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Abstract. Coronary artery disease (CAD) is one of the leading causes of global
mortality, highlighting the need for more effective early diagnosis methods. This
study compares LSTM, Bi-GRU, and Transformer neural networks in classifying
electrocardiograms (ECG) into three categories: normal, inferior myocardial
infarction (IMI), and anterior myocardial infarction (AMI), using the PTB-XL
dataset. Results show that Transformers offer faster training (average of 35
minutes), while LSTM and Bi-GRU achieve higher accuracy (91% and 92%,
respectively). The study also contributes to improving ECG data preprocessing
and training for cardiac diagnosis classification.

Resumo. As doencas arteriais coronarianas (DAC) figuram entre as principais
causas de mortalidade no mundo, demandando avangos no diagndstico pre-
coce. Este estudo compara redes neurais LSTM, Bi-GRU e Transformer na
classificagdo de eletrocardiogramas (ECG) em trés categorias: normal, infarto
inferior (IMI) e anterior (AMI), utilizando o conjunto de dados PTB-XL. Os
resultados indicam que Transformers sdo mais rdpidos no treinamento (média
de 35 minutos), enquanto LSTM e Bi-GRU apresentam maior precisdao (91% e
92%, respectivamente). O trabalho também contribui para a melhoria do pré-
processamento e do treinamento de dados de ECG aplicados ao diagndstico
cardiaco.

1. Introducao

O eletrocardiograma (ECG) é uma ferramenta essencial na avaliacdo de condicoes
cardiacas por sua acessibilidade e custo relativamente baixo em comparag@o com outros
exames. FEle desempenha um papel importante na deteccdo precoce, monitoramento e
classificacao de doencas cardiovasculares, como a doenca arterial coronariana (DAC),
uma das principais causas de mortalidade e morbidade no mundo. Segundo [Komilovich
(2023)], a DAC ¢ responsavel por 32,7% das doencas cardiovasculares, resultando em
um custo anual superior a 200 bilhdes de ddlares para os sistemas de saude dos Estados
Unidos. A deteccao precoce € fundamental para prevenir complicagdes, e o ECG, por ser
amplamente disponivel, emerge como um recurso valioso para esse proposito, permitindo
intervencoes antecipadas que podem salvar vidas.

O uso de redes neurais (RNs) revolucionou o diagndstico assistido em diversas
areas médicas, especialmente na analise de dados sequenciais como os de ECG. Mode-
los como LSTMs (Long Short-Term Memory), Bi-GRU (Bi-Directional Gated Recurrent



Unit) e Transformers demonstraram alta eficicia ao processar grandes volumes de dados
clinicos, identificando padrdoes complexos que muitas vezes escapam a andlise humana.
Poucos trabalhos na literatura tratam da comparacao direta entre técnicas e re-
des de processamento de sequéncia mais antigas, como LSTM e Bi-GRU, com abor-
dagens mais atuais, como Transformers, especialmente no contexto da andlise de sinais
biomédicos. Portanto, o objetivo desta pesquisa é comparar a eficiéncia de diferentes
modelos de redes neurais — LSTM, Bi-GRU e Transformer — que utilizam diferentes es-
tratégias para a classificacdo de doenca arterial coronariana, utilizando o conjunto de
dados PTB-XL desenvolvido por [Wagner et al. (2020)]. Além disso, busca-se propor
um modelo que se destaque em termos de desempenho, contribuindo para diagndsticos
mais acessiveis, precisos e confidveis. Essa andlise ndo apenas avalia as capacidades in-
dividuais dos modelos, mas também explora como o uso de inteligéncia artificial pode
transformar o diagndstico médico e melhorar os desfechos para pacientes com DAC.

2. Trabalhos Relacionados

[Darmawahyuni et al. (2019)] utilizaram LSTMs na classificacdo de infarto do
miocdardio (MI) a partir de sinais de ECG, com a aplica¢do da técnica de segmentacdo de
sinais em janelas de 4 segundos, com pelo menos quatro batimentos cardiacos por janela,
para que fossem usados como treinamento para a rede neural. O modelo foi treinado
com diversas camadas, variando de uma a trés, todas otimizadas com o algoritmo Adam.
Ainda em 2019, [Zhang et al. (2019b)] propuseram um trabalho que se destacou pelas
técnicas de pré-processamento. Entre elas, o uso do algoritmo Pan-Tompkins, proposto
por [Pan e Tompkins (1985)], que permitiu a extragdo de batimentos cardiacos a partir
dos dados brutos de ECG, identificando o complexo QRS de cada batimento. Ainda uti-
lizando LSTM, [Dey et al. (2021)] inovaram e estruturaram um modelo de rede neural
simples que combinava uma camada de CNN 1-D e uma camada LSTM bidirecional,
uma variante da LSTM que processa os dados sequenciais em duas diregdes, para tratar
sinais de ECG.

No campo das GRUs, [Zhang et al. (2019a)] apresentam um estudo que explorou
o uso de uma GRU bidirecional para a captura de uma maior quantidade de contexto tem-
poral em compara¢do ao GRU simples. Ademais, utilizou o algoritmo Pan-Tompkins para
filtragem e ampliagdo dos dados do dataset. Recentemente, por meio de uma andlise sis-
tematica da literatura, [Geng et al. (2023)] ampliaram essa abordagem ao proporem uma
rede neural multitarefa que combinava Bi-GRU com médulos SE-ResNet e Transformer.
No pré-processamento, a frequéncia dos sinais de ECG foi reduzida de 500 Hz para 250
Hz, acelerando o treinamento. Os dados pre-processados encaminhados para o médulo
Bi-GRU, que extrai caracteristicas das sequéncias de ECG em duas direcoes. A funcado
de perda final combina as perdas das tarefas principal e auxiliar, ajustadas de acordo com
o modelo multitarefa.

Mais recentemente, o uso da arquitetura de Transformers introduziu novas pers-
pectivas na analise de ECGs, como no estudo proposto por [Natarajan et al. (2020)], que
utilizou uma rede de transformadores ampla e profunda para classificar ECGs multide-
rivacionais, demonstrando desempenho satisfatério em termos de velocidade de iteracao
e treinamento do modelo em comparagdo a outros métodos. Contudo, ndo apresentaram
resultados melhores que as outras RNNs, comprovando que a eficiéncia de sua aplica¢ao
depende de diversos fatores. Um aprimoramento significativo foi proposto por [Atiea e



Adel (2022)], que trouxe uma melhora no desempenho ao combinar caracteristicas mor-
foldgicas e dados brutos de ECG. Outro trabalho relevante foi produzido por [Butt et al.
(2022)], que explorou o uso de um modelo hibrido CNN-LSTM combinado com o meca-
nismo de Attention/Transformer para a andlise de ECGs de 12 derivacdes. Esse modelo
hibrido conseguiu melhorar o resultado dos modelos de aten¢do, ao combinar as forcas de
CNN, LSTM, superando as limitacdes de modelos convencionais, evitando o overfitting
em conjuntos de dados médios e mostrando-se eficaz na classificacao precisa de ECGs.

Por fim, [Xiong et al. (2022)] apresentam uma andlise de Deep Learning (DL)
para detecgdo e localizag¢do de infarto do miocardio (MI), e apresentaram estudos sobre a
arquitetura LSTM e GRU, trazendo insights significativos que guiaram o estudo na anélise
de identificacdo de doengas arteriais corondrias de um modo geral. Contudo, se limita-
ram a redes neurais recorrentes, € ndo extenderam a anélise a tecnologias atuais, como 0s
modulos de atenc@o dos Transformers.

3. O Eletrocardiograma

O eletrocardiograma (ECG) é uma ferramenta diagnéstica essencial para moni-
torar a atividade elétrica do coracdo. Ele registra essa atividade por meio de eletrodos
colocados na pele, gerando um grafico de dados sequénciais que mostra as diferentes on-
das que representam cada fase do ciclo cardiaco. As principais ondas analisadas no ECG
(Figura 1) s@o: a onda P, o complexo QRS, o segmento ST, a onda T e, em alguns ca-
sos especificos, a onda U. Essas ondas fornecem informacdes essenciais sobre a saide
do coracdo e sdo comumente utilizadas para detectar arritmias, distirbios na condugao
elétrica e, especialmente, eventos isquémicos, como o infarto do miocardio, que pode se
manifestar por elevagdes ou depressdes no segmento ST, inversdes da onda T e presenca
de ondas Q patologicas. Esses segmentos sao mostrados na Figura 1.

Figura 1. Ondas ECG
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4. Redes neurais para séries temporais

As Redes Neurais Recorrentes (RNNs) sdo arquiteturas projetadas especifica-
mente para lidar com dados sequenciais, como séries temporais, textos, sinais de dudio e
sinais biomédicos, como os eletrocardiogramas. Diferentemente das redes neurais tradi-
cionais, as RNNs tém a capacidade de manter uma memoria dos estados anteriores, o que
¢ essencial quando a ordem ou dependéncia temporal dos dados € importante. As RNNs
cldssicas, no entanto, enfrentam desafios, como o problema do vanishing gradient, onde
as contribuicdes de eventos longinquos na sequéncia se tornam insignificantes durante o
treinamento. Para superar essas limitacdes, variantes foram desenvolvidas, como as redes
LSTM (Long Short-Term Memory) e GRU (Gated Recurrent Unit). Além disso, arqui-
teturas como os Transformers se destacaram por sua capacidade de lidar com grandes
sequéncias de forma mais eficiente.

4.1. Long Short-Term Memory (LSTM)

As Redes LSTM foram introduzidas por [Hochreiter (1997)] para mitigar as limitagcdes

das RNNs tradicionais, especialmente em tarefas que exigiam a captura de dependéncias
de longo prazo. A LSTM incorpora um sistema de portas (gate units) que controla o
fluxo de informacdes dentro da rede. Essas portas incluem a porta de entrada, a porta de
esquecimento e a porta de saida, que permitem a rede adicionar ou remover informagdes
de sua memoria, garantindo que apenas informagdes relevantes sejam retidas ao longo do
tempo.Essa estrutura torna a LSTM eficaz em tarefas que envolvem longas dependéncias
temporais, como a andlise de sinais de ECG, onde eventos andmalos podem ser espacados
por varias amostras de dados.

4.2. Bidirectional Gated Recurrent Unit (Bi-GRU)

A Rede Bi-GRU, publicada por [Chung (2014)], € uma variagdo das RNNs que
combinam a simplicidade das GRUs com a bidirecionalidade, ou seja, a capacidade de
processar uma sequéncia em ambas as direcoes, capturando ndo apenas o contexto pas-
sado, mas também o futuro em relacdo a cada ponto da sequéncia. As GRUs, como as
LSTMs, utilizam portas para controlar o fluxo de informacdes, mas possuem uma estru-
tura mais simples e leve, o que pode levar a um treinamento mais rdpido. No caso da
Bi-GRU, a vantagem reside na habilidade de considerar tanto o histdrico, quanto o futuro
de um determinado ponto da sequéncia, tornando-a tutil para andlises como a predicao de
doencas a partir de ECGs.

4.3. Transformers

Proposto por [Vaswani (2017)], o Transformer € uma arquitetura de rede neural
que introduz o conceito de self-attention. Diferente das RNNs, que processam sequéncias
de forma linear, os Transformers podem considerar todas as posicoes da sequéncia ao
mesmo tempo, permitindo uma andlise muito mais eficiente e paralelizada de grandes
quantidades de dados. Em vez de depender de uma estrutura sequencial, os Transfor-
mers utilizam o mecanismo de atencdo para identificar automaticamente quais partes da
sequéncia sao mais relevantes para a tarefa de predicdo. Isso os torna especialmente ade-
quados para lidar com dependéncias de longo alcance em grandes conjuntos de dados. No
contexto da andlise de eletrocardiogramas, essa arquitetura permite uma maior flexibili-
dade e precisdo na detec¢ao de padrdes dos sinais elétricos.



5. Metodologia
5.1. Base de Dados

O primeiro conjunto de dados utilizado neste trabalho € o PTB-XL, que consiste
em 21.799 registros clinicos de eletrocardiogramas (ECG) de 12 derivagdes, provenientes
de 18.869 pacientes. Cada registro, com 10 segundos de duragdo, foi coletado sob a su-
pervisao do Physikalisch-Technische Bundesanstalt (PTB)[Wagner et al. (2020)]. Além
de informacdes demogréficas, os registros incluem 12 derivagdes e detalhes como eixo
cardiaco e estdgio do infarto.

O segundo conjunto de dados utilizado é o dataset PTB-XL+ [Strodthoff et al.
(2023)], um dataset complementar ao PTB-XL, possuindo uma colecdo abrangente de
dados de ECG complementados por metadados adicionais, como batimentos medianos e
pontos fiduciais, além de declaragdes diagnosticas. Os dados oferecem uma visdo abran-
gente da atividade elétrica do coracdo, com 71 estados diferentes de ECG. Identificadores
unicos para ECG e pacientes facilitam a organizacao e analise.

5.2. Pré-processamento

O pré-processamento dos dados foi realizado utilizando a linguagem Python no
ambiente Jupyter Notebook, com o auxilio da biblioteca Pandas. Foram selecionadas as
classes relacionadas a doenga arterial coronariana — infarto do miocardio anterior (AMI),
infarto do miocdrdio inferior (IMI) e dados normais (NORM) — totalizando 7.427 regis-
tros de 4.655 pacientes distintos. Registros duplicados de pacientes foram removidos do
conjunto de testes para evitar redundancias, mas mantidos no conjunto de treinamento
para aumentar a quantidade de dados disponiveis.

Foram selecionadas apenas as derivacdes mais relevantes para a classificacdo dos
tipos de infarto. As derivagdes D2, D3 e aVF, obtidas por eletrodos posicionados nos
membros, representam a atividade elétrica no plano frontal inferior e sdo essenciais para
detectar infarto do miocérdio inferior. Ja as derivacdes V2, V3 e V4, registradas por
eletrodos colocados no térax, refletem a atividade no plano horizontal anterior, sendo
fundamentais para identificar infarto do miocardio anterior.

O algoritmo Pan-Tompkins de [Pan e Tompkins (1985)], foi usado para segmentar
os sinais brutos, identificando o complexo QRS nos registros de ECG através da técnica
de janelamento, que consiste em dividir o sinal em segmentos menores, ou janelas, cada
uma contendo apenas um batimento cardiaco. Essa abordagem permitiu a extracdo de
cinco batimentos isolados por registro, sendo cada um deles, utilizado como entrada para
arede separadamente, ampliando a quantidade de dados e concedendo um maior enfoque
em padrdes morfoldgicos das ondas. Apds a segmentagdo, foi aplicado o ajuste de curva
polinomial, uma técnica que utiliza fun¢des polinomiais para modelar e remover o desvio
de linha de base presente nos sinais, garantindo maior precisao nas anélises subsequentes.
Além disso, foi utilizado um filtro de rejei¢ao de banda (notch filter), projetado para elimi-
nar interferéncias em frequéncias especificas, como ruidos provenientes da rede elétrica,
melhorando ainda mais a qualidade dos dados extraidos.



Figura 2. Exemplo da extracao do algoritmo Pan-Tompkins
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5.3. Treinamento

As redes neurais empregadas neste estudo foram desenvolvidas e treinadas a par-
tir do estado inicial, sem a utilizacdo de pesos previamente ajustados, abrangendo trés
arquiteturas distintas: LSTM, Bi-GRU e Transformer. Os treinamentos foram realizados
em um ambiente com processador Intel Core 15-13450H (10 nucleos), 16 GB de RAM
DDRS5 e GPU NVIDIA GeForce RTX 3050 com 6 GB de memoria dedicada, sob o sis-
tema operacional Windows 11. Em todas as redes, a camada de saida utilizou a funcao
de ativacdo Softmax, amplamente utilizada para problemas de classificacdo multiclasse.
Essa fun¢do converte os valores da saida em probabilidades, garantindo que a soma das
probabilidades para todas as classes seja igual a 1:

e
n .
Zj:l e

Softmax(z;) =

onde z; € o valor de ativacdo da i-ésima classe, e n € o niimero total de classes.

A funcdo de perda utilizada foi a categorical cross-entropy, ideal para problemas
de classificacdo multiclasse. Essa fungao mede a diferenca entre a distribui¢do prevista
pelo modelo e a verdadeira distribui¢dao dos dados.

Loss = — Z yi log(v;)

=1

onde y; é o rotulo verdadeiro (1 para a classe correta e 0 para as demais), e y; € a
probabilidade prevista para a ¢-ésima classe.

O algoritmo Adam foi escolhido como otimizador devido a sua eficiéncia e adapta-
bilidade durante o treinamento. Para avaliar o desempenho das redes ao longo das épocas,
foi utilizada a métrica de acuracia, que mede a propor¢do de predi¢des corretas em relacao
ao total de amostras avaliadas. Outro mecanismo utilizado para otimizar o processo de



treinamento e evitar problemas de sobreajuste, foi uma funcio personalizada que utili-
zava early stopping com uma paciéncia de 15 épocas e também realizava o salvamento
automatico do modelo treinado, da matriz de confusdo e dos graficos de treinamento,
incluindo as informacdes mais relevantes sobre a arquitetura utilizada. Esses recursos
facilitaram uma andlise mais aprofundada dos resultados e auxiliaram no ajuste fino dos
modelos.

5.4. Arquitetura

A rede foi desenvolvida sem o uso de pesos pré-treinados, recebendo como entrada
séries temporais de ECG tratadas pelo algoritmo de extracdo Pan-Tompkins e emitindo
previsoes de suas categorias. Durante o processo de ajuste de hiperparametros, diferentes
tamanhos de camadas ocultas foram testados, variando entre 32, 64, 128 € 256 neur6dnios.
A configuragdo com 32 neur6nios foi insuficiente para o aprendizado do modelo, en-
quanto 256 neurdnios resultaram em overfitting, indicando que a rede estava se ajustando
demais aos dados de treinamento e nao lidando bem com dados desconhecidos. Entre
as configuracdes de 64 e 128 neurdnios, a ultima se destacou, oferecendo um equilibrio
superior entre desempenho e generalizacao, tornando-se a escolha ideal para a arquitetura
final.

Pela elevada quantidade de neurdnios em sua estrutura, foi possivel extrair mais
caracteristicas relevantes durante o treinamento, como por exemplo as alteracdes no seg-
mento ST, essencial para a detec¢do de infarto, como discutido por [Carneiro (1997)].
Cada camada densa oculta € intercalada com uma camada de dropout, visando melhorar
a generalizacdo do modelo, reduzir o overfitting e aumentar sua robustez na predigao.

A arquitetura detalhada se encontra na figura 3 e se resume a 3 camadas densas
ocultas com 128 neurdnios cada + dropout apés cada camada + camada softmax com 3
saidas. A func¢do de ativagao utilizada nas camadas ocultas foi a ReL.U (Rectified Linear
Unit), que acelera a convergéncia e ajuda a mitigar problemas de gradiente. A camada
softmax na saida fornece as probabilidades das classes, permitindo a classificagdo final
dos sinais de ECG.

Figura 3. Arquitetura das redes neurais
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5.5. Selecao de Modelos

A comparagao com os modelos LSTM, Bi-GRU e Transformer para dados sequen-
ciais foi motivada pela natureza temporal e complexa dos sinais de ECG, que exigem a
captura de padrdes ao longo do tempo para uma classificacdo precisa. A LSTM e o Bi-
GRU sdo arquiteturas de Redes Neurais Recorrentes (RNNs) que possuem a capacidade
de lidar com dependéncias de longo prazo, sendo muito utilizadas em tarefas envolvendo
dados sequenciais. Ja o Transformer, com sua arquitetura baseada em mecanismos de
atencdo, destaca-se como uma abordagem atual e inovadora por processar sequéncias em
paralelo, ao invés de forma sequencial como as redes recorrentes. Por conta disso, se
tornou comumente utilizada em diversos problemas de aprendizado de maquina.



5.5.1. Comparacao de Modelos

Para a comparagdo dos modelos, foram considerados critérios como acurécia, pre-
cisdo, recall e Fl-score, para uma avaliagdo mais abrangente dos modelos, e eficiéncia
computacional por sua importincia em cendrios clinicos de decisdes rapidas e uso oti-
mizado de recursos, além da demonstragdo da matriz de confusdo para cada caso. Cada
modelo foi treinado e avaliado no mesmo conjunto de dados de ECG, com a andlise de
seu desempenho sendo feita em fungdo da capacidade de categorizacdo das diferentes
variacOes de sinais cardiacos. Além disso, para cada modelo, foi gerada a matriz de
confusdo, que apresenta as classificagdes corretas e incorretas em relagdo as categorias
definidas, permitindo uma andlise mais detalhada do desempenho em cada classe.

6. Resultados Experimentais

Nesta se¢do, € realizada uma andlise comparativa do desempenho dos modelos
LSTM, Bi-GRU e Transformer sob as mesmas circunstancias. O uso do algoritmo Pan-
Tompkins possibilitou aumentar a quantidade de dados, tendo em vista que a fornecida
pelo dataset com seus dados primarios ndo foi suficiente para a classificacdo das DACs.
Nos experimentos realizados para classificacdo de eletrocardiogramas em trés classes
(NORMAL, IMI e AMI), as redes neurais Transformer, LSTM e Bi-GRU apresentaram
um desempenho ndo muito variado nas métricas de sensibilidade, F1-score, precisdo e
especificidade, mas com leves alteracdes e diferencas notaveis de tempo de treinamento.
Cada uma dessas métricas foi calculada considerando o desempenho de cada rede em
identificar corretamente as classes sob as mesmas condi¢des de treinamento: nimero de
épocas igual a 100, taxa de aprendizado de 0,0001, 3 camadas densas com 128 neurdnios
e um dropout de 0,5. Observando as tabelas de métricas, a rede Bi-GRU destacou-se em
sensibilidade, mostrando maior capacidade em identificar corretamente as classes IMI e
AMI, o que € critico em contextos médicos. Ja no Fl-score e precisdo, as redes Bi-GRU
e LSTM, similarmente, tiveram um desempenho mais equilibrado entre classes, eviden-
ciando sua robustez em situagdes de classes desbalanceadas. Todas essas informagdes
podem ser verificadas nas Figuras 4, 5 e 6.

Figura 4. Tabela com os resultados do treinamento da rede Bi-GRU

CLASSES SENSIBILIDADE ESPECIFICIDADE PRECISAO SCORE F1
AMI 0,93 0,28 0,95 0,24

IMI 0,82 0,95 0,90 0,91

NORM 0,91 0,95 0,91 0,9

Figura 5. Tabela com os resultados do treinamento da rede LSTM

AMI 0,92 0,97 0,94 0,93

IMI 0,89 0,96 0,92 0,90

NORM 0,93 0,93 0,89 0,91




Figura 6. Tabela com os resultados do treinamento do Transformer

CLASSES SENSIBILIDADE ESPECIFICIDADE PRECISAD SCORE F1
AMI 0,87 0,97 0,92 0,90

IMI 0,83 0.24 0,86 0,85

NORM 0,91 0,90 0,84 0,88

O historico do treinamento, ilustrado pelos gréficos de acurécia e perda da Figura
7, aponta que a rede Transformer convergiu de forma mais rdpida, iniciando o treinamento
desde a primeira época com 88% de acurdcia no treino e de 86% no teste, sugerindo uma
adaptacdo mais eficiente ao conjunto de dados utilizado, além de ter obtido uma média
de 35 minutos em seu tempo de treinamento, enquanto as redes LSTM e Bi-GRU obtive-
ram 50 minutos e 1 hora respectivamente. A linha vermelha presente na Figura 7 indica
o desempenho final do modelo de inteligéncia artificial nos dados de teste. Esses dados
consistem em registros de ECGs que ndo foram utilizados durante o treinamento da rede
neural, sendo completamente desconhecidos por ela. Pode-se observar que as redes Bi-
GRU e LSTM se destacam em sua capacidade de manter uma alta precisdo em generalizar
as classificagdes para novos dados, refletindo em uma aplicacio prética mais segura em
cendrios reais.

As matrizes de confusdo, visualizadas nas Tabelas 1, 2, 3, por outro lado, indi-
cam que a rede LSTM apresentou menores taxas de falsos positivos e falsos negativos
para a classe normal, enquanto a Bi-GRU teve desempenho superior nas classes de in-
farto. Os resultados obtidos refletem as caracteristicas esperadas de cada arquitetura. O
Transformer, conhecido por se destacar em cendrios com grandes volumes de dados, nao
apresentou vantagem significativa neste caso, devido a quantidade moderada de dados do
conjunto PTB-XL, favorecendo arquiteturas como LSTM e Bi-GRU.

Tabela 1. Matriz de Confusdo para método LSTM
AMI IMI Normal

AMI 613 26 25
IMI 14 612 63
Normal 24 29 721

Tabela 2. Matriz de Confusao para método Bi-GRU
AMI IMI Normal

AMI 619 15 30
IMI 16 634 39
Normal 18 55 701




Tabela 3. Matriz de Confusao para método Transformer
AMI IMI Normal

AMI 577 40 47
IMI 30 573 86
Normal 17 51 706

7. Conclusao

A comparacgdo entre Bi-GRU, LSTM, Transformer na classificacio de eletrocar-
diogramas revelou que cada arquitetura possui suas proprias vantagens em contextos es-
pecificos. Em geral, a rede Bi-GRU demonstrou um bom desempenho em sensibilidade
e especificidade, tornando-a uma 6tima escolha em aplicagdes que buscam a precisdo no
diagnéstico de condigdes cardiacas. Por outro lado, o LSTM obteve resultados modera-
dos em varias métricas, sendo uma opg¢ao de escolha em cendrios onde € necessario um
desempenho estavel entre diferentes classes. Ja o Transformer destacou-se por seu menor
tempo de treinamento e rapida convergéncia, o que 4 vantajoso em aplica¢oes que exigem
rapidez e escalabilidade, lidando muito bem com grandes volumes de dados.

Figura 7. Tabela com os resultados do treinamento
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Dado o contexto clinico, a escolha da arquitetura ideal depende das prioridades de
aplicagdo - se o objetivo for minimizar falsos negativos em diagndsticos de alto risco, a
rede Bi-GRU pode ser preferida; para uma abordagem mais equilibrada, a LSTM também
se mostra promissora. As condi¢des de treinamento e a andlise com métricas variadas
permitiram uma comparacgao objetiva, destacando como as redes neurais respondem a di-
ferentes desafios em dados de ECG.

Para trabalhos futuros, sugere-se a exploracao de arquiteturas hibridas que com-
binem os pontos fortes de LSTM, Bi-GRU e Transformer que foram levantados neste
estudo, buscando uma maior eficacia na analise de sinais de ECG. Adicionalmente, seria
relevante aplicar técnicas de atencao explicavel(XAI) para melhorar a interpretabilidade
dos resultados e facilitar a aplicagdo clinica e funcional das redes neurais propostas. Ou-
tro aspecto promissor € ampliar o escopo de estudo para contemplar mais subclasses da
DAC, como infarto do miocéardio lateral, posterior, apical, septal, subendocardico e trans-
mural, possibilitando uma melhor compreensao das especificidades de cada caso e um
diagndstico mais preciso e abrangente para condi¢des cardiacas complexas.

Finalmente, seria de grande utilidade a integrac@o dessa tecnologia de classificacao
diretamente aos softwares utilizados nos eletrocardiogramas. Com essa implementacao,
durante o exame, o médico poderia ter acesso imediato a insights relevantes, como a
identificagdo preliminar de padrdes associados a diferentes tipos de infarto ou outras anor-
malidades cardiacas.
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