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Abstract. Considering the human-machine relationship, affective computing
aims to allow computers to recognize or express emotions. Speech Emotion
Recognition is a task from affective computing that aims to recognize emotions
in an audio utterance. The most common way to predict emotions from the
speech is using pre-determined classes in the offline mode. In that way, emotion
recognition is restricted to the number of classes. To avoid this restriction, di-
mensional emotion recognition uses dimensions such as valence, arousal, and
dominance to represent emotions with higher granularity. Existing approaches
propose using textual information to improve results for the valence dimension.
Although recent efforts have tried to improve results on speech emotion recog-
nition to predict emotion dimensions, they do not consider real-world scenarios
where processing the input quickly is necessary. Considering these aspects, we
take the first step towards creating a bimodal approach for dimensional speech
emotion recognition in streaming. Our approach combines sentence and audio
representations as input to a recurrent neural network that performs speech-
emotion recognition. Our final architecture achieves a Concordance Correla-
tion Coefficient of 0.5915 for arousal, 0.1431 for valence, and 0.5899 for domi-
nance in the IEMOCAP dataset.

1. Introduction
Our emotions play a subjective and controversial role, vital to our psychic survival. Un-
derstanding, to a certain extent, the emotions of other people and how they express them
is fundamental to relating to each other as a society. For example, while fear is a natural
protective regulator and aids decision-making, anger allows us to set limits and develop
our sense of justice. An example of the importance of understanding emotions is that in
autistic people, persistent deficits in emotional reciprocity and non-verbal communica-
tion, along with other factors, can lead to greater difficulty in communication and social
interaction [Association 2022]. Based on this, emotion recognition is more a perspective
than an exact science.

Besides the ways used to determine emotions in psychology, two approaches
have been used to recognize emotions using deep learning: discrete classes and dimen-
sional [Lieskovská et al. 2021]. In discrete classes, the six emotions considered essential
by [Ekman 1999]: anger, disgust, fear, happiness, sadness, and neutral are used, where



the model must classify the input according to the most correlated class. On the other
hand, [Russell 1980] defines a dimensional approach through the circumplex model of
affect. The circumplex model considers two dimensions: arousal and valence. Each di-
mension has a value that ranges from -1 to 1. Arousal is related to calming or exciting
the tonality of speech, while valence represents how pleasant or not it is. With the score
of each dimension, it is possible to correlate to a specific emotion. For example, fear
and anger can be defined with low valence and high arousal. [Mehrabian 1996] adds the
dominance dimension, representing how emotion influences a person’s behavior. It is im-
portant that models recognize emotions and respect each person’s idiosyncratic diversity.

Leaving the direct application in psychology, different sectors benefit from recog-
nizing emotions daily. The review by [Geetha et al. 2024] identifies sectors like educa-
tion, healthcare, marketing and advertising, human-robot interaction, security and surveil-
lance, customer service, sports, entertainment, gaming, and the automotive industry. Con-
versely, the preoccupation with privacy and the possible emotional state exploration to
induce the user to buy some services or products is discussed by [Testa et al. 2023].

The lack of data for training and testing deep learning models makes it dif-
ficult for the field of SER to grow [de Lope and Graña 2023]. Existing datasets
have a small amount of available data, are less diverse than necessary, or are
too different from real-world data. Even when focusing only on speech emo-
tion recognition, it is necessary to consider that human emotion perception in-
volves multiple senses, being multimodal [Geetha et al. 2024]. So, to overcome,
and extract more information from only spoken data, the use of textual infor-
mation can improve the precision of the predictors. Some authors have already
shown that using text features, such as word embeddings, improves valence pre-
diction [Triantafyllopoulos et al. 2022, Srinivasan et al. 2022, Ghriss et al. 2022,
Atmaja and Akagi 2020, Atmaja and Akagi 2021, Sogancioglu et al. 2020,
Julião et al. 2020]. However, including new features in the processing usually in-
creases the time necessary to generate an output. For instance, the inclusion of text
features requires first transcribing the audio to use it as input.

The main problem is that the existing approaches for speech emotion recogni-
tion do not evaluate the processing time necessary to extract the information from audio
and predict the emotion dimensions. Also, there are no dimensional applications in the
streaming environment. In this way, the main aim of this work is to create an architecture
for speech emotion recognition that is useable in a streaming environment. We combine
audio and sentence embeddings for speech emotion recognition to make this possible. In
addition, we empirically show the effectiveness by evaluating the time necessary to extract
and process the features, the Mean Squared Error (MSE) metric for emotion recognition,
and the Word Error Rate (WER) for automatic speech recognition.

The article is divided into three sections: first, we discuss some related works and
the main differences between them and our proposal in Section 2. Our main findings are
presented in Section 3, where we present our final architecture and compare the results
with state-of-the-art approaches. Finally, Section 4 discusses our contributions and future
directions.



2. Related Work

In this section, we introduce some related work found in the literature. We divide the
analysis of the related works in two ways: (1) approaches that use dimensional emotion
recognition and text features; and (2) approaches that apply their models in a streaming
scenario. This division was necessary because we did not identify any work that used a
bimodal model with dimensional data in a streaming scenario. For the specific scenario,
we have only a few models that use classes and audio-only data.

Using text features, more precisely word embeddings, demonstrably improves
results on the valence dimension. While the dominance and arousal are affected
only by the acoustic features [Triantafyllopoulos et al. 2022, Srinivasan et al. 2022,
Ghriss et al. 2022, Atmaja and Akagi 2020, Atmaja and Akagi 2021,
Sogancioglu et al. 2020, Julião et al. 2020]. We notice the use of GloVe
by [Atmaja and Akagi 2020, Atmaja and Akagi 2021] and more recent approaches,
such as BERT [Srinivasan et al. 2022, Julião et al. 2020, Sun et al. 2020] and a deriva-
tion of it called camemBERT [MacAry et al. 2021], and DeBERTaV3 [Ispas et al. 2023].

All of them use word representation level. We evaluate the use of sentence-level
representations. This is because we will infer the emotion based on a sentence, not for
each pronounced word. Keeping on that way, the meaning and the context of the words
in the sentence.

Using dimensional approaches, we found a focus on the acoustic features used.
For example, we used eGEMAPS and ComParE feature sets, which improved SER
results. Considering emotions, audio embeddings were explored in the music emo-
tion recognition task. [Koh and Dubnov 2021] evaluate L3-Net [Cramer et al. 2019]
and VGGish models. For SER, [Wang et al. 2022] explored VGGish, but for cat-
egorical evaluation, while for dimensional [Julião et al. 2020] explored the use of
x-vectors [Snyder et al. 2018] embedding, [Sun et al. 2020] even evaluated the use
of VGGIsh, but not for the bimodal approach. More recent approaches con-
sider the use of w2v2 [Triantafyllopoulos et al. 2022] and HuBERT [Ispas et al. 2023,
Srinivasan et al. 2022] to generate the representations. Independent of the method to ex-
tract the features from the audio, even using pre-trained models or hand-crafted options,
none had the time to process this information. Our approach compares the ComParE,
eGeMAPS, pAA feature sets, and TRILL and VGGISH models for audio embeddings.

Focusing on approaches developed for streaming scenarios, we only found works
that use classes. Also, our focus is on bimodal features, while [Stolar et al. 2017],
[Bertero et al. 2016], and [Lech et al. 2020] use only acoustic features. Another point
is that these papers are from before 2020, and after that, we do not have publications that
focus on SER that run on a streaming environment, different from the ASR task, where
we have some new approaches over the years, such as [Dominguez-Morales et al. 2018,
Singh et al. 2019, Leow et al. 2020] and [Saeki et al. 2021]. It is important to no-
tice that only [Lech et al. 2020] provides metrics for evaluating streaming scenarios.
[Stolar et al. 2017] and [Bertero et al. 2016] only mentioned that their approaches are in
real-time but do not show the result.

Dimensional Speech Emotion Recognition has many potential applications in the
real world. Using dimensions, it is possible to map and identify anxious traces and reac-



tions, check if a class is boring to the students, detect if a driver is tired while driving, and
determine customer satisfaction, among other things. However, there is a gap between
the literature and the real world, in which we have many approaches for SER, but no one
is built to support real-world scenarios with processing information as soon as they are
available. Models that run on a streaming environment must be fast enough to bring re-
sults as soon as information arrives, but they also need good output accuracy. Because
of this, this work aims to combine SER, deep learning, and streaming to build a robust
approach that can be applied to the real world.

3. Proposed Architecture

This section presents our proposed approach to recognizing emotions in speech in a
streaming environment. We combine sentence embeddings with audio embeddings to
generate representations from text and audio information. Then, we predict the arousal,
valence, and dominance values through an LSTM network. The following sub-sections
present the dataset, proposed architecture, evaluation results, and streaming application.

3.1. Dataset

To evaluate our experiments, we use the IEMOCAP (The Interactive Emotional Dyadic
Motion Capture) dataset [Busso et al. 2008]. IEMOCAP contains multimodal informa-
tion, combining video, speech, motion capture of face, and text transcriptions. Using
different sources of information can lead to more robust predictions. However, in some
cases, visual information is not available. From the features on the dataset, we use speech
and text transcriptions in our approach. In total, the dataset contains approximately 12
hours of speech. IEMOCAP provides an AVD score and an emotion class annotation for
each utterance. VAD scores range from 1 to 5. The dataset contains approximately 12
hours of speech. Since IEMOCAP does not contain information about the split ratio, we
divided it into 60/20/20 ratios for training, testing, and validation. The validation set was
used to compute the results of all experiments. In total, the 1992 utterances from the
dataset have 8909 seconds of duration.

We normalized to a -1 to 1 scale with the Equation 1. This normalization is since
the original Russel approach uses the -1 to 1 scale, which is the pattern we use in our final
architecture.

x−
(
max−min

2
+ 1

)
max−min

2

(1)

3.2. End-to-End Speech Emotion Recognition Architecture

Information extraction from the speaker’s speech is a crucial step in the process of rec-
ognizing emotions in speech. We can consider two different kinds of information: the
acoustic, which involves how the speech is pronounced, and the textual, which contains
the meaning of the speech. The inclusion of this information requires a pre-processing
step. For this, our end-to-end architecture consists of two blocks:

the front-end and the back-end. The front-end is responsible for extracting features
from the input signal, while the back-end is responsible for processing the information



from the front-end and predicting the output. We detail the architecture in Figure 1. Given
raw audio, we transform it into a mono waveform and resample it into a 16 kHz sample
rate. Due to the VGGIsh input limitation, we limit the audio length to 10 seconds. We
extract two types of features from the waveform: textual and acoustic.

Back-end networkFront-end network

Transcription
WhisperX

Text Features
MiniLM L3

Acoustic Features
VGGIsh

LSTM
Feature

Concatenation

Numerical
representation

raw audio

Dimensional Emotion
Recognition

Feature Extraction

Valence

Dominance

Arousal
Dimen. reduction

PCA

Flatten
Average

Figure 1. End-to-End Speech Emotion Recognition Architecture

The objective of the front-end is to extract and pre-process the textual and acous-
tic features, providing the correct shape to the back-end network so that it can con-
catenate and process it. The expected output is two vectors with 128 dimensions
each. For acoustic features, we generate audio embedding using the pre-treined VG-
GIsh model. VGGish [Hershey et al. 2017] is a modification of the VGG16 architec-
ture [Simonyan and Zisserman 2015], a popular convolutional neural network. The au-
thors trained the VGGish model on a large YouTube dataset. To process each second of
audio, VGGish needs an average of 2.97ms. The model generates a vector with 128 di-
mensions for each second of audio. We calculate the average from all rows in the matrix
as a flattened function, generating a unique vector with 128 dimensions for the whole
audio for our back-end network.

The text features require an extra processing stage. We use the WhisperX model to
convert the input waveform into text, thus allowing sentence embedding to be generated
for textual representation. The average time to transcribe each second of audio was 2.803
ms. To generate the sentence embedding, we use the MiniLM L3 pre-trained model.
The MiniLM [Wang et al. 2020] is a task-agnostic and distilled approach focusing on a
lightweight version of Transformer-based models. Using the teacher-student architecture,
the authors propose a distilled version of the self-attention heads of the teacher to make
this possible. MiniLM produces a representation with 384 dimensions for sentences and
needs, on average, 0.47ms to process each second of transcribed audio. To match the
size of the audio features, we use the Principal Component Analysis (PCA) algorithm to
reduce the dimension to 128.

The back-end network uses an LSTM network to process the incoming data. The
first layer concatenates both feature sets. We use the order audio, text. After the input
layer, we use a batch normalization layer to standardize the features. We use only two
LSTM layers, the first with 128 units and the second with 256 units, followed by a dense
layer with 64. We apply a dropout with a 0.25 probability after the dense layer. The
output is a dense layer with three values corresponding to valence, arousal, and dominance
dimensions. We use tanh as the activation function and Adam optimizer with a 0.001
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Figure 2. Back-end Architecture

learning rate.

3.3. Evaluation Results

We train and evaluate our model on the IEMOCAP dataset. On IEMOCAP, we used the
solution provided by [Atmaja and Akagi 2020] as a baseline to compare our approach.
[Atmaja and Akagi 2020] also uses an LSTM model with GloVe for textual features com-
bined with pAA HSF for acoustic features.

The main point in defining our architecture is the time necessary to process the in-
coming data. While [Atmaja and Akagi 2020] focuses on word embedding, with GloVe,
we focus on capturing the sentence’s meaning through the sentence embedding from
MiniLM L3. The MiniLM L3 was tested on the Sentiment Analysis task and performed
well on Stanford Sentiment Treebank (SST) [Socher et al. 2013]. The textual embedding
focuses on improving the valence dimension; the task is close to sentiment analysis, going
from negative to positive perspectives.

Table 1. IEMOCAP evaluation results

Mode
CCC/MSE

AVG
Valence Arousal Dominance

Baseline
Bimodal LSTM (GloVe + HSF from pAA)
[Atmaja and Akagi 2020]

0.418 0.571 0.500 0.496

Our approach
VAD MiniLM-L3 VAD 0.4165 0.2989 0.2989 0.3381
LSTM Concat (VGGISH + MiniLM-L3 PCA) VAD 0.1431 0.5915 0.5899 0.4415

On the acoustic side, the use of VGGIsh to recognize emotions has been ex-
plored by [Pham et al. 2023] in bimodal categorical speech emotion recognition and by
[Koh and Dubnov 2021] in music emotion recognition. [Pham et al. 2023] uses the con-
catenation of VGGIsh and BERT to recognize emotions. In addition to the mode to rec-
ognize emotion, the main difference in our approach is in the architecture used and the



textual representation. Originally, VGGIsh was trained to focus on audio classification
tasks and achieved better results than hand-crafted features on the Audio Set Acoustic
Event Detection (AED) classification task. Using GPU, the processing time of VGGIsh
took 2.97ms per second of audio, while the approach of [Atmaja and Akagi 2020] uses
pAA with 9.13ms per second. Analyzing the best scenario for each dimension, on va-
lence, we have a loss of 0,359% of CCC in relation to baseline, while for arousal, we
have a gain of 3.59%, and for dominance, 17.98%.

3.4. Streaming

The streaming implementation took place in two ways: one for evaluation and the other
for real-world application. This is necessary since there are no datasets available for
streaming scenarios. So, to make the evaluation possible, we iterate over the data, pre-
serving the duration of each file annotated. In the real-world scenario, we used a window
time-based to split the incoming signal. We present the architecture in Figure 3.

To generate the audio input streaming, we use the pyAudio streaming function to
capture the signal from the microphone as mono. We specify the params used to capture
the audio in the Table 2. The number of chunks is calculated by multiplying the chunk
length and the sample rate. The chunk represents the number of frames into a mel spec-
trogram input, calculated over the number of samples divided by the hop length. We use
a mono channel.

Table 2. pyAudio parameters for audio capturing
Parameter Value

Sample Rate 16000
N FFT 400

N MELS 80
Hop Length 160

Chunk Length 30
Number of Samples 30 * 16000

Chunk 480000 / 160
Format pyaudio.paInt16

Channels 1

After the windowing process, we convert the input signal into a numerical repre-
sentation. We use the Whisper function, which uses FFmpeg to convert the signal into
a waveform. After that, we use the Kafka producer to send the waveform to the queue,
which Flink will process. To predict the values for valence, arousal, and dominance, we
created an API using Flask to receive the requests from Flink. We use an API because
Tensorflow models cannot be used in a streaming environment.

Our API has four different endpoints; in that way, we can use different produc-
ers in Flink. First, we transcribe and generate the audio embedding. After that, using
the transcription, we generate the sentence embedding and apply the PCA to reduce di-
mensionality. With both embeddings, we predict the three dimensions using our LSTM
model. After getting the prediction, we remove the waveform from the Kafka queue.
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Figure 3. Architecture used for streaming speech emotion recognition

4. Discussion
Different to the literature, our highest gain using a bimodal approach was on the dom-
inance dimension instead of valence as presented in the related works. We achieved a
17.98% gain in CCC in comparison to the [Atmaja and Akagi 2020] approach. This is
more correlated to the way used to represent the audio withVGGIsh. The incorporation
of sentence embeddings adds only 4.12% of CCC.

When we compare the results for valence using only the Mini LM L3 model, they
are similar to the bimodal approach of [Atmaja and Akagi 2020] (0.418 vs 0.4165). Our
main issue is the dimensionality reduction for using sentence embedding in the concate-
nation layer in the Keras model. This is necessary to obtain a sentence embedding with
the same number of dimensions as the audio embedding. In the case where we only use
PCA as input, CCC is reduced to 0.1055. The concatenation provided a better result, with
0.1431 CCC. But it is still worse than the original size one. This occurs because we apply
the PCA after generating the embedding. A possible solution is adding a new dense layer
to the Mini LM model and producing the embedding directly with 128 dimensions.

From the most recent machine learning approaches to extract information from
audio, we evaluate the VGGIsh and TRILL models, regarding that they are used to feed
our LSTM network. Another possible option is to use a CNN network with features
from Wav2Vec2, Wav2Vec2-BERT 2.0, Hubert, and another model that generates more
complex representations. Wav2Vec2-BERT 2.0, for example, creates a representation
with 1024 dimensions for each x ms. To be able to use only one dimension, we apply
an average function to the VGGIsh matrix embedding. They produce an array for each
second of audio input.

Recent reviews like [Geetha et al. 2024] and [Lieskovská et al. 2021], show a di-
rection for future works in real-world applications that can be used in real-time. To make
this possible, the processing time must be considered. However, current publications did
not show the processing time necessary to execute their approach. The main focus is the
feature selection for better results and the model’s architecture. With the LSTM, the total
prediction time for our test set was 1.2794 seconds.

[Wundt and Judd 1897] define that depending on the symptomatic nature of emo-
tions, one of the forms of expressive movements is the expression of ideas. Which can be
pantomimetic or descriptive. Due to genetic relationships with speech, it has a special psy-
chological meaning. So, due to the importance of expressing ideas in emotion expression
and the lack of diverse and large datasets [Geetha et al. 2024], sentence representations
add contextual information to predict the valence and give a modest contribution to the
arousal and dominance dimension. The sentence embeddings are the best options when
considering the sentence’s meaning. The results on valence when using only the Mini LM



L3 reflect the good results on the sentiment evaluation databases.

It is controversial to consider that speech emotion recognition can be done in real-
time. This is because if we consider the use of sentence embedding, the sentence must be
complete to get more context and meaning from it. Even if we use real-time transcription,
we will deal with, in the better case, words. So, considering the average length of the an-
notated data chunks from IEMOCAP and MSP-PODCAST, we determine our windowing
time to be 3 seconds of utterances.

5. Conclusion
This work introduces a dimensional speech emotion recognition approach using bimodal
features, that can be applied in a streaming environment. As a result, we achieve 0.5915
of CCC for arousal, 0.1431 for valence, and 0.5899 for dominance. Given the defined
architecture and the LSTM model trained, we build a streaming environment to run our
pipeline. The final algorithm captures the microphone input in streaming and sends the
representation to a Kafka queue every three seconds. The processing occurs in Flink,
which calls a request from an external API that returns the predicted AVD values for that
utterance.

In future work, we plan to use a pretrained version of the Mini LM L3 model to
directly produce vectors with 128 dimensions as the output. With this, we aim to increase
the CCC for the valence dimension as well. By consolidating the best features, we also
aim to test with new architectures, such as Transformer, and use different datasets to train
and evaluate our approach. Finally, considering the streaming scenario, we aim to add a
sink operation and use a visual approach to understand the model prediction output.
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