function addressing
both classification and regression objectives. To formally define the loss function of
HydraNet, consider the network’s output for two tasks: Arrhythmia Classification (AC)
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Figure 5. Proposed multitask Hydranet.

and Regression Task (RT) metric estimation, such as the RR interval. Let yAC denote
the true label for the arrhythmia classification task, and yRT represent the true value for
the regression task (e.g., the RR interval). Correspondingly, let ŷAC and ŷRT denote the
predicted outputs for these tasks.

The loss function for HydraNet can be defined as a weighted sum of the loss
functions for the AC and RT tasks. For the AC task, the binary cross-entropy loss is
employed, denoted as LAC , which is suitable for binary classification tasks. For the RT
task, the L1 loss function is selected, denoted as LRT , which is appropriate for regression
tasks due to its robustness to outliers. The overall loss function, L, for HydraNet can thus
be defined as:

L = λACLAC(yAC , ŷAC) + λRTLRT (yRT , ŷRT ), (1)

wherein λAC and λRR are weighting coefficients that adjust the relative importance of each
task’s loss to the overall cost function. LAC can be defined as:

LAC(yAC , ŷAC) = − [yAC log(ŷAC) + (1− yAC) log(1− ŷAC)] (2)

which represents the binary cross-entropy loss for the AC task, and LRT defined as:

LRT (yRT , ŷRT ) = |yRT − ŷRT | (3)

which represents the MAE loss for the RR regression task.

This formulation allows HydraNet to optimize for both the AC and RT tasks simul-
taneously, leveraging shared features and insights to improve performance on both tasks.
The choice of λAC and λRT can be determined empirically to balance the contributions of
each task to the overall learning objective.



3.6. Hardware Platform and Design Setup

The experiments were conducted on a NUCLEO-L432KC development board equipped
with an ARM Cortex-M4 processor operating at 80 MHz, backed by 256 KiB of flash
storage and 64 KiB of SRAM. Additionally, it includes an integrated ST-LINK/V2-1 for
efficient debugging and programming. Notably, the board’s operational power consumption
is approximately 30 mW, dropping to 1.5 mW in idle mode, making it an excellent choice
for energy-sensitive embedded applications, including those in ICDs.

Further enhancing its utility, the board is compatible with the STM32 X-Cube-AI,
an extension of the STM32Cube that facilitates the deployment of AI applications. This
feature enables the automatic translation of pre-trained AI algorithms, encompassing
both neural networks and traditional machine learning models, for direct integration
into the project. The efficiency and lightweight design of the IEGMNet architecture are
especially beneficial for the constrained environments of micro-controllers, ensuring that
sophisticated AI models can be deployed without exceeding the limited memory and
processing resources.

3.7. Evaluating metrics

The proposed algorithm is evaluated using three parameters: Fβ, Inference Latency, and
Memory Occupation. Equation 4 presents the Fβ score, which computes the confusion
matrix of the classification generated by the algorithm on the testing database. The case
positive is VAs:

Fβ =
(
1 + β2

)
× Precision × Recall

(β2 × Precision) + Recall
(4)

with β = 2.

This configuration prioritizes recall to enhance the detection of critical VAs, which
is essential for ICD functionality. By emphasizing recall, the goal is to capture as many
VA events as possible, minimizing the risk of missing any life-threatening conditions.
Simultaneously, the strategy strives to maintain precise identification of non-VA instances,
thus minimizing the potential for administering inappropriate shocks, thereby optimizing
patient safety and the dependability of the ICD system.

For assessing practical performance, we evaluate Inference Latency and Memory
Occupation. Specifically, Inference Latency, denoted as L in milliseconds, quantifies the
response time of the algorithm when processing data on the NUCLEO-L432KC, reflecting
its efficiency during real-world operation. This latency metric L is subsequently normalized
according to Equation 5 to provide a standardized measure.

Ln =

(
1− L−MinL

MaxL −MinL

)
(5)

where MinL = 1ms and MaxL = 200ms.

4. Experiments and Results
In this section, we detail the experiments designed to test our approach concerning the
feasibility of deploying a multitask architecture model within a common ICD embedded
system, that has limited processing capabilities and memory.



The evaluation of the inference performance of the trained model is conducted
on the NUCLEO-L432KC. However, the training is conducted on a machine with Intel
i9-10900, along with 128GB DDR4 RAM and an RTX 3090 GPU with a dedicated memory
of 24GB GDDR6X. For model manipulation, we used the PyTorch framework version
1.10.1 and Scikit-Learn version 1.2.1 for metric calculation.

The model was trained for 20 epochs, initial learning rate of 0.0001 and the Adam
optimizer.

4.1. Results and Discussion

The computed Fβ score with β = 2 stands at 0.88, reflecting the classification capability,
particularly by emphasizing recall in the context of ventricular arrhythmia detection. The
importance of this score lies in its consideration of both the precision and the sensitivity
of the algorithm, with a greater emphasis on minimizing the possibility of missed life-
threatening arrhythmias.

The confusion matrix presented in Figure 6 illustrates the model performance on
the test set. With 3048 true negatives and 2178 true positives, the model shows the ability
to correctly classify non-VA and VA events respectively. However, it is important to note
the presence of 188 false positives and 211 false negatives, which indicate instances where
the model has incorrectly classified the events. Despite these discrepancies, the model
achieves an accuracy of 93.55%, which indicates its overall reliability.
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Figure 6. Model’s confusion matrix

The latency of 59.96 ms in model inference and the total flash memory consump-
tion of the algorithm stands at 225.98 KiB is significant concerning since its close to
the STM32’s memory capacity of 256 KiB. The efficient memory usage highlights the
algorithm’s compatibility with the STM32 microcontroller, which is known for its use
in medical devices including defibrillators due to its reliability and computational power.
The memory footprint is especially critical since it allows for additional functionalities
and updates to be accommodated within the same hardware, future-proofing the device’s
capability.

In summary, the detailed results underline the algorithm’s robustness and efficiency



in detection, speed, and memory usage, affirming its suitability for integration into STM32-
based ICDs where accurate and timely detection of VAs is vital for patient safety.

5. Conclusion

This study explored the implementation of neural networks in implantable cardioverter
defibrillators (ICDs) for effective arrhythmia detection within resource-constrained envi-
ronments. The aim of this work is to verify whether an efficient, multitask learning-based
neural network could operate within the typical processing environment of an ICD, specifi-
cally the NUCLEO-L432KC. The experimental results demonstrated that the proposed
multitask learning model, which combines ventricular arrhythmia detection with RR in-
terval regression, was able to diagnose arrhythmias within a compact, resource-efficient
framework, achieving an Fβ score of 0.88 and an accuracy of 93.55%, with a inference
latency of 59.96 ms. These results demonstrate the feasibility of integrating the proposed
multitask neural network within ICDs.

For future work, we aim to explore the impact of quantization on larger architec-
tures. The process of quantization, which reduces the precision of the network parameters,
offers the potential for significant reductions in model size, making it particularly appealing
for deployment on resource-constrained devices. By investigating how larger neural net-
work architectures respond to quantization, we seek to identify optimal trade-offs between
model complexity, performance, and efficiency.
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