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Abstract. Analyzing gene expression data is a challenging task since the large
number of features against the shortage of available examples can be prone to
overfitting. In order to avoid this pitfall and achieve high performance, some
approaches construct complex classifiers, using new or well-established strate-
gies. The main objective of this communication is to construct classifiers that
can be human readable as well as robust in performance in microarray data us-
ing decision trees. Using one well-known leukemia dataset, a publicly available
gene expression classification problem, we show the feasibility of decision trees
on microarray data. Summarizing our results, we have obtained simple decision
trees with performance comparable to related work.

1. Introduction

The DNA microarray technology allows monitoring the expression of thousands of
genes simultaneously [Schena et al. 1995]. Thus, it can lead to better understand-
ing of many biological processes, improved diagnosis, and treatment of several dis-
eases [Paik et al. 2006, van de Vijver et al. 2002]. However data collected by DNA
microarrays are not suitable for direct human analysis, since a single experiment
contains thousands of measured expression values. Several approaches have been
suggested towards exploiting data mining from microarray data [Golub et al. 1999,
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Gamberger et al. 2004, Molla et al. 2004, Dudoit et al. 2000], including supervised and
unsupervised machine learning algorithms [Mitchell 1997].

In this work we have applied the supervised approach, learning from data with
class labels from a dataset consisting of several gene expression values. Each example in
the microarray dataset is composed by thousands gene expression measurements obtained
from monitoring patients’ tissue with some specific disease. Each example is also labeled
accordingly the respective illness. The aim of machine learning algorithms is to start from
such labelled dataset, building classifiers that can successfully classify new, previously
unseen examples. Such classifiers are important because they can be used for diagnosis
purposes in medicine and because they can help to understand the dependencies between
classes (diseases) and features (gene expression values) [Rosenfeld et al. 2008b].

However, the problem of building classifiers from microarray experiments is di-
mensionality sparseness: in general, there are a large number of features (gene ex-
pression measurements) against few examples (patients monitored). In high dimen-
sional domains like this it is well known that many induction algorithms degrade in
performance — accuracy and run time. In fact many machine learning algorithms
were not developed to deal with high dimensionality. Therefore it is not always
straightforward using such algorithms directly in these datasets. One possible solution
to this problem consists in reducing high dimensional datasets through feature selec-
tion [Blum and Langley 1997, Liu and Motoda 1998], which can provide the building of
more accurate classifiers.

Besides the high dimensionality (large number of features), as mentioned before,
the gene expression domain suffers from dimensionality sparseness: the high number of
features contrasts with a very small number of examples. It is known from the literature
that in such cases classifiers are prone to overfitting [Hastie et al. 2001] because actually
weak/irrelevant features can appear to be relevant simply by chance to machine learning
algorithms due the available data sample [Ein-Dor et al. 2005]. Overfitted classifiers are
characterized by low specialization error but high generalization error, in other words,
there is a significantly increased error on unseen examples when compared to the training
set error [Domingos 1999]. One possible solution to avoid overfitting adopted by state-of-
the-art researches construct complex classifiers through ensemble of classifiers. Weighted
voting of informative genes is used by [Golub et al. 1999] whereas [Chow et al. 2001,
Li and Wong 2002] employ support vector machines (SVM); [Ramaswamy et al. 2001]
use scores of top ranked patterns. Such classifiers provide high predictive accuracy but
since they include many features they are not useful for human expert interpretation.

An alternative way to see this problem consists in preserving the logical con-
nections among features enabling the induction comprehensible classifiers by human
experts, where classifiers are expressed as rules for the labels of gene expression
data [Gamberger et al. 2004, Rosenfeld et al. 2008a]. In this case the aim is to build clas-
sifiers composed by rules with few conditions (typically 2-5 features). It is important to
stress that these simple classifiers may have lower predictive accuracy than more com-
plex classifiers but they explicitly emphasize the importance of the correlation among
expressed and/or non-expressed genes [Baranauskas and Monard 2003]. In this study we
follow this approach, aiming to induce simple classifiers (decision trees) describing im-
portant genes to foresee the target class label of unknown patients.
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The remaining of this paper is organized as follows. In Section 2 basic tree in-
duction concepts are provided, followed by the description of the microarray dataset we
have used in our experiments as well as the experimental setup. Section 3 presents and
discusses our experimental results, followed by a comparison with three previous works
in the literature in Section 4. Finally, in Section 5 our conclusions are presented.

2. Experimental Methodology

2.1. Decision Trees

Induction of decision trees is a machine learning approach that has been applied on several
tasks. Decision trees (DT) are well-suited for large real world tasks since they scale well
and can represent complex concepts by constructing simple yet robust logic-based classi-
fiers amenable to direct expert interpretation [Monard and Baranauskas 2003]. Top-down
induction of decision trees algorithms [Quinlan 1993, Fayyad and Irani 1992] in general
choose a feature that partitions the training data according to some evaluation function.
Partitions are then recursively split until some stopping criterion is reached. After that, the
decision tree is pruned in order to avoid overfitting. In our experiments we have used the
algorithm J48 (with default parameters) from Weka1 [Witten and Frank 2005], a library of
several machine learning algorithms. J48 is a Java implementation of the well-known C4.5

algorithm [Quinlan 1993].

The key to the success of a decision tree learning algorithm depends on the eval-
uation function used to select the feature for splitting. If a feature is a strong indicator of
an instance’s class value, it should appear as early as possible in the tree — near the root.
Most decision tree learning algorithms use a heuristic for estimating the best feature. J48

(as well as C4.5) uses a modified version of the entropy measure from information theory.
For our purposes, it is sufficient to state that this measure yields a positive real number,
where zero indicates an uniform set (only one class value is present for all instances of
that feature) and larger values indicate a set where there is more likelihood of all class
values being present (mixture of classes). In this case, the evaluation function searches
for minimizing the entropy. Specifically, by default J48 uses the gain ratio metric G to
choose the best feature to split.

The treatment of missing feature values — represented as ‘?’ — in J48 follows
information theory as well and receives a special treatment. Suppose that only a fraction F
of some feature’s value is known. In this case J48 takes this into account when computing
the information gain: it considers only the fraction F of known values, whereas the gain
ratio in this case G′ is proportional to F , and therefore G′ < G. Readers interested on
technical details about the treatment of missing values should refer to [Quinlan 1993].
For our purposes, it is sufficient to state that features with missing values are treated
differently from those without missing values by J48.

2.2. The Leukemia Dataset

In our study we have used a real world leukemia microarray experiment performed
by [Golub et al. 1999]. Leukemia is a cancer of bone marrow or blood cells, i.e., a gen-
eralized neoplasic proliferation or an haematopoietic cells accumulation (cells involved

1www.cs.waikato.ac.nz/˜ml/weka
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in blood formation process) with or without peripheral blood involvement. In general,
leukemias can be grouped into four categories. Myeloid and lymphoid leukemias can be
acute or chronicle whereas myeloid and lymphoid both denote cell types involved. Thus,
four main types of leukemias are: Acute Myeloid Leukemia (AML), Chronic Myeloid
Leukemia (CML), Acute Lymphoblastic Leukemia (ALL) and Chronic Lymphoblastic
Leukemia (CLL).

In the dataset provided by [Golub et al. 1999], each microarray experiment cor-
responds to a patient (example); each example consists 7219 genes expression values
(features). Each patient has a specific disease (class label), corresponding to two kinds of
leukemia (ALL and AML). There are 72 patients (47 ALL and 25 AML).

2.3. Experimental Setup

The original study of [Golub et al. 1999] split patients into two disjoint sets2: the training
set contains 38 examples (27 ALL and 11 AML) and the test set contains 34 examples (20
ALL and 14 AML). Considering the shortage of examples it is a common technique in
machine learning to use cross-validation or bootstrap [Kohavi 1995, Hastie et al. 2001]
rather than isolating training and test sets. However, in order to be able to com-
pare our results with those published by [Golub et al. 1999, Gamberger et al. 2004,
Chow et al. 2001] we have also decided to use the same train/test dataset split approach
used by all of them.

The original dataset provided by [Golub et al. 1999] contains nominal (dis-
cretized) and continuous values of gene expression data. Therefore we have performed
experiments using both sort of values. In fact, we have defined three different datasets:
two of them contain nominal (S) and continuous (S ′′) values both without any further data
preprocessing; the third one (S ′) contains nominal values preprocessed as follows.

Nominal values in the original dataset consists of the discretization provided by
Affymetrix, the microarray manufacturer, from continuous values. There are three nom-
inal values: ‘A’: gene is absent or not expressed; ‘P’: gene is expressed or present and
‘M’: the level of the expression is marginal among ‘A’ and ‘P’. Since ‘M’ is marginal,
an important issue microarray experimenters should face when using decision tree induc-
tion concerns how to represent missing values: using ‘M’ values or replacing all of them
by ‘?’. As explained before, using only known values (in this case, ‘M’) the gain ratio
G is different than the gain ratio G′ using missing values (in this case, ‘?’). This rep-
resentational issue could lead to different classifiers (trees) and, in this case, to different
diagnosis. Therefore in this study we have analyzed the impact of both representational
forms for the leukemia data.

Let S1 denote the original training set with 38 examples and s1 the original test
set with 34 examples, both of them containing ‘A’,‘P’ and ‘M’ values. Dataset S ′

1 is
equivalent to S1 but ‘M’ values were replaced by ‘?’ and analogously for s′

1 from s1.
Datasets S ′′

1 and s′′
1 correspond to training and test sets, respectively, both containing

continuous values.

As mentioned before, analyzing gene expression data can be prone to overfitting

2Training and test sets can be downloaded from http://www.broadinstitute.org/
cgi-bin/cancer/datasets.cgi.
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due to the large number of features against the shortage of available examples; one way
to avoid this pitfall concerns preprocessing data using feature selection. However previ-
ous work showed feature selection methods have a tendency for increasing the number
of rules in the classifier when compared with the classifier generated on its own, i.e.
without feature selection [Baranauskas et al. 1999]. For this reason we have adopted a
different strategy as follows: we have also defined additional datasets S2, S3, . . . , S10 and
s2, s3, . . . , s10 in the following way: using S1 as training set, a decision tree T1 was in-
duced and evaluated on s1; then, genes appearing on T1 have been removed from both
S1 and s1 defining a new training set S2 and a new test set s2, respectively. After that,
using S2 as training set, a decision tree T2 was induced and evaluated on s2; again, genes
appearing on T2 have been removed from both S2 and s2 defining a new training set S3

and a new test set s3, respectively and so on. Analogously for datasets S ′
2, S

′
3, . . . , S

′
10 and

s′
2, s

′
3, . . . , s

′
10 from S ′

1 and s′
1, respectively. The same applies to datasets S ′′

2 , S ′′
3 , . . . , S ′′

10

and s′′
2, s

′′
3, . . . , s

′′
10 from S ′′

1 and s′′
1, respectively. This approach have generated 30 deci-

sion trees T1, T2, . . . , T10, T ′
1, T

′
2, . . . , T

′
10 and T ′′

1 , T ′′
2 , . . . , T ′′

10. For simplicity, we denote
datasets S refering to S1, S2, . . . , S10 and analogously for the other datasets and trees.
Using the above strategy allows us to check the behavior of the leukemia dataset in sub-
sequent induced trees for overfitting. Our results are presented in the next section.

3. Results & Discussion

The error rates, area under ROC curve (AUC) and rank used by Friedman-Nemenyi
test [Demšar 2006] for all decision trees are presented in Table 1. On average, datasets
S ′ (nominal values whereas ‘M’ has been replaced by ‘?’) present the best performance
both in terms of error rate 23.24% (rank 1.90) and AUC 0.75 (rank 1.85). Considering
individual trees, the best performance was achieved by T ′′

3 with 5.88% error rate and AUC
0.94, followed by both T1 and T ′

1 with 8.82% error rate and AUC 0.90. It can also be no-
ticed that performance (error rates and AUC) is not monotonically increasing/decreasing
as genes were removed from training sets: for instance, trees T7 and T9 present better
performance than T3, T4, T5, T6, T8 and T10. Similar behavior can be observed in trees T ′

and T ′′.

Even considering average rank for datasets S ′ is the best one, applying the non-
parametric Friedman-Nemenyi test (95% confidence) we found no statistically significant
differences among the three representational forms. However, comparing individually the
best trees found for each representational form, i.e. comparing T1 with T2, . . . , T10 indi-
cates T1 is significantly better than all of them, except T2. Analogously, T ′

1 is significantly
better than all others, except T ′

2 and T ′
7. Finally, T ′′

3 is significantly better than all T ′′,
except T ′′

1 .

Table 2 presents a brief description of genes appearing in decision trees T1, T ′
1 and

T ′′
3 showed in Figure 1. Gene ID numbers have been obtained from NCBI3. We have found

evidences in the research literature (last column of this table) that these genes are related
not only to cancer data in general, but also in leukemia cases, especially concerning the
AML-ALL problem. The gene appearing in the root of both trees T1 and T ′

1, M84526 at,
was chosen by [Dobra 2008, Schachtner et al. 2007] as one of the most significant gene
related to leukemia as well to the AML-ALL problem. The other gene, L05424-cds2 at,

3www.ncbi.nlm.nih.gov
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Table 1. Error rates and area under ROC curve (AUC). The ranks in the parenthe-
ses are used in computation of the Friedman test

Tree Error % AUC Tree Error % AUC Tree Error % AUC

T1 8.82 (2.0) 0.90 (2.5) T ′
1 8.82 (2.0) 0.90 (2.5) T ′′

1 8.82 (2.0) 0.91 (1.0)
T2 14.71 (1.5) 0.84 (2.0) T ′

2 14.71 (1.5) 0.86 (1.0) T ′′
2 29.41 (3.0) 0.68 (3.0)

T3 29.41 (3.0) 0.73 (3.0) T ′
3 26.47 (2.0) 0.74 (2.0) T ′′

3 5.88 (1.0) 0.94 (1.0)
T4 26.47 (2.5) 0.73 (2.5) T ′

4 26.47 (2.5) 0.73 (2.5) T ′′
4 20.59 (1.0) 0.76 (1.0)

T5 23.53 (1.5) 0.74 (1.5) T ′
5 23.53 (1.5) 0.74 (1.5) T ′′

5 38.24 (3.0) 0.61 (3.0)
T6 35.29 (1.5) 0.60 (1.0) T ′

6 35.29 (1.5) 0.59 (2.0) T ′′
6 52.94 (3.0) 0.46 (3.0)

T7 20.59 (3.0) 0.73 (3.0) T ′
7 17.65 (2.0) 0.80 (2.0) T ′′

7 11.76 (1.0) 0.88 (1.0)
T8 32.35 (1.5) 0.66 (1.5) T ′

8 32.35 (1.5) 0.66 (1.5) T ′′
8 35.29 (3.0) 0.59 (3.0)

T9 20.59 (1.5) 0.77 (1.5) T ′
9 20.59 (1.5) 0.77 (1.5) T ′′

9 32.35 (3.0) 0.61 (3.0)
T10 23.53 (2.0) 0.55 (3.0) T ′

10 26.47 (3.0) 0.71 (2.0) T ′′
10 11.76 (1.0) 0.88 (1.0)

Average 23.53 (2.0) 0.73(2.15) 23.24 (1.90) 0.75 (1.85) 24.71 (2.10) 0.73 (2.0)

Table 2. Genes appearing on trees T1, T ′1 and T ′′3

Gene ID Description References
M84526 at Human adipsin/complement factor D [Dobra 2008]

[Schachtner et al. 2007]
L05424-cds2 at Human cell surface glycoprotein CD44 [Screaton et al. 1992]

[Krause et al. 2006]
CST3 Cystatin C (amyloid angiopathy and [Tang et al. 2009]

cerebral hemorrhage) [Sun et al. 2004]

does not appear directly in the literature, but the surface glycoprotein CD44 created by this
gene appeared in many articles although the role of CD44 in neoplasia is less well defined;
metastatic potential can be conferred on non-metastasis cell lines by transfection with a
variant of CD44 and high levels of CD44 are associated with several types of malignant
tumors. Finally the CST3 appears in [Tang et al. 2009] as one of the most significant
genes in the leukemia data identified by their study; it is related with acute lymphoblastic
leukemia B-cell (ALLB). CTS3 appears frequently in the leukemia associated literature,
for instance, [Sun et al. 2004] report CST3 as one from 163 genes related with leukemia,
being one from 13 genes identified in their results with respect to AML.

4. Comparison with Previous Works
Next we compare our results (T1, T ′

1 and T ′′
3 ) with those from [Golub et al. 1999,

Chow et al. 2001, Gamberger et al. 2004]. Since there are differences in the presenta-
tion of the performance in the mentioned literature, we have followed the same approach
adopted by [Gamberger et al. 2004] in order to convert them into a unified error rate,
defined as the proportion of incorrectly classified testing instances among all testing in-
stances. Besides that, we also observe the number of genes (features) used in the individ-
ual classifiers. Results are reported in Table 3.

To compute the error rate of the voting approach [Golub et al. 1999], we consider
that their predictor provided a class decision in 29 of the 34 testing examples and this
decision was always correct (no error). For the five undecided examples, we consider the
error rate of the majority vote on the test set (14/34 = 41.18%) and therefore the overall
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Figure 1. Decision Trees T1 (upper left), T ′1 (upper right) and T ′′3 (center bottom)

error rate is 29
34

0% + 5
34

41.18% = 6.06%.

Table 3. Comparing error rates

Leukemia Classifier Error % No. of genes
AML DT(nominal) 8.82 2

DT(continuous) 5.88 1
SD [Gamberger et al. 2004] 20.59 2
SVM I [Chow et al. 2001] 11.76 50
Voting [Golub et al. 1999] 6.06 50

ALL DT(nominal) 8.82 2
DT(continuous) 5.88 1
SD [Gamberger et al. 2004] 5.88 2
SVM II [Chow et al. 2001] 5.88 50
SVM III [Chow et al. 2001] 2.94 50

The subgroup discovery approach [Gamberger et al. 2004] found two rules, each
obtained by viewing one of the classes as the target class. To be able finding the error
rate in this situation, we followed the same principle adopted by their authors: viewing
each of the two rules as an individual binary classifier, interpreted under the closed-world
assumption. Under this case, if the AML rule antecedent is not satisfied, then ALL is
considered as the predicted class (the inverse is applied for the ALL rule). Thus, each of
the two rules is then assigned its own error rate. Rule for class AML presents 7

34
= 20.59%

error rate and rule for class ALL presents 2
34

= 5.88% error rate.

The SVMs approach [Chow et al. 2001] provides a binary decision for all exam-
ples in the test set. Thus, error rates are computed using the provided counts of incorrect
classifications, yielding error rates of 4

34
= 11.76%, 2

34
= 5.88% and 1

34
= 2.94% for

SVM I, II and III, respectively.
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Finally, since decision tree provide classifiers for both classes and there are no
undecided examples the error rates for both T1 and T ′

1 are 20
34

1
20

+ 14
34

2
14

% = 8.82%. The
error rate for T ′′

3 is 20
34

1
20

+ 14
34

1
14

% = 5.88%.

As can be seen decision trees using nominal values for AML are better than SD
and SVM I, but worst than voting. However, the voting scheme from [Golub et al. 1999]
needs 50 genes whereas DT uses only 2. Considering ALL, DT using nominal values
presents larger error rates than all the others but, again, DT uses only 2 genes as well as
SD. In contrast, DT using continuous values presented better ou equal performance than
all methods, except for SVM III. Due to differences on computing values in this table, it
was not possible to perform a significance test in order to compare results statistically.

5. Conclusions

For human analysis it is important the induction of simple logic-based classifiers, i.e. in
the form of small trees describing the target concept. However these simple decision trees
may be of a lower predictive quality than more complex classifiers. In extended experi-
ments (not shown here), induced decision trees include 2-4 gene expression features, in
contrast to markers obtained from voting schemes or SVM using 50 genes. In this case,
decision trees can explicitly stress the importance of the correlation of the expressed/non-
expressed genes. Contrary to SD, DT provide disjoint rules which can be more interesting
to represent the extracted knowledge from de expert point of view [Fugimoto et al. 2009].
Considering the three representational form for microarray data, we found no significant
difference among them for decision trees on the leukemia dataset.
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