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Abstract. The blood diagnosis of diabetes mellitus (DM) is accurate, but 
invasive. Attenuated Total Reflectance by Fourier Transform Infrared 
Spectroscopy (ATR-FTIR) is a green technology adopted in the detection of 
several diseases resulting in a non-invasive and accurate diagnosis. The 
analysis of ATR-FTIR data using deep learning techniques like Convolutional 
Neural Network (CNN) is promising. However, the challenges to find 
optimized architectures are barely explored in the ATR-FTIR literature.  In 
this paper, we propose an Evolutionary Neural Architecture Search technique 
able to find optimized CNN architectures for salivary ATR-FTIR spectra for 
type 2 DM diagnosis using Genetic Algorithm as optimization approach. 

1. Introduction 
The diabetes mellitus (DM) is a condition in which the organism is not able to 
specifically use the insulin it produces or cannot produce it in sufficienty quantity. This 
illness can cause disfunctions in several organs such as kidneys, eyes, brain and others. 
This endocrine disorder is a worldwide epidemic and presents a significant rate of 
morbidity and mortality associated both with the condition of DM and the cost 
associated with its management and treatment [Azhar et al. 2020].     

There are two types of DM: type 1 diabetes (DM1), in which the patients are 
unable to produce insulin, which leads to the need for hormone replacement and the 
type 2 (DM2), which is more common than type 1 DM where the causes are generally 
associated with obesity and overweight. It is characterized by insufficient insuline 
production or inappropriate use of the hormone [Cho et al. 2018]. 

 Therefore, a quick and premature diagnoses of the disease is essential to avoid 
serious consequences and provide a better quality of life for the patient. The 
convencional methods for diagnoses are: glycated haemoglobin test (HbA1C), fasting 
plasma glucose test (FPG) and oral glucose tolerance test (OGTT). This thecniques use 
blood extraction to diagnosis, which causes discomfort to the patient and, in some cases, 
a high economic investiment, that is due to the materials and procedures necessary to 
carry out the tests [Care and Suppl 2021]. 
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The attenuated total reflection Fourier-transform infrared (ATR-FTIR) 
spectrocopy is an alternative for a rapid diagnosis, which can facilitate treatment and 
consequently improve the patient’s quality of life. This technique is simple, sensitive 
and reproducible, being able to provide an objective diagnostic prediction for diabetes [ 
Contreras-Rozo et al. 2023], [Nogueira et al. 2022].  

Infrared spectroscopy analysys characterizes molecular bonds and functional 
groups in solid, liquid and gaseous samples, which allows its application for several 
purposes, such as: identification of animal species [Zhang et al. 2024] and bioscreening 
tool for breast cancer [Souza et al. 2023], for example. This technique is based on the 
principle that light changes the fundamental frequency of vibration of the molecules and 
that different materials have different absortion rates in the infrared wave band. 
According to these changes, the spectroscopy analysis can be used for both qualitative 
and quantitative analysis of a material [Yang et al. 2019].  

Consequently, applying ATR-FTIR to a sample obtained with minimal patient 
invasion such as saliva can facilitate the diagnoses of diabetes, [Caixeta et al. 2020]. In 
this context, some approaches [Caixeta et al. 2023], [Sánches-Brito et al. 2021] have 
proposed and analysed the usage of machine learning algorithms to perform diabetes 
mellitus diagnosis by classifying the spectra generated by ATR-FTIR spectroscopy. 

Among the machine learning methods present in the literature, deep learning 
techniques, especially Convolutional Neural Networks (CNN), are considered promising 
in this matter [Zeng et al. 2024], [Santos et al. 2023]. However, the challenges to find 
optimized architectures are a barely explored topic in the ATR-FTIR literature. In view 
of it, the paper’s main contribution is to propose the use of Evolutionary Neural 
Architecture Search as an approach to find a Convolutional Network that efficiently 
performs the diagnosis based on salivary ATR-FTIR samples. To this search, the 
Genetic Algorithm was applied as evolutionary optimization algorithm to find the best 
architecture from a macro space search point of view. The study was conducted with 
real salivary ATR-FTIR data collected at the Clinical Hospital of the Federal University 
of Uberlandia. It included 68 subjects: 23 non-diabetic individuals and 45 uncontrolled 
type 2 DM patients. 

The remainder of this paper is organized as follows. In Section 2, related works 
with the analysis of ATR-FTIR with machine learning is discussed. In Section 3, the 
problem formulation and the materials and methods applied are discussed. In Section 4, 
the proposed evolutionary neural architecture search is presented. In Section 5, the 
experimental results obtained with the proposed work and the real data are detailed and 
discussed. And finally, in Section 6 the conclusions of this paper are presented. 

2. Related Works 
The usage and comparison of different Machine Learning techniques for classifying 
ATR-FTIR samples is well discussed in the literature. In [Dou et al. 2023], different 
implementations of SVM and LDA were compared when applied to gallbladder cancer 
diagnosis from dried serum samples. In [Nogueira et al. 2021], a model based on partial 
least squares (PLS) associated with cosine KNN was implemented for COVID-19 
diagnosis from swab suspension fluids. Complementing this context, the usage of 
Artificial Neural Networks and Convolutional Networks has proven to be good machine 



  

learning tools associated with ATR-FTIR samples. In [Guo et al. 2023], different 
machine learning techniques were analyzed as a tool for diagnosing lung cancer from 
blood samples, where the back propagation neural network obtained better results. In  
[Jiang et al. 2021], a CNN was used to classify 10 different types of plastic materials, 
obtaining an accuracy of 87 %. In  [Zeng et al. 2024], again a CNN was implemented to 
detect and identify microplastics obtaining better results compared to other techniques. 

Regarding the study of diabetes, the use of neural networks and other machine 
learning techniques for diagnosing and monitoring the disease is also common in the 
literature. In [Caixeta et al. 2023], the usage of SVM and LDA was tested to type 2 DM 
diagnosis. In this scenario, the SVM got the best results and the band areas values of 
2962 cm-1, 1641 cm-1 and 1073 cm-1 where higher in type 2 DM than in non-diabetic, 
which importance was clear in a SHAP graph obtained. In [Sanchez-Brito et al. 2021], a 
comparison is made between the usage of different techniques such as SVM and ANN 
for DM2 diagnosis with salivary ATR-FTIR spectroscopy, in which a suggested ANN 
architecture obtained the best results. In [Sánchez-Brito et al. 2021], again different 
machine learning techniques were evaluated for diagnosis with the addition of 
classifying patients between low, normal and high glucose values and a precise 
estimation of a specific glucose value from ATR-FTIR spectroscopy. 

Among the usage of Genetic Algorithm (GA) with ATR-FTIR, the most 
frequent application is in the preprocessing step where it is used frequently to highlight 
the useful and most importante ATR-FTIR wavelength to facilitate the prediction or 
classification by a Machine Learning Algorithm. In [Asghari 2020] and in  
[Mohammadi 2021], this preprocess was used in a comparison between PLS and 
Support Vector Regression for determination of oxygenate in gasoline and for a 
quantitative determination of resins in oil samples, respectively. In [Zandbaaf 2022], 
GA was used again for wavelength selection, but with an artificial neural network to 
predict the breakdown voltage for transformer oils samples. 

Another implementation of evolutionary algorithms in conjunction with 
classifiers is the usage of these tools to find the ideal neural network architecture, which 
is known as Evolutionary Neural Architecture Search. Inspired by the possibility of 
using bio-inspired algorithms for this optimization purpose and by the fact that the 
application of this concept is not very common in ATR-FTIR samples, this paper is 
intended to be a proof of concept of this kind of implementation. 

3. Materials and Methods 

3.1. Data Collection 

The data was collected at the Clinical Hospital of the Federal University of Uberlandia 
(HC-UFU, Uberlandia, Minas Gerais, Brazil) after approval of the Institutional Review 
Board of the Federal University of Uberlandia. The inclusion criterion were: adults 
between 18 and 85 years old, both genders, patients from the Endocrinology Outpatient 
Clinic of the Hospital mentioned, diagnosed with type 2 diabetes mellitus or patients 
without diabetes mellitus. The study group included 68 subjects: 23 non-diabetic 
individuals and 45 uncontrolled type 2 diabetic patients. Figure 1 shows the mean 
spectrum of non-diabetic and type 2 diabetic groups. Originally, this data was obtained 
for the study carried out in [Caixeta et al. 2023]. 



  

 3.2. Genetic Algorithm 
The Genetic Algorithm (GA) is an adaptative search method that is inspired by Charles 
Darwin’s Theory of Evolution by natural selection, in which the individual best adapted 
to the environment has a greater chance of surviving compared to the less adapted. In this 
way, this method uses procedures and representations inspired by the process of 
evolution to find an approximate solution to search and optimization tasks. 

 In this context, the GA search space is scanned by a set of N individuals, called 
population. Each individual in this population is a potential solution to the problem and 
it is formed by a chain of genes, which are a numerical or binary representation of the 
parameters to be optimized in the problem. 

 The search and optimization process takes place through successive evolutions 
applied to the population, in which only individuals who present the best results, known 
as Fitness, are maintained. Generally, a convergence parameter is defined, which can 
be, for example, a number G of generations, to define the result, which in this case, is 
represented by the best individual of the last generation.  

 The process of evolution consists of 4 stages: selection, crossover, mutation and 
reinsertion. In the selection, pairs of individuals which will participate in the evolution 
process and generate new individuals for the search are selected.  

 In crossover, each pair of individuals goes through a gene exchange process, 
thus generating two new individuals.  After the generation of new potential solutions, 
the mutation process occurs, which aims to further diversity the new individuals 
generated. Generally, in this process, some of the new individuals are selected to 
undergo random changes in their genes. 

 After the process of mutation, the reinsertion occurs, in which the new 
individuals become part of the population of the new generation or not. Initially, the 
fitness of these individuals is calculated, and a rule is applied to define which N 
individuals, based on their fitness, will be part of the new generation. For example, in 
ordered reinsertion, the new population is composed of the N individuals with the best 
fitness between the newly generated ones and the last generation’s ones. Finally, the 
gene of the best individual in the last generation is decoded, thus generating a solution 
to the applied problem. 

 

Figure 1. Representative average ATR-FTIR spectra in saliva of non-diabetic 
subjects and type 2 diabetes patients. 



  

3.3. Neural Architecture Search (NAS) 
Generally, the process of finding the ideal design for an artificial neural network is a 
laborious, often time-consuming task that depends on the expertise of the executor. In 
view of this, the goal of NAS is to automate the process of finding the ideal design 
formulating this task as an optimization problem. 

 According to [Elsken et al. 2019], a standard NAS pipeline involves three main 
components: the search space, which defines how the architecture is represented, the 
optimization algorithm that is reponsible for generating architectures suitable for the 
problem with pre-established criteria and an evaluator to estimate performance between 
the different architectures tested. 

 The NAS application is divided into two types of search space: micro and macro 
space search. In micro space search, the objective is to obtain a computational module, 
known as cell, which is repeatedly stacked to form the network architecture following a 
prerequisite model. In turn, the macro space search consists of designing the skeleton of 
the network, maintaining the layers with pre-established designs, changing only the 
number of layers and the number of their channels and neurons, for example. 

 From an optimization point of view, NAS is intrinsically a multi-objective 
optimization problem, which makes the application of multi-objective evolutionary 
optimization reasonable [Cheng et al. 2022]. Therefore, the application of GA to this 
problem becomes trivial [Wen et al. 2022], [Garcia-Garcia et al. 2023]. 

4. GA Neural Architecture For ATR-FTIR Spectra Analysis 
For the problem of diagnosing diabetes, a macro space search application was selected. 
In this context, the aim is to optimize the number of channels in the convolutional 
layers, the number of fully connected layers, in addition to the number of neurons that 
make up each layer, the dropout rate applied in the dropout layers and the learning rate. 

 Essentially, the base architecture to be optimized is represented in Figure 2, 
which is composed of two convolutional layers with kernel size equal to 5x5 and stride 
equals to 1, each of which is followed by a max pooling layer with kernel size equal to 
2x2 and stride of 2. The fully-connected part can be composed of up to 3 layers, each 
layer being followed by a dropout layer. In the end of the architecture, the last layer is 
composed of a single neuron, which returns the classification result. 

 Figure 3 presents the chromossome representation of the GA proposed for CNN 
architecure search. A population of 100 individuals was defined, in which each 
individual is composed of 10 genes with 3-digit binary values, that is, with a range from 
000 to 111. The first two genes (CL1 and CL2) represent the number of channels of the 
two convolutional layers. From gene 3 to 8, the neuron numbers of each fully-connected 
layer are defined interspersed with the dropout rate value of the dropout layer. In gene 
9, the learning rate is represented and in gene 10, the number of fully-connected layers 
implemented in the architecture is defined. 

 



  

 To convert the gene value to the network parameters, initially they were 
transformated integers and then applied to the following relations. The numbers after 
the gene represent the position in the chromossome representation: 

•  Number of channels: CL1 = 2gene1 

• Number of channels: CL2 = 2gene2 

• Neurons number: FC1,2,3 = 2(genej + 3), with j ∈ {3, 5, 7} 
• Dropout rate: DL1,2,3 = 0,03(genej), with j ∈ {4, 6, 8} 

•  Learning rate: LR = 10-gene9 

• Fully-connected configuration: 

o gene10 = 1 or 2 or 3: 1 fully-connected layer  

o gene10 = 3 or 4 or 5: 2 fully-connected layers 

o gene10 = 6 or 7: 3 fully-connected layers 

In all fully connected layers configurations, the layer is followed by a dropout 
layer with dropout rate set by the next gene on the chromosome.  Figure 4 presents the 
main steps of the GA developed to optimize the CNN architecture. The overall 
technique can be understood in terms of the following steps: 

 Evaluate Population/new individuals. To evaluate the different models 
generated by the Genetic Algorithm, cross-validation with 4 folds was used. To train 
each model, balanced accuracy was used as the metric in a 5-epoch training. The fitness 
metric defined was the area under the ROC curve, which defines the quality of a 
classifier by how close this area is to 1. Furthermore, a penalty of 30% of the fitness 
value was applied if the individual presented an increasing number of neurons in two 
consecutive fully connected layers. The population size was defined as 100 individuals 
and the convergence parameter was defined as 50 generations. 

Selection. Roulette with 30 pairs per generation was considered here. This 
method uses the individual fitness percentage value in relation to the sum of the fitness 
of the entire population. A number is drawn and the individual who occupies that range 
in the interval is selected. Therefore, the higher the fitness, the greater the probability of 

 

 

Figure 3. Chromossome representation of the Genetic Algorithm applied. 

Figure 2. Base architecture defined for the Evolutionary NAS. 



  

selection. As there are 30 pairs, 60 individuals are drawn, with the possibility of 
repetition, to generate the groups. 

 Crossover. The method used was the simple crossover, in which a random 
cutoff point is defined for each pair of selected individuals. Each individual in the pair 
generates a new one that is composed of its genes up to the cut point and the genes of 
the other individual in the pair in the rest of the chromosome. 

 Mutation. The mutation was carried out in 10 individuals chosen at random 
from the 60 generated ones in the crossover. For implementation, one bit was selected 
from the 30 that make up the chromosome to be replaced by its complement.  

 Reinsertion. Ordered reinsertion was used to define the individuals from 
subsequent generations.  

5. Experimental Results 
To evaluate the implementation of the proposed GA for CNN architecture search, the 
original 68 ATR-FTIR spectra dataset was divided into a training set with 51 instances 
and a test set to validate the architecture with 17 instances defined randomly. 

 The best solution obtained by GA was implemented according to the CNN 
architecture search step, however 200 epochs were used to fit the final CNN model 
instead of 5 in the training set. The GA was also executed 3 times to better evaluate the 
proposed encoding. The metrics used in the evaluation on the test set were balanced 
accuracy, macro F1 score, recall, precision, specificity and the area under the curve.  

5.1. Architectures, Hyperparameters and Predictive Performance 
Table 1 shows the architectures and hyperparameters found by our technique over each 
one of the three executions, and Table 2 presents the predictive results obtained by each 
one of those configurations on the test set. For example, in first execution, GA obtained 

 

Figure 4. Search process fluxogram. 



  

a CNN with 2 and 64 neurons respectively at first and second convolutional layers, and 
two fully connected layers with 128 and 16 neurons, with 0 and 0.21 of dropout rate, 
respectively. Such a configuration achieved a balanced accuracy of 0.83 and macro F1 
of 0.86.  

 As one can see, all the configurations obtained by GA presented good values for 
most measures. The recall (a.k.a sensitivity) values for the three models are very high, 
which indicates that the positive class classification is generally good. In other words, 
the correct diagnosis of a patient with diabetes is well performed by the models. The 
value of 1 indicates that the first and the second design made the correct diagnosis for 
all the patients with diabetes.  

 In general, although the three configurations obtained by our technique 
presented competitive performance in terms of GA fitness (close to 0.7), the first 
configuration presented the best results compared to the others. The second and third 
configurations presented difficulty in the classification of the non-diabetic patients. In 
relation to the architectural parameters, the difference of the first model is the 
convolutional layers. It has more filters, which proved to be fundamental for the 
classification of the minority class of the dataset, resulting in a better specificity. 

5.2. Interpretability Analysis 

To complement the performance of the first model the Shapley Additive Explanations 
(SHAP) was obtained. The SHAP is an approach that calculates the contribution of each 

Table 1. Genetic Algorithm’s Design results 

EXECUTION 
NUMBER CL1 CL2 FC1 D1 FC2 D2 FC3 D3 LR 

1 2 64 128 0 16 0.21 0 0 0.0001 

2 4 32 16 0 16 0.03 32 0.12 0.001 

3 2 32 128 0.18 0 0 0 0 0.001 

Table 2. Network’s performance 

EXECUTION 
NUMBER 

BALANCED 
ACCURACY 

MACRO 
F1 

SCORE 
RECALL PRECISION 

AREA 
UNDER 

THE 
CURVE 

SPECIFICITY GA’S 
FITNESS 

1 0.83 0.86 1 0.85 0.91 0.67 0.73 

2 0.75 0.77 1 0.80 0.83 0.5 0.7 

3 0.70 0.72 0.91 0.77 0.76 0.5 0.71 



  

feature to the target value [Akulich et al. 2022]. This SHAP value obtained for each 
feature helps to understand which bands in ATR-FTIR are the most important to 
discriminate non-diabetic individuals and type 2 diabetic patients.  The SHAP feature 
importance is presented in Figure 5, which indicates the main vibrational modes 
responsible for the detection of type 2 diabetic patients. Most of these modes indicates 
that proteins have contributed in the detection of diabetic and non-diabetic individuals. 

6. Conclusion 
Early diabetes diagnosis can reduce complications of the disease through treatment. With 
progress in the application of portable ATR-FTIR devices [Butler et al. 2019], the 
development of non-invasive methods for diagnosis as well as monitoring has great 
potential to be applied at any place, which can be help for disease prevention and control. 

The present study seeks to contribute to the application of ATR-FTIR devices in 
medical environments, providing a more accurate, non-invasive and low-cost DM 
diagnostic. In this context, different works have applied the concepts of machine 
learning with these spectroscopic signals to be able to recognize diabetes. In  the case of 
using CNNs, the results are directly influenced by their architecture and the chosen 
hyperparameters, which definition is not a trivial task. In this paper the concept of 
Evolutionary Neural Architecture Search was applied using a GA to automate the 
definition of the architecture and hyperparameters without the need for deeper 
knowledge of the data and neural network architecture design to obtain good results. 

With the GA encode defined in this paper, a convolutional network architecture 
was obtained that presented a balanced accuracy of 0.83, macro F1 score of 0.86 and 
specificity of 0.67. Therefore, it was possible to obtain a good convolutional network 
model applied to the diagnosis of diabetes through salivary ATR-FTIR spectroscopy 
without the need for pre-processing, specific modifications to the original samples and 

 

Figure 5. Feature importance (SHAP value) graph for the first design. 



  

in-depth knowledge on the subject. As future works, the improvement of the NAS 
strategy in order to achieve even better predictive performance can be done. 
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