An Iterative Decision Tree Threshold Filter

Oscar Picchi Netto', José Augusto Baranauskas'

'Departamento de Computagio e Matemdtica - Faculdade de Filosofia, Ciéncias
e Letras de Ribeirdo Preto- Universidade de Sao Paulo (USP)

Abstract. In this paper we propose and analyze a new filter for feature sub-
set selection using an iterative decision tree threshold method. Using several
biomedical or bioinformatics datasets, the filter has been evaluated on its data
compression ability and AUC (Area Under Curve) performance within three
scenarios. On average, the filter compressed almost 50% of the data. Addi-
tionally, AUC values using all versus selected filter features have not produced
performance degradation in five different machine learning algorithms.

Resumo. Neste trabalho é proposto e analisado um novo filtro para selecdo de
atributos utilizando um método iterativo com drvores de decisdo. Utilizando
diversas bases biomédicas, o filtro foi avaliado em capacidade de compressdo
e valor AUC (Area Under Curve) para trés cendrios. Em média, o filtro foi
capaz de compactar 50% dos dados. As andlises dos valores AUC comparando
todos os atributos contra aqueles atributos selecionados ndao produziu perda
de desempenho significativa nos cinco algoritmos de aprendizado de mdquina
testados.

1. Introduction

Data Mining (DM) is an interdisciplinary field bringing together techniques from
Machine Learning, statistics, pattern recognition, databases and visualization to address
the issue of extracting high-level knowledge from low-level data in large databases. When
using Machine Learning (ML) techniques for DM, where the number of records (in-
stances) is very large, usually several representative samples from the database are taken
and presented to a ML algorithm. Afterwards the knowledge extracted from those sam-
ples by ML algorithms is combined in some way [Fayyad et al. 1996].

For instance, the exponential growth of the amount of biological data available
raises two problems: on one hand, efficient information storage and management and, on
the other hand, the extraction of useful information from this data [Larrafiaga et al. 2006].
One important issue to be considered when using ML in DM is database records dimen-
sionality reduction by reducing the number of records attributes (i.e. deleting columns in
tables in the database literature or features/attributes in the Machine Learning literature).
The data subset resulting from these deletions maintains the same number of instances
but only a subset of features with predictive performance comparable to the full set of
features. This is known as the Feature Subset Selection (FSS) problem, where one of the
central issues is the selection of relevant features and/or the elimination of irrelevant ones.

Using ML and DM algorithms is one way to more effectively extract that informa-
tion. But since the amount of data is huge, the use of an efficient FSS algorithm sometimes
is essential, not only to speed up algorithms, but also to reduce data that can be benchmark

tested. For this reason FSS has passed from an illustrative example to real prerequisite
for model building [Saeys et al. 2007]. Especially in microarray analysis or even in text
mining there are huges amount of data and a FSS algorithm can help reducing that.

There are several reasons for doing Feature Subset Selection. One of them is that
it, in general, improves accuracy since many ML algorithms degrade in performance when
given too many features. Another reason is that FSS may improve comprehensibility,
which is the ability for humans to understand the data and the classification rules induced
by symbolic ML algorithms. Finally, FSS can reduce measurement cost since in some
domains measuring features may be expensive. In this study we present an approach for
feature subset selection using decision trees within a filter [Foithong et al. 2011].

This work is organized as follows: Section 2 presents the basic concepts of the fea-
ture subset selection problem; Section 3 has a brief description of the datasets used on this
work; Section 4 describes the methodology proposed; Section 5 shows the experimental
setup used to evaluate the proposed methodology; in Section 6 are shown the experiments
and their results; Section 7 presents the conclusion of this study and describes how this
study can be continued in the future.

2. Feature Subset Selection

Supervised learning is the process of automatically creating a classification model
from a set of instances (records or examples) called the training set which belong to a set
of classes. There are two aspects to be considered in this process: which features to use
in describing the concept and how to combine those features. Once a model is created, it
can be used to automatically predict the class of other unclassified records.

In other words, in supervised learning, an inducer is given a set of N training
examples. Each example x is an element of the set F} X Fy X ... X F,,, where F} is the
domain of the jth feature. Training examples are tuples (z, y) where y is the label, output
or class. The y values are typically drawn from a discrete set of classes {1, ..., K} in the
case of classification or from the real values in the case of regression. In this work we will
refer to classification. Given a set of training examples, the learning algorithm (inducer)
outputs a classifier such that, given a new instance, it accurately predicts the label y.

One of the central problems in supervised learning is the selection of useful fea-
tures. Although most learning methods attempt to either select features or assign them
degrees of importance, both theoretical analysis and experimental studies indicate that
many algorithms scale poorly to domains with large numbers of irrelevant features. For
example, the number of training cases needed for simple nearest neighbor to reach a
given level of accuracy appears to grow exponentially with the number of irrelevant fea-
tures, independent of the target concept. Even methods for inducing univariate decision
trees, which explicitly select some attributes in favor of others, exhibit this behavior for
some target concepts. Some techniques, like the Naive Bayes classifier, are robust with
respect to irrelevant features but can be very sensitive to domains with correlated features,
even if the features are relevant. This can be explained by the assumption of this sort of
techniques related to independence among features. This suggests the need for additional
methods to select a useful subset of features when many are available [Han et al. 2011].

Approaches for feature selection that have been developed can be grouped into
three classes: those that embed the selection within the basic induction algorithm, those

that use feature selection to filter features during a pre-processing step ignoring the in-
duction algorithm, and those that treat feature selection as a wrapper around the induction
process, using the induction algorithm as a black-box [Blum and Langley 1997]. Another
possible approach is to use a hybrid (filter and wrapper) method, trying to optimize the ef-
ficiency of feature selection [Min and Fangfang 2010, Lan et al. 2011, Estévez et al. 2009].

In the FSS filter model, which is of special interest within this work, the features
are filtered independent of the induction algorithm. In this model the FSS is done as
a preprocessing step, totally ignoring the effects of the selected features subset on the
performance of the induction algorithm. For example, a simple decision tree algorithm
can be used as a FSS filter to select features in large feature space for other inducers that
take more time to search their solution space. The set of features selected by the tree are
the output of the filter FSS process and the tree itself is discarded. The remaining unused
features are then deleted from the training set, reducing its dimension, and this training
set can be used by any other inducer. Still, features that are good for decision trees are
not necessarily useful for other family of algorithms that may have an entirely different
inductive bias.

The main disadvantage of the filter approach is that it totally ignores the effects of
the selected feature subset on the performance of the induction algorithm. However, an
interesting feature about filters is that once a dataset is filtered it can be used and evaluate
by several inducers and/or paradigms. In the next section the filter approach proposed in
this study is described.

3. Datasets

The experiments reported here used 30 datasets, all of them representing real med-
ical data, such as gene expressions, surveys, diagnostics, etc. The medical domain often
imposes difficult obstacles to learning algorithms: high dimensionality, huge or very small
amounts of instances, several possible class values, unbalanced classes, etc. This sort of
data are indicated for filters, due its large dimension, and the fact filters have a compu-
tational efficiency over wrappers [Kantardzic 2011]. Table 1 shows a summary of the
datasets, none of which having missing values for the class attribute.

Since the number of attributes and instances on each dataset can influence results,
we have used the density metric proposed by [?] partitioning datasets into 6 low-density
(Density < 1) and 24 high-density (Density > 1) datasets. The density is computed as
Density £ log, n, where n represents the number of instances, and a is the number of
attributes.

Next we provide a brief description of each dataset. Breast Cancer, Lung Can-
cer, CNS (Central Nervous System Tumour Outcome), Colon, Lymphoma, Leukemia,
Leukemia nom., WBC (Wisconsin Breast Cancer), WDBC (Wisconsin Diagnostic Breast
Cancer), Lymphography and H. Survival (H. stands for Haberman’s) are all related to can-
cer and their attributes consist of clinical, laboratory and gene expression data. Leukemia
and Leukemia nom. represent the same data, but the second one had its attributes dis-
cretized [Netto et al. 2010]. C. Arrhythmia (C. stands for Cardiac), Heart Statlog, HD
Cleveland, HD Hungarian and HD Switz. (Switz. stands for Switzerland) are related to
heart diseases and their attributes represent clinical and laboratory data. Allhyper, All-
hypo, ANN Thyroid, Hypothyroid, Sick and Thyroid 0387 are a series of datasets related

Table 1. Summary of the datasets used in the experiments. ATTR, a, and q, stand
for the total number of attributes and for the number of numerical and nominal
attributes, respectively; MISS represents the percentage of attributes with miss-
ing values, not considering the class attribute. Datasets are in ascending order

of density.
Dataset N c ATTR MISS Density
1 CNS 60 2 7129 0.00% 0.46
2 Leukemia 72 2 7129 0.00% 0.48
3 Leukemia nom. 72 2 7129 0.00% 0.48
4 Colon 62 2 2000 0.00% 0.54
5 Lymphoma 96 9 4026 5.09% 0.55
6 Lung Cancer 32 3 56 0.28% 0.86
7 C. Arrhythmia 452 16 279 0.32% 1.09
8 Hepatitis 155 2 19 5.67% 1.71
9 WDBC 569 2 30 0.00% 1.87
10 Dermatology 366 6 34 0.06% 1.67
11 Lymphography 148 4 18 0.00% 1.73
12 Splice Junction 3190 3 60 0.00% 1.97
13 Heart Statlog 270 2 13 0.00% 2.18
14 HD Switz. 123 5 13 17.07% 1.88
15 Sick 3772 2 29 5.54% 2.45
16 P. Patient 90 3 8 0.42% 2.16
17 Hypothyroid 3163 2 25 6.74% 2.50
18 HD Hungarian 294 5 13 20.46% 222
19 HD Cleveland 303 5 13 0.18% 223
20 Allhypo 3772 4 29 5.54% 245
21 Breast Cancer 286 2 9 0.35% 2.57
22 Allhyper 3772 5 29 5.54% 2.41
23 ANN Thyroid 7200 3 21 0.00% 2.92
24 WBC 699 2 9 0.25% 2.98
25 Pima Diabetes 768 2 8 0.00% 3.19
26 Liver Disorders 345 2 6 0.00% 3.26
27 Thyroid 0387 9172 32 29 5.50% 2.71
28 C. Method 1473 3 9 0.00% 332
29 Ecoli 482 13 280 1.07% 2.99
30 H. Survival 306 2 3 0.00% 5.21

to thyroid conditions. Hepatitis and Liver Disorders are related to liver diseases, whereas
C. Method (C. stands for Contraceptive), Dermatology, Pima Diabetes (Pima Indians Di-
abetes) and P. Patient (P. stands for Postoperative) are other datasets related to human
conditions. Splice Junction is related to the task of predicting boundaries between exons
and introns. E.Coli is related to protein localization sites. Datasets were obtained from
the UCI Repository [Frank and Asuncion 2010], Leukemia and Leukemia nom. were ob-
tained from [Institute 2010].

4. An Iterative Decision Tree Threshold Filter

Our approach is based in a previous experiment [Netto et al. 2010] with a high
dimensional gene expression dataset. In that study, ten decision trees were grown itera-
tively, each time removing from the training set attributes appearing on the previous tree.
It was possible to realize a better result for intermediate trees than the first ones. The best
tree found also outperformed several approaches using only 1-2 attributes (genes).

In general, filter algorithms evaluate each attribute individually for some degree
of relevance related to the target concept class. Sometimes two or more attributes can
be considered at a time but at a high computational cost [Gao et al. 2010]. Our approach
differs from those in the sense a decision tree may be able to capture relationships among
several attributes w.r.t. class at a time. Besides that, inducing a decision tree is fast, which
allows performing this process on high dimensional datasets commonly found in gene
expression profiles or massive medical databases.

Therefore, the filter approach proposed in this study can be seen as an upgrading
of [Netto et al. 2010]. It iteratively builds a decision tree, selects attributes appearing on

that tree (based on a threshold from the first tree performance), and removes them from the
training set. These steps are repeated until there is no more attributes left on the training
set or the decision tree induced is a leaf (which means no attributes were found to be able
to separate class concepts). At the end, the filter outputs the selected attributes.

Algorithm 1 shows the high level code of the attribute selection approach proposed
here, where NV represents the number of instances in the training set, x; and y;, 1 =
1,..., N represent a vector containing the attribute values and the class label for instance
1, respectively.

First, a bootstrap sample from all instances is taken, creating the training set (Line 2).
Instances that do not appear in the training set (Bag) are set apart as the test set, also known
as the out-of-bag set (Line 3). The first decision tree is induced (Line 5) and its AUC
value is used. In fact, the first AUC value and ©, an algorithm parameter, are combined to
define the threshold ¢ (Line 6). Next, attributes are selected in the following way. At ev-
ery iteration, the AUC obtained by the decision tree is evaluated by the threshold #, which
selects or not attributes appearing on that tree. All attributes on tree are now removed
from the training (Line 12) and test sets (Line 13), and a new tree is grown (Line 14).
This process is repeated until a leaf is induced (Line 15) or all attributes have been used.
Finally, all the selected attributes are returned (Line 16).

The threshold # is as a percentage © of the AUC from the first tree. If © = 0 all
attributes, despite de AUC value, will be selected.

Algorithm 1 An Iterative Decision Tree Threshold Filter — IDTTF

Require: Instances: a set of N labelled instances {(z;,v;),7 =1,2,...,N}
O: a parameter for selecting attributes, where 0 < © <1
Ensure: Selected : a subset of attributes
1: procedure idttf(Instances, ©)
2: Bag < BootstrapSample(Instances)
3: OutOfBag < Instances \ Bag
4: Selected < ()
5: C < build_decision_tree(Bag)
6
7
8

1 0 +— OxAUC(C,0utOfBag)
: repeat
: AttrOnClassifier < all attributes appearing on C
9: if AUC(C,0OutOfBag) > 6 then
10: Selected < Selected U AttrOnClassifier
11: end if
12: Bag <« Bag \ AttrOnClassifier
13: OutOfBag « OutOfBag \ AttrOnClassifier
14: C < build_decision_tree(Bag)
15: until C is a leaf or there is no attributes left in Bag
16: return Selected

Table 2 shows a running example of Algorithm 1 using © = 100%. Consider a
dataset containing ten attributes ay, as, . . ., ajg and a class attribute c. Assume a decision
tree is induced containing the attributes aq, a5 and ag and AUC = 90%. All trees now
induced with an AUC larger or equal than § = 90% will have attributes selected by the
algorithm. The first iteration starts by analyzing the tree already built, since it has an
AUC = 90% it will have its attributes selected. Still in the first iteration (as well as on the
subsequent iterations), the attributes that appeared on the first tree are removed and the

Table 2. A running example of Algorithm 1 for © = 100%

Iteration Tree Attributes on Tree AUC 0 Selected
T1 {al, as, ag} 90% 90%
Il TQ {a4,a2,a10,a8} 75% 90% {al,ag),ag}
IQ T3 {a6,a7,a3} 95% 90% {al,a5,a9}
13 T4 @ End {al,a5,a9,a6,a7,a3}

second tree is grown, and assume now this second tree contains attributes a4, as, a9 and
as.

The second iteration begins analyzing the second tree, which has an AUC = 75%,
which is lower then § = 90%. Therefore, attributes appearing on this second tree will
not be selected by our filter. However, as before, these attributes are removed from the
dataset. The third tree is then induced and assumes this time the attributes ag, a7 and as
are within this tree. The third iteration starts and tests if the tree has an AUC larger then
6 = 90%. Assuming the third tree has an AUC = 95% the attributes will be selected and
removed from the dataset.At the end of the third iteration the fourth tree is induced, but
all attributes were already removed from the dataset; for that reason the tree built is a leaf
and the stop criterion is achieved. The attributes selected a1, as, ag, ag, a7 and az are now
returned, in this order, as the filter output.

5. Experimental Methodology

In this section an evaluation of the proposed filter is performed. We have used
different machine learning paradigms and several datasets. The paradigms used were rules
represented by the PART algorithm, decision-tree represented by J48, statistic learning
using Naive Bayes (NB), support vector machines with Sequential Minimal Optimization
(SMO) and lazy learning using the IBk algorithm. All of them have been used in their
default settings, except IBk where k£ = 3, referred from now on as IBk-3. We have used
the Weka' [Witten and Frank 2005] plataform for running the experiments. The proposed
filter was implemented as a novel Weka class.

As shown in Algorithm 1, the threshold is set relatively to the first tree AUC.
Three settings were used in the experiments, changing the value of ©, 100%, 95% and
75% referred from now on as m100, m095 and m075, respectively.We have evaluated
two filter aspects in the experiments: the compression capacity and the AUC values (area
under ROC curve).The compression capacity can be defined as how compact can a dataset
be by the filter, it means how many attributes the filter can remove from the original
dataset, hopefully without taking away significant information. For instance a dataset
with 1000 and 75% compression capacity means only 250 attributes were selected by the
filter.

The baseline for comparisons is the AUC value obtained by the classifier induced
with all attributes through ten fold cross-validation. For the filter, ten fold cross-validation
has been used also, but each test fold was never seen by the filter. In other words, the filter
only sees 9 folds as the full training set and finds an attribute subset. This subset is

lwww.cs.waikato.ac.nz/~ml/weka

All Datasets Low-Density Datasets High-Density Datasets

on Capacity(%)

ression Capacity(%)

Compression Capacity(%)

Comp
Compressi
04
mpi

T T T T T T T T
mo75 m0g5 m100 mo75 m095 m100 mo75 mo95 m100

Figure 1. IDTTF Compression for each Setting

used to select attributes from both the 9 training folds as well as the remaining test fold.
The 9 filtered training folds are then fed to one of the inducers mentioned earlier and its
accuracy is evaluated on the filtered test fold. This process was repeated ten times and
results averaged.

6. Results

Figure 1 shows compression capacity for all (top), 6 low-density (center) and 24
high-density (bottom) datasets and the average values in the experiments. It is possible
to observe the m075 had the worst compression capacity. This can be explained by the
fact that since it is a lower threshold more attributes will be selected. For high-density
datasets the mean compression capacity of the filter is less than 40% for all three settings.
Considering the low-density datasets the first two settings, m100 and m095 were able to
compress the data 75% while m075 could not reach 50%, on average.

AUC values for all dataset and filter settings are shown on Table 3. To analyze
the performance of the filter on each dataset was used the Friedman test [Friedman 1940]
considering a significance level of 5%; the null hypothesis H0 assumes that all classi-
fiers have equal performance. If the null hypothesis is rejected, a Benjamini-Hochberg
post-hoc test [Benjamini and Hochberg 1995] is used to detect any significant difference
among classifiers.

Analyzing the Average Rank on Table 3 its possible to observe m075 setting,
for all paradigms and all datasets, had the worst performance. Only SMO had a better
performance than all of the filter settings. On the low-density datasets J48 also had a better
performance than all the three settings. On the high-density datasets with all inducers,
except SMO, the m100 and m095 settings were the best, except J48 where m095 had a
slightly better performance than m100. Since any of them had the same performance, the
null hypothesis is rejected and a post-hoc test were made.

The result of post-hoc test is shown in Table 4 considering the three settings. On
this table the symbol A (A) means that the classifier on the row using all attributes is
(significantly) better than the same classifier using attributes selected by the filter setting
at the column; the symbol V (¥) means that classifier on the row using all attributes is
(significantly) worst than the same classifier using attributes selected by the filter setting
at the column.

007 SI'e SIe L1 007 18°1 181 8¢€T 96'¢ 88°1 88'I 67T w'e 6’1 761 1T¢ 00% €81 w'l §TT yuey o5erony
99°0 €L0 €L0 SLO 9L'0 780 8°0 $8°0 80 16°0 16°0 16°0 SLO £8°0 £8°0 78°0 Lo 6L°0 08°0 6L°0 UeIpajy
99°0 L0 L0 L0 L0 80 80 80 LLO $8°0 $8°0 $8°0 Lo 08°0 080 8L0 €L0 180 180 180 UBIN
Ausuap-ySiH
007 80C 80C €81 €8¢ SL'T SL'T L9T 00t 81 81 €8T £8°¢ L9'1 L9'1 €8T sLe 161 99T 99°1 yuey oFerony
180 680 68°0 160 Lo 6L°0 6L°0 LLO $9°0 L0 L0 L0 LLO L80 L0 8°0 L0 6L°0 SLO LLO UBIpIN.
9L'0 780 780 8°0 89°0 9L'0 9L0 $9°0 69°0 8L°0 8L0 LLO SL0 £8°0 £8°0 18°0 690 SLO ¥L0 9L0 eI
Kyisuop-mo
007 €1e €1'e LT L6'€ 08'1 08’1 £€'e L6'E (48! (23! or'c 06'¢ 881 881 €€T S6'¢ S8'1 L0T €1e yuey oFeIAY
89°0 9L0 9L'0 LLO L0 80 80 18°0 80 060 060 060 9L'0 +8°0 780 8°0 Lo 6L°0 8L0 6L°0 UBIpIAA.
89°0 9L0 9L0 9L'0 €L0 180 18°0 8L0 SL'O +8°0 ¥8°0 €80 Lo 08°0 080 8L°0 Lo 080 6L°0 08°0 LLSA
v
S0 0s°0 0] 1S°0 6v°0 SS0 S0 S0 09°0 L9°0 L9°0 L9°0 860 €90 €90 €90 160 850 860 860 [eAIAING "H
$8°0 S6'0 S6°0 S6°0 €80 60 w60 w60 L8°0 L60 L60 L60 ¥8°0 60 ¥6°0 60 €80 €60 €60 w60 1[ooq
LSO €90 €90 €90 650 $9°0 $9°0 ¥9°0 €90 690 69°0 69°0 950 w90 w90 90 09°0 99°0 99°0 99°0 POURI D
880 860 860 860 88°0 860 860 860 €8°0 €60 €60 €60 9L'0 $8°0 $8°0 +8°0 68°0 860 860 860 L8€0 ProIAy],
S 4] 050 0S°0 050 09°0 L9°0 L9°0 L9°0 860 $9°0 $9°0 $9°0 860 +9°0 $9°0 +9°0 09°0 L9°0 L9°0 L9°0 SISpIOSI(T JOAIT
$9°0 o Lo °wo L0 6L°0 6L°0 6L°0 €L0 80 80 80 L9°0 L0 L0 L0 L9°0 SLO SLO SLO sajaqel(euild
L8°0 L6°0 L60 L60 880 L60 L6°0 L6°0 680 660 66'0 660 680 660 660 66°0 98°0 $6°0 960 $6'0 ogm
£5°0 650 650 650 060 001 001 660 ¥80 €60 €60 £6°0 0L0 8L0 8L0 L0 680 660 660 660 ploIAyL NNV
LSO £9°0 £9°0 99°0 L80 $60 S6'0 760 880 L60 L6'0 L6'0 18°0 060 060 $8°0 180 680 680 060 TodAy|ry
1570 LSO LS0 650 150 850 850 850 £9°0 L0 Lo Lo 850 9°0 ¥9°0 99°0 950 £9°0 w90 £9°0 1ooueD) Isealg
50 650 650 650 060 00T 001 001 780 76°0 760 £6°0 69°0 9L°0 9L'0 L0 060 00T 001 00T odAyrry
SLO 8°0 780 8°0 9L'0 780 8°0 180 80 060 060 060 LLO 8°0 780 $8°0 €L0 080 w80 08°0 PUB[ALD AH
0L0 8L°0 8L°0 08°0 SLO 780 8°0 L80 080 680 680 060 LLO 98°0 980 L80 99°0 €L0 €L0 LLO ueneSuny qH
L9°0 L0 L0 SLO $8°0 $6°0 S6'0 960 680 860 860 L60 6L°0 L80 L0 $8°0 98°0 $6°0 $6°0 $6°0 proiylodAy
70 6v°0 670 LY'0 170 970 90 90 €0 970 90 6£0 70 0S°0 050 1€0 70 670 670 6v°0 Juaned d
S0 0s°0 050 050 L8°0 L60 L60 960 €80 €60 €60 €60 80 w60 60 880 98°0 S6°0 S6'0 $6°0 IS
0S°0 950 950 LSO 0S°0 950 950 ¥$°0 LY'0 S0 S0 €50 6v°0 S0 S0 670 6v°0 S0 S Sso mMS aH
SLO +8°0 ¥8°0 +8°0 99°0 SLO SLO L0 80 060 060 060 SLO €80 €80 €80 690 SLO L0 9L°0 Sopelg ey
L8°0 960 960 960 L8°0 96°0 960 960 680 660 660 660 S8°0 $6°0 S6°0 60 L8°0 960 960 960 uonoun d1dg
8L°0 S8°0 $8°0 L8°0 €L0 6L°0 6L°0 6L°0 80 160 160 160 080 88°0 880 68°0 [7A1] 6L°0 6L°0 6L°0 AydersoydwAy
680 860 860 860 88°0 860 860 860 060 00T 00°1 00°1 680 660 660 660 88°0 860 860 L6°0 ASoorewra
880 L6°0 L60 L60 +8°0 $6°0 60 $6°0 880 860 860 860 880 860 860 860 +8°0 $6°0 60 €60 odam
90 oL0 0L0 SLO L0 080 08°0 €8°0 6L°0 98°0 980 980 89°0 9L°0 9L'0 6L°0 €90 Lo 1.0 0L0 snnedoy
0L0 6L°0 6L0 6L°0 L9°0 SLO SLO L0 wo 18°0 18°0 18°0 650 L9°0 90 99°0 $9°0 €L°0 L0 o eIUAYLY D
SS90 £9°0 €90 £9°0 190 690 690 690 19°0 1L°0 1L°0 1L°0 890 8L°0 8L°0 89°0 £9°0 ¥9°0 £9°0 890 JTooue) Suny
880 860 860 860 €L0 80 80 180 89°0 LLO LLO 9L'0 £8°0 060 060 060 08°0 060 060 060 ewoydwAy
L0 80 80 8°0 SLO £8°0 £8°0 6L°0 S0 £9°0 £9°0 190 LLO L80 L80 £8°0 €L0 18°0 €L0 08°0 uoj)
68°0 L6'0 L60 L60 8L0 980 980 88°0 060 660 660 960 680 660 660 660 £8°0 60 w060 w060 "o BIIUSYNS T
060 860 860 860 oL0 9L'0 9L’0 SLO 060 00T 001 860 8L0 880 880 $8°0 oL0 9L'0 9L0 SLO BTN
950 £€9°0 £9°0 £9°0 €50 650 650 000 €50 650 650 850 £5°0 95°0 950 950 970 670 670 050 SND
SLow seour 00w OIS sLow Sseowr 00w Tdvd sLow S 00w aN sLow seout 00w €34l sLow seour 00w 8yl s1asere(
OIS Lavd aN €341 8¥r

‘sjuawiiadxa ay) ul pauielqo yues abesaae pue uelpsw ‘ueaw ‘sanjeA HNY “S djgeL

Observing Table 4 it is possible to confirm the results already mentioned about
Table 3. The mO75 setting is always worst than the original dataset; for SMO and J48 it
is always significantly worst. The SMO is always better than the filter proposed for all
datasets. On IBk-3, PART and NB the filter obtained a better result, but not significant,
for all, low and high-density datasets. On the low-density datasets J48 obtained a better
result than all three settings.

Table 4. Benjamini-Hochberg post-hoc Test - IDTTF+inducer versus inducer

M100 M095 MO075
(ALL/HIGH/LOW) (ALL/HIGH/LOW) (ALL/HIGH/LOW)

J48 vIvIiA vIvVIiA A/A/A
IBK-3 \YAYZAY \YAYZAY A/A/A
NB \AZAY \AZAY A/A/A
PART vIvVIv vIvVIv A/A/N
SMO AINA AINA A/A/A

7. Conclusion

In this paper we proposed a iterative decision tree threshold filter for feature subset
selection. Although the proposed filter can use any classifier with embedded feature selec-
tion and any metric to determinate if an attribute should be selected, we have fixed the the
classifier used here as J48 and AUC as the metric. Using several biomedical datasets we
have evaluated our filter on compression ability and performance in five machine learning
paradigms.

The data compression on three methodology settings showed a high threshold,
such as m100 and m095 can compress almost 50% of the data, but a lower threshold,
mO075, only can compress around 25%. Analyzing low-density datasets these percentages
changed to over 75% for higher thresholds and 45% for lower thresholds. A statistical
test showed the first two settings (m100 and m095) had a performance slightly better, but
not significantly, against the full dataset. For threshold m075, results were always worst,
sometimes significantly, than the full dataset. For five paradigms evaluated on this study,
the filter proposed had achieved a better rank performance in four of them.

Future work can be done to improve the filter proposed here. We are working on
a stop criteria, trying to reduce the time the filter spends trying to get the final subset.
Other possible upgrade would be allowing to change the inducer inside the filter, such as
induction of rules, as well as to compare our approach with others FSS algorithms. If
the classifier used on the methodology generates results where some attributes can have
more information than others, such as decision trees, another improvement can be made
using the level that the attribute appears on the tree to give it a better score. Other settings
can be implemented to try to improve the methodology, such as changing AUC to other
metrics.

Acknowledgments.

This work was partially funded by a joint grant between the National Research
Council of Brazil (CNPq), and the Amazon State Research Foundation (FAPEAM) through
the Program National Institutes of Science and Technology, INCT ADAPTA Project (Cen-
tre for Studies of Adaptations of Aquatic Biota of the Amazon).

References

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical
and powerful approach to multiple testing. Journal of the Royal Statistical Society
Series B, 57:289-300.

Blum, A. L. and Langley, P. (1997). Selection of relevant features and examples in ma-
chine learning. Al 97(1-2):245-271.

Estévez, P., Tesmer, M., Perez, C., and Zurada, J. (2009). Normalized mutual information
feature selection. Neural Networks, IEEE Transactions on, 20(2):189-201.

Fayyad, U. M., Piatetsky-Shapiro, G., and Smyth, P. (1996). From Data Mining to KnowlI-
edge Discovery: An Overview, pages 1-30.

Foithong, S., Pinngern, O., and Attachoo, B. (2011). Feature subset selection wrapper
based on mutual information and rough sets. Expert Systems with Applications.

Frank, A. and Asuncion, A. (2010). Uci machine learning repository.

Friedman, M. (1940). A comparison of alternative tests of significance for the problem of
m rankings. The Annals of Mathematical Statistics, 11(1):86-92.

Gao, K., Khoshgoftaar, T., and Van Hulse, J. (2010). An evaluation of sampling on
filter-based feature selection methods. In Proceedings of the 23rd International Florida
Atrtificial Intelligence Research Society Conference, pages 416—421.

Han, J., Kamber, M., and Pei, J. (2011). Data mining: concepts and techniques. Morgan
Kaufmann.

Institute, B. (2010). Cancer program data sets.

Kantardzic, M. (2011). Data mining: concepts, models, methods, and algorithms. Wiley-
IEEE Press.

Lan, Y., Ren, H., Zhang, Y., Yu, H., and Zhao, X. (2011). A hybrid feature selection
method using both filter and wrapper in mammography cad. In Image Analysis and
Signal Processing (IASP), 2011 International Conference on, pages 378-382. IEEE.

Larranaga, P., Calvo, B., Santana, R., Bielza, C., Galdiano, J., Inza, 1., Lozano, J.,
Armafanzas, R., Santafé, G., Pérez, A., et al. (2006). Machine learning in bioin-
formatics. Briefings in bioinformatics, 7(1):86—112.

Min, H. and Fangfang, W. (2010). Filter-wrapper hybrid method on feature selection. In
Intelligent Systems (GCIS), 2010 Second WRI Global Congress on, volume 3, pages
98-101. IEEE.

Netto, O., Nozawa, S., Mitrowsky, R., Macedo, A., Baranauskas, J., and Lins, C. (2010).
Applying decision trees to gene expression data from dna microarrays: A leukemia

case study. In XXX Congress of the Brazilian Computer Society, X Workshop on
Medical Informatics, page 10.

Oshiro, T. M., Perez, P. S., and Baranauskas, J. A. (2012). How many trees in a random
forest? In Proceedings of the 8th International Conference on Machine Learning and
Data Mining. Submitted.

Saeys, Y., Inza, 1., and Larrafiaga, P. (2007). A review of feature selection techniques in
bioinformatics. Bioinformatics, 23(19):2507.

Witten, 1. H. and Frank, E. (2005). Data Mining: Practical Machine Learning Tools and
Techniques, Second Edition. Morgan Kaufmann.

