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Abstract. Coronary artery disease (CAD) is one of the leading causes of global
mortality, highlighting the need for more effective early diagnosis methods. This
study compares LSTM, Bi-GRU, and Transformer neural networks in classifying
electrocardiograms (ECG) into three categories: normal, inferior myocardial
infarction (IMI), and anterior myocardial infarction (AMI), using the PTB-XL
dataset. Results show that Transformers offer faster training (average of 35
minutes), while LSTM and Bi-GRU achieve higher accuracy (91% and 92%,
respectively). The study also contributes to improving ECG data preprocessing
and training for cardiac diagnosis classification.

Resumo. As doenças arteriais coronarianas (DAC) figuram entre as principais
causas de mortalidade no mundo, demandando avanços no diagnóstico pre-
coce. Este estudo compara redes neurais LSTM, Bi-GRU e Transformer na
classificação de eletrocardiogramas (ECG) em três categorias: normal, infarto
inferior (IMI) e anterior (AMI), utilizando o conjunto de dados PTB-XL. Os
resultados indicam que Transformers são mais rápidos no treinamento (média
de 35 minutos), enquanto LSTM e Bi-GRU apresentam maior precisão (91% e
92%, respectivamente). O trabalho também contribui para a melhoria do pré-
processamento e do treinamento de dados de ECG aplicados ao diagnóstico
cardı́aco.

1. Introdução
O eletrocardiograma (ECG) é uma ferramenta essencial na avaliação de condições

cardı́acas por sua acessibilidade e custo relativamente baixo em comparação com outros
exames. Ele desempenha um papel importante na detecção precoce, monitoramento e
classificação de doenças cardiovasculares, como a doença arterial coronariana (DAC),
uma das principais causas de mortalidade e morbidade no mundo. Segundo [Komilovich
(2023)], a DAC é responsável por 32,7% das doenças cardiovasculares, resultando em
um custo anual superior a 200 bilhões de dólares para os sistemas de saúde dos Estados
Unidos. A detecção precoce é fundamental para prevenir complicações, e o ECG, por ser
amplamente disponı́vel, emerge como um recurso valioso para esse propósito, permitindo
intervencões antecipadas que podem salvar vidas.

O uso de redes neurais (RNs) revolucionou o diagnóstico assistido em diversas
áreas médicas, especialmente na análise de dados sequenciais como os de ECG. Mode-
los como LSTMs (Long Short-Term Memory), Bi-GRU (Bi-Directional Gated Recurrent



Unit) e Transformers demonstraram alta eficácia ao processar grandes volumes de dados
clı́nicos, identificando padrões complexos que muitas vezes escapam à análise humana.

Poucos trabalhos na literatura tratam da comparação direta entre técnicas e re-
des de processamento de sequência mais antigas, como LSTM e Bi-GRU, com abor-
dagens mais atuais, como Transformers, especialmente no contexto da análise de sinais
biomédicos. Portanto, o objetivo desta pesquisa é comparar a eficiência de diferentes
modelos de redes neurais – LSTM, Bi-GRU e Transformer – que utilizam diferentes es-
tratégias para a classificação de doença arterial coronariana, utilizando o conjunto de
dados PTB-XL desenvolvido por [Wagner et al. (2020)]. Além disso, busca-se propor
um modelo que se destaque em termos de desempenho, contribuindo para diagnósticos
mais acessı́veis, precisos e confiáveis. Essa análise não apenas avalia as capacidades in-
dividuais dos modelos, mas também explora como o uso de inteligência artificial pode
transformar o diagnóstico médico e melhorar os desfechos para pacientes com DAC.

2. Trabalhos Relacionados

[Darmawahyuni et al. (2019)] utilizaram LSTMs na classificação de infarto do
miocárdio (MI) a partir de sinais de ECG, com a aplicação da técnica de segmentação de
sinais em janelas de 4 segundos, com pelo menos quatro batimentos cardı́acos por janela,
para que fossem usados como treinamento para a rede neural. O modelo foi treinado
com diversas camadas, variando de uma a três, todas otimizadas com o algoritmo Adam.
Ainda em 2019, [Zhang et al. (2019b)] propuseram um trabalho que se destacou pelas
técnicas de pré-processamento. Entre elas, o uso do algoritmo Pan-Tompkins, proposto
por [Pan e Tompkins (1985)], que permitiu a extração de batimentos cardı́acos a partir
dos dados brutos de ECG, identificando o complexo QRS de cada batimento. Ainda uti-
lizando LSTM, [Dey et al. (2021)] inovaram e estruturaram um modelo de rede neural
simples que combinava uma camada de CNN 1-D e uma camada LSTM bidirecional,
uma variante da LSTM que processa os dados sequenciais em duas direções, para tratar
sinais de ECG.

No campo das GRUs, [Zhang et al. (2019a)] apresentam um estudo que explorou
o uso de uma GRU bidirecional para a captura de uma maior quantidade de contexto tem-
poral em comparação ao GRU simples. Ademais, utilizou o algoritmo Pan-Tompkins para
filtragem e ampliação dos dados do dataset. Recentemente, por meio de uma análise sis-
temática da literatura, [Geng et al. (2023)] ampliaram essa abordagem ao proporem uma
rede neural multitarefa que combinava Bi-GRU com módulos SE-ResNet e Transformer.
No pré-processamento, a frequência dos sinais de ECG foi reduzida de 500 Hz para 250
Hz, acelerando o treinamento. Os dados pre-processados encaminhados para o módulo
Bi-GRU, que extrai caracterı́sticas das sequências de ECG em duas direções. A função
de perda final combina as perdas das tarefas principal e auxiliar, ajustadas de acordo com
o modelo multitarefa.

Mais recentemente, o uso da arquitetura de Transformers introduziu novas pers-
pectivas na análise de ECGs, como no estudo proposto por [Natarajan et al. (2020)], que
utilizou uma rede de transformadores ampla e profunda para classificar ECGs multide-
rivacionais, demonstrando desempenho satisfatório em termos de velocidade de iteração
e treinamento do modelo em comparação a outros métodos. Contudo, não apresentaram
resultados melhores que as outras RNNs, comprovando que a eficiência de sua aplicação
depende de diversos fatores. Um aprimoramento significativo foi proposto por [Atiea e



Adel (2022)], que trouxe uma melhora no desempenho ao combinar caracterı́sticas mor-
fológicas e dados brutos de ECG. Outro trabalho relevante foi produzido por [Butt et al.
(2022)], que explorou o uso de um modelo hı́brido CNN-LSTM combinado com o meca-
nismo de Attention/Transformer para a análise de ECGs de 12 derivações. Esse modelo
hı́brido conseguiu melhorar o resultado dos modelos de atenção, ao combinar as forças de
CNN, LSTM, superando as limitações de modelos convencionais, evitando o overfitting
em conjuntos de dados médios e mostrando-se eficaz na classificação precisa de ECGs.

Por fim, [Xiong et al. (2022)] apresentam uma análise de Deep Learning (DL)
para detecção e localização de infarto do miocárdio (MI), e apresentaram estudos sobre a
arquitetura LSTM e GRU, trazendo insights significativos que guiaram o estudo na análise
de identificação de doenças arteriais coronárias de um modo geral. Contudo, se limita-
ram a redes neurais recorrentes, e não extenderam a análise à tecnologias atuais, como os
módulos de atenção dos Transformers.

3. O Eletrocardiograma
O eletrocardiograma (ECG) é uma ferramenta diagnóstica essencial para moni-

torar a atividade elétrica do coração. Ele registra essa atividade por meio de eletrodos
colocados na pele, gerando um gráfico de dados sequênciais que mostra as diferentes on-
das que representam cada fase do ciclo cardı́aco. As principais ondas analisadas no ECG
(Figura 1) são: a onda P, o complexo QRS, o segmento ST, a onda T e, em alguns ca-
sos especı́ficos, a onda U. Essas ondas fornecem informações essenciais sobre a saúde
do coração e são comumente utilizadas para detectar arritmias, distúrbios na condução
elétrica e, especialmente, eventos isquêmicos, como o infarto do miocárdio, que pode se
manifestar por elevações ou depressões no segmento ST, inversões da onda T e presença
de ondas Q patológicas. Esses segmentos são mostrados na Figura 1.

Figura 1. Ondas ECG

Fonte: https://www.msdmanuals.com/pt/casa/multimedia/figure/ecg-como-interpretar-as-ondas



4. Redes neurais para séries temporais
As Redes Neurais Recorrentes (RNNs) são arquiteturas projetadas especifica-

mente para lidar com dados sequenciais, como séries temporais, textos, sinais de áudio e
sinais biomédicos, como os eletrocardiogramas. Diferentemente das redes neurais tradi-
cionais, as RNNs têm a capacidade de manter uma memória dos estados anteriores, o que
é essencial quando a ordem ou dependência temporal dos dados é importante. As RNNs
clássicas, no entanto, enfrentam desafios, como o problema do vanishing gradient, onde
as contribuições de eventos longı́nquos na sequência se tornam insignificantes durante o
treinamento. Para superar essas limitações, variantes foram desenvolvidas, como as redes
LSTM (Long Short-Term Memory) e GRU (Gated Recurrent Unit). Além disso, arqui-
teturas como os Transformers se destacaram por sua capacidade de lidar com grandes
sequências de forma mais eficiente.

4.1. Long Short-Term Memory (LSTM)

As Redes LSTM foram introduzidas por [Hochreiter (1997)] para mitigar as limitações
das RNNs tradicionais, especialmente em tarefas que exigiam a captura de dependências
de longo prazo. A LSTM incorpora um sistema de portas (gate units) que controla o
fluxo de informações dentro da rede. Essas portas incluem a porta de entrada, a porta de
esquecimento e a porta de saı́da, que permitem à rede adicionar ou remover informações
de sua memória, garantindo que apenas informações relevantes sejam retidas ao longo do
tempo.Essa estrutura torna a LSTM eficaz em tarefas que envolvem longas dependências
temporais, como a análise de sinais de ECG, onde eventos anômalos podem ser espaçados
por várias amostras de dados.

4.2. Bidirectional Gated Recurrent Unit (Bi-GRU)

A Rede Bi-GRU, publicada por [Chung (2014)], é uma variação das RNNs que
combinam a simplicidade das GRUs com a bidirecionalidade, ou seja, a capacidade de
processar uma sequência em ambas as direções, capturando não apenas o contexto pas-
sado, mas também o futuro em relação a cada ponto da sequência. As GRUs, como as
LSTMs, utilizam portas para controlar o fluxo de informações, mas possuem uma estru-
tura mais simples e leve, o que pode levar a um treinamento mais rápido. No caso da
Bi-GRU, a vantagem reside na habilidade de considerar tanto o histórico, quanto o futuro
de um determinado ponto da sequência, tornando-a útil para análises como a predição de
doenças a partir de ECGs.

4.3. Transformers

Proposto por [Vaswani (2017)], o Transformer é uma arquitetura de rede neural
que introduz o conceito de self-attention. Diferente das RNNs, que processam sequências
de forma linear, os Transformers podem considerar todas as posições da sequência ao
mesmo tempo, permitindo uma análise muito mais eficiente e paralelizada de grandes
quantidades de dados. Em vez de depender de uma estrutura sequencial, os Transfor-
mers utilizam o mecanismo de atenção para identificar automaticamente quais partes da
sequência são mais relevantes para a tarefa de predição. Isso os torna especialmente ade-
quados para lidar com dependências de longo alcance em grandes conjuntos de dados. No
contexto da análise de eletrocardiogramas, essa arquitetura permite uma maior flexibili-
dade e precisão na detecção de padrões dos sinais elétricos.



5. Metodologia

5.1. Base de Dados

O primeiro conjunto de dados utilizado neste trabalho é o PTB-XL, que consiste
em 21.799 registros clı́nicos de eletrocardiogramas (ECG) de 12 derivações, provenientes
de 18.869 pacientes. Cada registro, com 10 segundos de duração, foi coletado sob a su-
pervisão do Physikalisch-Technische Bundesanstalt (PTB)[Wagner et al. (2020)]. Além
de informações demográficas, os registros incluem 12 derivações e detalhes como eixo
cardı́aco e estágio do infarto.

O segundo conjunto de dados utilizado é o dataset PTB-XL+ [Strodthoff et al.
(2023)], um dataset complementar ao PTB-XL, possuindo uma coleção abrangente de
dados de ECG complementados por metadados adicionais, como batimentos medianos e
pontos fiduciais, além de declarações diagnósticas. Os dados oferecem uma visão abran-
gente da atividade elétrica do coração, com 71 estados diferentes de ECG. Identificadores
únicos para ECG e pacientes facilitam a organização e análise.

5.2. Pré-processamento

O pré-processamento dos dados foi realizado utilizando a linguagem Python no
ambiente Jupyter Notebook, com o auxı́lio da biblioteca Pandas. Foram selecionadas as
classes relacionadas a doença arterial coronariana – infarto do miocárdio anterior (AMI),
infarto do miocárdio inferior (IMI) e dados normais (NORM) – totalizando 7.427 regis-
tros de 4.655 pacientes distintos. Registros duplicados de pacientes foram removidos do
conjunto de testes para evitar redundâncias, mas mantidos no conjunto de treinamento
para aumentar a quantidade de dados disponı́veis.

Foram selecionadas apenas as derivações mais relevantes para a classificação dos
tipos de infarto. As derivações D2, D3 e aVF, obtidas por eletrodos posicionados nos
membros, representam a atividade elétrica no plano frontal inferior e são essenciais para
detectar infarto do miocárdio inferior. Já as derivações V2, V3 e V4, registradas por
eletrodos colocados no tórax, refletem a atividade no plano horizontal anterior, sendo
fundamentais para identificar infarto do miocárdio anterior.

O algoritmo Pan-Tompkins de [Pan e Tompkins (1985)], foi usado para segmentar
os sinais brutos, identificando o complexo QRS nos registros de ECG através da técnica
de janelamento, que consiste em dividir o sinal em segmentos menores, ou janelas, cada
uma contendo apenas um batimento cardı́aco. Essa abordagem permitiu a extração de
cinco batimentos isolados por registro, sendo cada um deles, utilizado como entrada para
a rede separadamente, ampliando a quantidade de dados e concedendo um maior enfoque
em padrões morfológicos das ondas. Após a segmentação, foi aplicado o ajuste de curva
polinomial, uma técnica que utiliza funções polinomiais para modelar e remover o desvio
de linha de base presente nos sinais, garantindo maior precisão nas análises subsequentes.
Além disso, foi utilizado um filtro de rejeição de banda (notch filter), projetado para elimi-
nar interferências em frequências especı́ficas, como ruı́dos provenientes da rede elétrica,
melhorando ainda mais a qualidade dos dados extraı́dos.



Figura 2. Exemplo da extração do algoritmo Pan-Tompkins

5.3. Treinamento

As redes neurais empregadas neste estudo foram desenvolvidas e treinadas a par-
tir do estado inicial, sem a utilização de pesos previamente ajustados, abrangendo três
arquiteturas distintas: LSTM, Bi-GRU e Transformer. Os treinamentos foram realizados
em um ambiente com processador Intel Core i5-13450H (10 núcleos), 16 GB de RAM
DDR5 e GPU NVIDIA GeForce RTX 3050 com 6 GB de memória dedicada, sob o sis-
tema operacional Windows 11. Em todas as redes, a camada de saı́da utilizou a função
de ativação Softmax, amplamente utilizada para problemas de classificação multiclasse.
Essa função converte os valores da saı́da em probabilidades, garantindo que a soma das
probabilidades para todas as classes seja igual a 1:

Softmax(zi) =
ezi∑n
j=1 e

zj

onde zi é o valor de ativação da i-ésima classe, e n é o número total de classes.

A função de perda utilizada foi a categorical cross-entropy, ideal para problemas
de classificação multiclasse. Essa função mede a diferença entre a distribuição prevista
pelo modelo e a verdadeira distribuição dos dados.

Loss = −
n∑

i=1

yi log(ŷi)

onde yi é o rótulo verdadeiro (1 para a classe correta e 0 para as demais), e ŷi é a
probabilidade prevista para a i-ésima classe.

O algoritmo Adam foi escolhido como otimizador devido à sua eficiência e adapta-
bilidade durante o treinamento. Para avaliar o desempenho das redes ao longo das épocas,
foi utilizada a métrica de acurácia, que mede a proporção de predições corretas em relação
ao total de amostras avaliadas. Outro mecanismo utilizado para otimizar o processo de



treinamento e evitar problemas de sobreajuste, foi uma função personalizada que utili-
zava early stopping com uma paciência de 15 épocas e também realizava o salvamento
automático do modelo treinado, da matriz de confusão e dos gráficos de treinamento,
incluindo as informações mais relevantes sobre a arquitetura utilizada. Esses recursos
facilitaram uma análise mais aprofundada dos resultados e auxiliaram no ajuste fino dos
modelos.

5.4. Arquitetura
A rede foi desenvolvida sem o uso de pesos pré-treinados, recebendo como entrada

séries temporais de ECG tratadas pelo algoritmo de extração Pan-Tompkins e emitindo
previsões de suas categorias. Durante o processo de ajuste de hiperparâmetros, diferentes
tamanhos de camadas ocultas foram testados, variando entre 32, 64, 128 e 256 neurônios.
A configuração com 32 neurônios foi insuficiente para o aprendizado do modelo, en-
quanto 256 neurônios resultaram em overfitting, indicando que a rede estava se ajustando
demais aos dados de treinamento e não lidando bem com dados desconhecidos. Entre
as configurações de 64 e 128 neurônios, a última se destacou, oferecendo um equilı́brio
superior entre desempenho e generalização, tornando-se a escolha ideal para a arquitetura
final.

Pela elevada quantidade de neurônios em sua estrutura, foi possı́vel extrair mais
caracterı́sticas relevantes durante o treinamento, como por exemplo as alterações no seg-
mento ST, essencial para a detecção de infarto, como discutido por [Carneiro (1997)].
Cada camada densa oculta é intercalada com uma camada de dropout, visando melhorar
a generalização do modelo, reduzir o overfitting e aumentar sua robustez na predição.

A arquitetura detalhada se encontra na figura 3 e se resume a 3 camadas densas
ocultas com 128 neurônios cada + dropout após cada camada + camada softmax com 3
saı́das. A função de ativação utilizada nas camadas ocultas foi a ReLU (Rectified Linear
Unit), que acelera a convergência e ajuda a mitigar problemas de gradiente. A camada
softmax na saı́da fornece as probabilidades das classes, permitindo a classificação final
dos sinais de ECG.

Figura 3. Arquitetura das redes neurais

5.5. Seleção de Modelos
A comparação com os modelos LSTM, Bi-GRU e Transformer para dados sequen-

ciais foi motivada pela natureza temporal e complexa dos sinais de ECG, que exigem a
captura de padrões ao longo do tempo para uma classificação precisa. A LSTM e o Bi-
GRU são arquiteturas de Redes Neurais Recorrentes (RNNs) que possuem a capacidade
de lidar com dependências de longo prazo, sendo muito utilizadas em tarefas envolvendo
dados sequenciais. Já o Transformer, com sua arquitetura baseada em mecanismos de
atenção, destaca-se como uma abordagem atual e inovadora por processar sequências em
paralelo, ao invés de forma sequencial como as redes recorrentes. Por conta disso, se
tornou comumente utilizada em diversos problemas de aprendizado de máquina.



5.5.1. Comparação de Modelos

Para a comparação dos modelos, foram considerados critérios como acurácia, pre-
cisão, recall e F1-score, para uma avaliação mais abrangente dos modelos, e eficiência
computacional por sua importância em cenários clı́nicos de decisões rápidas e uso oti-
mizado de recursos, além da demonstração da matriz de confusão para cada caso. Cada
modelo foi treinado e avaliado no mesmo conjunto de dados de ECG, com a análise de
seu desempenho sendo feita em função da capacidade de categorização das diferentes
variações de sinais cardı́acos. Além disso, para cada modelo, foi gerada a matriz de
confusão, que apresenta as classificações corretas e incorretas em relação às categorias
definidas, permitindo uma análise mais detalhada do desempenho em cada classe.

6. Resultados Experimentais
Nesta seção, é realizada uma análise comparativa do desempenho dos modelos

LSTM, Bi-GRU e Transformer sob as mesmas circunstâncias. O uso do algoritmo Pan-
Tompkins possibilitou aumentar a quantidade de dados, tendo em vista que a fornecida
pelo dataset com seus dados primários não foi suficiente para a classificação das DACs.
Nos experimentos realizados para classificação de eletrocardiogramas em três classes
(NORMAL, IMI e AMI), as redes neurais Transformer, LSTM e Bi-GRU apresentaram
um desempenho não muito variado nas métricas de sensibilidade, F1-score, precisão e
especificidade, mas com leves alterações e diferenças notáveis de tempo de treinamento.
Cada uma dessas métricas foi calculada considerando o desempenho de cada rede em
identificar corretamente as classes sob as mesmas condições de treinamento: número de
épocas igual a 100, taxa de aprendizado de 0,0001, 3 camadas densas com 128 neurônios
e um dropout de 0,5. Observando as tabelas de métricas, a rede Bi-GRU destacou-se em
sensibilidade, mostrando maior capacidade em identificar corretamente as classes IMI e
AMI, o que é crı́tico em contextos médicos. Já no F1-score e precisão, as redes Bi-GRU
e LSTM, similarmente, tiveram um desempenho mais equilibrado entre classes, eviden-
ciando sua robustez em situações de classes desbalanceadas. Todas essas informações
podem ser verificadas nas Figuras 4, 5 e 6.

Figura 4. Tabela com os resultados do treinamento da rede Bi-GRU

Figura 5. Tabela com os resultados do treinamento da rede LSTM



Figura 6. Tabela com os resultados do treinamento do Transformer

O histórico do treinamento, ilustrado pelos gráficos de acurácia e perda da Figura
7, aponta que a rede Transformer convergiu de forma mais rápida, iniciando o treinamento
desde a primeira época com 88% de acurácia no treino e de 86% no teste, sugerindo uma
adaptação mais eficiente ao conjunto de dados utilizado, além de ter obtido uma média
de 35 minutos em seu tempo de treinamento, enquanto as redes LSTM e Bi-GRU obtive-
ram 50 minutos e 1 hora respectivamente. A linha vermelha presente na Figura 7 indica
o desempenho final do modelo de inteligência artificial nos dados de teste. Esses dados
consistem em registros de ECGs que não foram utilizados durante o treinamento da rede
neural, sendo completamente desconhecidos por ela. Pode-se observar que as redes Bi-
GRU e LSTM se destacam em sua capacidade de manter uma alta precisão em generalizar
as classificações para novos dados, refletindo em uma aplicação prática mais segura em
cenários reais.

As matrizes de confusão, visualizadas nas Tabelas 1, 2, 3, por outro lado, indi-
cam que a rede LSTM apresentou menores taxas de falsos positivos e falsos negativos
para a classe normal, enquanto a Bi-GRU teve desempenho superior nas classes de in-
farto. Os resultados obtidos refletem as caracterı́sticas esperadas de cada arquitetura. O
Transformer, conhecido por se destacar em cenários com grandes volumes de dados, não
apresentou vantagem significativa neste caso, devido à quantidade moderada de dados do
conjunto PTB-XL, favorecendo arquiteturas como LSTM e Bi-GRU.

Tabela 1. Matriz de Confusão para método LSTM

AMI IMI Normal

AMI 613 26 25
IMI 14 612 63

Normal 24 29 721

Tabela 2. Matriz de Confusão para método Bi-GRU

AMI IMI Normal

AMI 619 15 30
IMI 16 634 39

Normal 18 55 701



Tabela 3. Matriz de Confusão para método Transformer

AMI IMI Normal

AMI 577 40 47
IMI 30 573 86

Normal 17 51 706

7. Conclusão
A comparação entre Bi-GRU, LSTM, Transformer na classificação de eletrocar-

diogramas revelou que cada arquitetura possui suas próprias vantagens em contextos es-
pecı́ficos. Em geral, a rede Bi-GRU demonstrou um bom desempenho em sensibilidade
e especificidade, tornando-a uma ótima escolha em aplicações que buscam a precisão no
diagnóstico de condições cardı́acas. Por outro lado, o LSTM obteve resultados modera-
dos em várias métricas, sendo uma opção de escolha em cenários onde é necessário um
desempenho estável entre diferentes classes. Já o Transformer destacou-se por seu menor
tempo de treinamento e rápida convergência, o que á vantajoso em aplicações que exigem
rapidez e escalabilidade, lidando muito bem com grandes volumes de dados.

Figura 7. Tabela com os resultados do treinamento



Dado o contexto clı́nico, a escolha da arquitetura ideal depende das prioridades de
aplicação - se o objetivo for minimizar falsos negativos em diagnósticos de alto risco, a
rede Bi-GRU pode ser preferida; para uma abordagem mais equilibrada, a LSTM também
se mostra promissora. As condições de treinamento e a análise com métricas variadas
permitiram uma comparação objetiva, destacando como as redes neurais respondem a di-
ferentes desafios em dados de ECG.

Para trabalhos futuros, sugere-se a exploração de arquiteturas hı́bridas que com-
binem os pontos fortes de LSTM, Bi-GRU e Transformer que foram levantados neste
estudo, buscando uma maior eficácia na análise de sinais de ECG. Adicionalmente, seria
relevante aplicar técnicas de atenção explicável(XAI) para melhorar a interpretabilidade
dos resultados e facilitar a aplicação clı́nica e funcional das redes neurais propostas. Ou-
tro aspecto promissor é ampliar o escopo de estudo para contemplar mais subclasses da
DAC, como infarto do miocárdio lateral, posterior, apical, septal, subendocárdico e trans-
mural, possibilitando uma melhor compreensão das especificidades de cada caso e um
diagnóstico mais preciso e abrangente para condições cardı́acas complexas.

Finalmente, seria de grande utilidade a integração dessa tecnologia de classificação
diretamente aos softwares utilizados nos eletrocardiogramas. Com essa implementação,
durante o exame, o médico poderia ter acesso imediato a insights relevantes, como a
identificação preliminar de padrões associados a diferentes tipos de infarto ou outras anor-
malidades cardı́acas.
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