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Abstract. The first 1,000 days of life, including pregnancy and the child’s first
two years, represent a critical window for preventing non-communicable chro-
nic diseases (NCDs). However, Community Health Agents (CHAs) face challen-
ges in accessing and applying evidence-based recommendations during this pe-
riod. This work presents MarlA - DeepSeek, a virtual assistant powered by large
language models (LLMs), which integrates techniques such as Prompt Chaining,
Retrieval-Augmented Generation (RAG), and expert-curated documents to deli-
ver personalized, evidence-based guidance to CHAs. Experiments showed that
the tool improves the accuracy, clarity, and accessibility of recommendations,
outperforming general-purpose models like GPT-4.0 and Gemini, and enhan-
cing decision-making in primary health care.

Resumo. Os primeiros 1.000 dias de vida, que compreendem a gestacdo e
os dois primeiros anos da crianca, representam um periodo critico para pre-
venir doengas cronicas ndo transmissiveis (DCNT). No entanto, Agentes Co-
munitdrios de Saiide (ACS) enfrentam dificuldades para acessar e aplicar
recomendagoes baseadas em evidéncias cientificas durante esse periodo. Este
trabalho apresenta o MarlA - DeepSeek, uma assistente virtual baseada em mo-
delos amplos de linguagem (LLMs), que integra técnicas de Prompt Chaining,
Retrieval-Augmented Generation (RAG) e curadoria de documentos especiali-
zados para oferecer orientacoes personalizadas e cientificamente embasadas
aos ACS. Os experimentos demonstraram que a ferramenta aprimora a pre-
cisdo, a clareza e a acessibilidade das recomendacoes, superando modelos ge-
neralistas como GPT-4.0 e Gemini, e contribuindo para uma tomada de decisdo
mais eficaz na atengdo primdria a savde.

1. Introducao

Os primeiros 1.000 dias de vida englobam a gestacdo e os dois primeiros anos da crianga,
sdo o periodo de maior plasticidade do fenétipo humano, com intensa atividade neu-
roldgica, imunoldgica e metabdlica, influenciando fortemente o desenvolvimento infan-
til [DOHaD-SAP et al. 2020]. O conceito DOHaD (do inlés Developmental Origins of



Health and Disease), Origens Desenvolvimentistas da Satide e das Doencas, expandiu a
compreensao dos primeiros 1000 dias como o periodo critico do desenvolvimento, mos-
trando que fatores de risco sociais, ambientais e nutricionais agindo nesta fase tem re-
percussoes a longo prazo, aumentando o risco de doengas cronicas ndo transmissiveis
(DCNT) no futuro [DOHaD-SAP et al. 2020, Alves-Costa et al. 2024].

Durante a gestacdo, iniquidades sociais, estresse, tabagismo, excesso de peso,
consumo de alcool e de dieta ndo sauddvel elevam o risco de complicacdes na gravi-
dez, como hipertensao e diabetes gestacional [Alves-Costa et al. 2024]. Em sequéncia,
somam-se outros fatores de risco, como parto cesiareo, nascimento pré-termo, tempo de
amamentacgdo insuficiente, introdugdo precoce de agucares e uso de antibidticos, resul-
tando no aparecimento das primeiras DCNT na infancia: obesidade, carie, asma e aler-
gias [Araujo et al. 2024, Muniz et al. 2022, Nascimento et al. 2017]. Estas doencas ndo
estdo apenas associadas entre si, mas também aumentam o risco de outras DCNT mais
mortais no futuro [Majbauddin et al. 2019].

Assim, os primeiros 1000 dias sdo uma janela de oportunidades para promover
intervencoes mais efetivas para prevengdao das DCNT, com reducdo substancial de risco
as acdes voltadas para a vida intrauterina [Alves-Costa et al. 2024]. Os Agentes Comu-
nitdrios de Satude (ACS) desempenham um papel essencial na promog¢ao da satde da
gestante, especialmente por meio de visitas domiciliares, agendamento das consultas de
pré-natal, identificagdo das gestantes em vulnerabilidade, garantindo encaminhamentos
adequados e continuidade do cuidado [Bonifécio et al. 2019].

Entretanto, a qualificacdo dos ACS enfrenta desafios: embora o conteido abranja
de forma ampla a drea da saude, o processo formativo geralmente se baseia em cursos
introdutérios e treinamentos informais [Bonifacio et al. 2019]. Soma-se o acesso limi-
tado a informacdes baseadas em evidéncias cientificas por estes profissionais, o que pode
comprometer as acdes preventivas mais efetivas nos primeiro 1000 dias de vida.

Neste contexto, integrar tecnologias aos cuidados na saude pode promover a
atencdo bdsica mais resolutiva, capaz de identificar, classificar riscos, e oportunizar
intervencdes mais eficazes na atencao integral a saide materna e infantil (Politica Na-
cional de Atencao Integral a Satide da Crianga). A Inteligéncia Artificial (IA) surge como
uma ferramenta promissora que vem sendo utilizada na 4rea da sadde [Diniz et al. 2021,
Diniz et al. 2024] , e que pode fortalecer a atuagcdo dos ACS nas recomendagdes baseadas
em evidéncias cientificas para prevencao das primeiras DCNT nos 1000 dias de vida.

Este trabalho propde o desenvolvimento da ferramenta MarlA - DeepSeek, um
assistente virtual baseado em IA projetado para apoiar os ACS nas recomendacgdes base-
adas em evidéncias cientificas para prevencao das primeiras DCNT. Espera-se que essa
solucdo contribua significativamente para aprimorar a tomada de decisao de ACS por
um assistente baseado em IA, facilitando o acesso a informagdes atualizadas e baseadas
em evidéncias cientificas. Este estudo traz a utilizag¢do inédita do DeepSeek como LLM
(Large Language Model) destinado a atencdo primdria a saide, promovendo uma aborda-
gem mais personalizada.

2. Trabalhos Relacionados

Os métodos computacionais e ferramentas baseadas em LLM ja sdo amplamente pes-
quisados para suportar tarefas na area da saude. Esta se¢do descreve alguns assistentes



virtuais recentes encontrados na literatura.

Em [Passinato et al. 2024], propds-se um chatbot oftalmologico baseado em mo-
delos de cddigo aberto e técnicas de Geragdo Aumentada de Recuperagdo (Retrieval-
augmented generation - RAG), sem ajuste fino, para facilitar o acesso a informagdes
sobre saude ocular. Foram testadas trés abordagens de RAG, utilizando o Mistral 7B
como modelo gerador e o e5-multilingual como indexador. A avalia¢do, conduzida com
o framework Ragas e o ChatGPT como critico, analisou a relevancia do contexto e da res-
posta. Os resultados mostraram que todas as técnicas superaram o GPT-3.5 em relevancia
da resposta. Isso demonstra que técnicas RAG com modelos open-source sao viaveis e
eficazes, oferecendo uma alternativa acessivel para chatbots especializados em saude.

O estudo de [Rodrigues et al. 2024] desenvolveu um chatbot para a Atenc¢do
Priméria a Saude, implementado na plataforma ManyChat e integrado ao Telegram, em
uma Unidade de Saide da Familia em Pernambuco. O chatbot fornecia informagdes so-
bre servigos de saide, prevencdo de doencas e um canal para sugestdes dos pacientes.
Os resultados indicaram uma boa aceitagdo, evidenciando o potencial das tecnologias de
informacao para aprimorar o suporte na APS.

[Cardenas et al. 2024] introduz o AutoHealth, um sistema de Internet of Medical
Things (IoMT) para o gerenciamento personalizado da Doenca de Parkinson, utilizando
IA. Integrando smartwatches, aplicativos mdveis e um chatbot baseado em LLMs, o sis-
tema monitora continuamente sintomas como tremores e congelamento da marcha. O
AutoHealth coleta e processa dados de movimento e voz com aprendizado de maquina,
oferecendo feedback personalizado em tempo real. O chatbot auxilia pacientes com
orientacOes sobre medicamentos, exercicios e bem-estar emocional.

Assim como as solu¢des mencionadas, a MarlA surge da necessidade de integrar
LLM e métodos avancados de recuperacdo de informagao para aprimorar a experiéncia
dos usuarios em diversos contextos de saude. Diferentemente de outros chatbots, o MarlA
- DeepSeek inova ao contextualizar cada resposta com dados cientificos e recomendacoes
personalizadas, utilizando uma linguagem adaptada aos ACS. Dessa forma, contribui para
ampliar a cobertura dos servigos de atencao bdsica e potencializa a detec¢ao precoce de
riscos, promovendo o acesso a protocolos atualizados e fortalecendo o Sistema Unico de
Sadde (SUS) no cendrio materno-infantil brasileiro.

3. Materiais e Método

O método proposto (Figura 1), inicia-se com a Predicao da Calculadora de Risco, que
estima a probabilidade de complicag¢des gestacionais. Em seguida, a Selecao de Fato-
res da Gestante filtra variaveis relevantes (histérico clinico, sinais vitais, exames etc.),
recebidas de uma calculadora externa. Este trabalho foca exclusivamente no modelo de
Processamento de Linguagem Natural (PLN) que € alimentada por um modulo de calcula-
dora que envia as informacgdes de probabilidade de desfecho e fatores de risco associados.

Os dados alimentam o Prompt Inicial, que estabelece o contexto para o modelo
de linguagem. A técnica de Prompt Chaining permite refinar respostas e gerar novas con-
sultas. Paralelamente, a Recuperacao busca evidéncias clinicas e protocolos atualizados
via DeepSeek [Guo et al. 2025]. Os documentos utilizados passam por curadoria de es-
pecialistas em saude, garantindo materiais cientificos de qualidade. A ferramenta também
¢ escalondvel, permitindo a inclusao de novos documentos com evidéncias.



Por fim, o sistema gera uma Recomendacao com orientagdes clinicas, formuladas
de modo acessivel para a ACS comunicar-se claramente com a gestante. Caso necessdrio,
uma Nova Pergunta reinicia o ciclo, aprimorando continuamente as recomendacoes.
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Figura 1. Método Proposto

4. Conjunto de Dados

O conjunto de dados foi criteriosamente construido a partir de artigos cientificos,
periddicos especializados e estudos de coorte que abordam os quatro desfechos-alvo da
calculadora de risco (Obesidade, Alergia, Asma e Carie). Esses materiais fundamentam
a etapa de Selecdo de Fatores da Gestante e sao utilizados no Prompt para contextualizar
a recomendacdo personalizada. Todo o conteudo foi analisado por uma equipe com-
posta por 3 odontologistas e 2 nutricionistas, garantindo a validade técnica. A abordagem
quali-quantitativa permitiu tanto mensurar evidéncias como interpretar padroes subjetivos
de linguagem nas respostas geradas.

Além disso, a integracdo de bases externas ampliou a cobertura semantica e a
robustez do modelo, permitindo respostas contextualizadas com evidéncias cientificas ve-
rificadas [Gao et al. 2023].

4.1. Entrada de Dados

A entrada de dados € crucial para sistemas interativos, permitindo interagdes dinamicas e
aprendizado continuo [Cursino et al. 2020]. Na MarlA, seu funcionamento como chatbot
depende de inputs que direcionam as respostas e interagdes com os ACS. A principal fonte
de dados € a calculadora de risco, que utiliza andlises preditivas para identificar fatores
associados a doengas cronicas, como asma, alergia, carie e obesidade. Esses dados sdo
oriundos da Coorte Pré-Natal BRISA, conforme descrito por [da Silva et al. 2014].

A MarlA nio realiza previsdes diretamente, apenas consome os dados gerados
pela calculadora, que € desenvolvida com base em nos fatores de riscos associados a cada
desfecho [Nascimento et al. 2017]. Cada input inicial, proveniente da integracao dos fa-
tores identificados, possibilita ndo apenas a avaliac@o de riscos, mas também fundamenta
as interacdes subsequentes entre a agente inteligente e os ACS. Para garantir a seguranca
e integridade dos dados, todas as informagdes sao transmitidas de forma segura pelo bac-
kend, assegurando que as respostas geradas reflitam fielmente os dados processados e a
evolucdo continua do sistema.



4.2. Representacao e Geracao de Texto

4.2.1. Embeddings e Representacao Semantica

As representacdes vetoriais das palavras sdo fundamentais no PLN, capturando
caracteristicas semanticas e sintaticas para melhorar o desempenho de modelos
[Souza et al. 2020]. Modelos baseados em Transformers, como os LLMs, utilizam
técnicas avancadas, como subword e contextual embeddings, que refinam a representacao
linguistica e ampliam a capacidade de generalizacdo dos modelos [Souza et al. 2020].

A MarlA adota o modelo BERTimbau (NeuralMind) [Souza et al. 2020], treinado
especificamente para o portugués, garantindo melhor preservacdo semantica e adaptagao
a lingua. Testes indicaram que modelos em inglés apresentaram instabilidades e underfit-
ting, reforcando a escolha de uma solucao otimizada para o portugués.

O BERTimbau possui uma arquitetura bidirecional, considerando o contexto
anterior e posterior de uma palavra para gerar representacoes mais ricas € precisas.
Como resultado, os embeddings extraidos das tltimas camadas do modelo sdo altamente
adaptdveis a diferentes contextos, fortalecendo sua aplicacdo em PLN [Devlin 2018].

4.2.2. Vetorizacao da Base de Dados

A utilizacdo de bancos de dados vetoriais permite buscas eficientes por similaridade,
sendo essencial para sistemas de LLLM e IA generativa. Essa abordagem estrutura dados
vetoriais para buscas semanticas, comparando os embeddings das consultas com docu-
mentos armazenados por meio de métricas de similaridade, garantindo a recuperacdo do
conteudo mais relevante [Sakai et al. 2024].

Na MarlA, os embeddings gerados a partir de dados sobre satide materno-infantil
sao armazenados no ChromaDB, permitindo buscas rdpidas e precisas. O ChromaDB
ranqueia os resultados por similaridade e recupera dados pré-processados, fornecendo
contexto para aprimorar as respostas dos modelos de linguagem. Esse fluxo otimiza a
andlise das perguntas dos ACS, garantindo acesso rdpido a informagdes cientificas sobre
fatores de risco, prevencao e cuidados nos primeiros 1000 dias de vida, fortalecendo sua
atuacdao no acompanhamento das gestantes e suas familias.

4.2.3. Modelo de Linguagem e Geracao de Respostas

Ap6s a recuperacdo dos documentos via busca semantica, € necessario interpretar e es-
truturar as informacdes antes de apresenta-las ao usudrio. Para isso, a MarlA utiliza o
modelo DeepSeek-R1, que combina aprendizado por reforco e Mixture of Experts para
aprimorar a tomada de decisdo e adaptar-se a dominios especificos [Mikhail et al. 2025].

A geragdo de respostas € estruturada pela Conversational Retrieval Chain, que
integra a recuperacdo de informagdes a geracdo adaptativa de respostas. O histérico de
interacdes € armazenado na ConversationBufferMemory, configurada no médulo lang-
chain.memory para referenciar didlogos anteriores e evitar repeticoes. Isso permite a
formulagao de respostas mais coesas e contextuais [Roy et al. 2025].



O DeepSeek organiza as informacdes extraidas e adapta a resposta ao perfil do
usudrio, garantindo explicacdes relevantes. Essa abordagem melhora a experiéncia do
usudrio, proporcionando didlogos mais naturais e alinhados as necessidades dos ACS.

4.2.4. Retrieval-Augmented Generation (RAG)

O Retrieval-Augmented Generation (RAG) aprimora LLMs ao integrar um mecanismo
de recuperacdo de informagdes, mitigando as limitacdes de modelos puramente pa-
ramétricos. Esse processo permite que o modelo acesse fontes externas antes da geracao
da resposta, aumentando sua precisio e contextualizacdo [Roy et al. 2025].

O RAG opera em trés etapas: indexagdo, recuperagdo e geracdao. Na indexacao, os
documentos sdo segmentados em chunks e transformados em vetores de embeddings por
meio de modelos como o BERT, armazenados em dados vetoriais, como o ChromaDB.
Na recuperacdo, a consulta é convertida em um vetor de embeddings, e os fragmentos
mais relevantes sao identificados pelo cdlculo da similaridade, garantindo a selecdo de
informacdes adequadas. Enquanto na geracgdo, os fragmentos recuperados sao incorpora-
dos ao prompt, que combina essas informagdes com seu conhecimento paramétrico para
formular respostas coerentes e contextualizadas. Esse método, conhecido como Retrieve-
Read, reduz alucinag¢des, melhora a confiabilidade das respostas [Gao et al. 2023].

Na MarlA, o RAG € otimizado para o portugués, utilizando o BERTimbau
[Souza et al. 2020]. A recuperagao adota uma similaridade de 0.8 para selecionar apenas
os chunks mais relevantes, que sao entdo processados pelo modelo DeepSeek para produ-
zir respostas mais precisas e contextualizadas. Para garantir transparéncia, incorporam-se
metadados, como fonte e nimero de pagina, vinculando cada resposta as suas origens.

4.3. Engenharia de Prompt

Esta etapa é essencial para otimizar a interacdo com LLMs, garantindo respostas mais
precisas, coerentes e alinhadas aos objetivos desejados. Além disso, contribui para mitigar
vieses, imprecisoes € a dependéncia excessiva da IA [Heston and Khun 2023].

Na MarlA, essa técnica adapta informacgdes técnicas para um formato acessivel
aos ACSs, utilizando uma persona cuidadosamente desenvolvida para estabelecer um tom
adequado. A linguagem € ajustada ao nivel de escolaridade dos usudrios, tornando o
conhecimento cientifico mais compreensivel e aplicavel ao cotidiano das gestantes e co-
munidades atendidas. Algumas técnicas de Engenharia de prompt foram utilizadas para
melhorar nossos resultados e sao descritas a seguir.

4.3.1. Prompt Chaining

O Prompt Chaining é uma técnica que divide tarefas em uma sequéncia de prompts
interligados, aprimorando a coeréncia e precisio das respostas geradas por LLMs
[Wei et al. 2022]. Na MarlA, essa abordagem inicia com um prompt baseado em um mo-
delo fixo, no qual varidveis como desfecho e fatores de risco sdo ajustadas dinamicamente.
Esse formato garante padronizacgao e flexibilidade para diferentes cenéarios clinicos.



A resposta € estruturada progressivamente em trés etapas. Primeiro, a persona Ma-
rTA elabora uma explicacdo acessivel sobre a relagdo entre o desfecho e seus fatores de
risco baseado em RAG. Em seguida, um segundo prompt converte essa explicacdo em di-
retrizes praticas para os ACSs. Por fim, um terceiro prompt mantém a interagao continua,
respondendo a dividas com base no contexto estabelecido. Essa estrutura organiza a
comunicacao, garantindo maior clareza, consisténcia e aplicabilidade das respostas.

4.3.2. Adaptacao Dinamica e Novas Interacoes

A MarlA aprimora a interacdo dos ACSs ao viabilizar um didlogo continuo e contextuali-
zado. Apds gerar uma resposta detalhada ao prompt inicial, o sistema permite que novas
perguntas sejam formuladas sem reinicializar o contexto, gracas a Memoria Conversacio-
nal, que preserva e ajusta dinamicamente o histérico das interagdes.

Além disso, a recuperacdo de informagdes em um banco vetorial complementa
as respostas com dados validados, garantindo maior precisdo. A integracao entre prompt
chaining, Memoria Conversacional e busca vetorizada permite interacdes mais naturais
e adaptaveis as necessidades dos ACSs e das gestantes, tornando o suporte técnico mais
eficiente e alinhado a aten¢ado primadria a satde.

5. Resultados e Discussao

Esta secdo apresenta os resultados experimentais. Inicialmente, descreve-se o ambiente
de desenvolvimento, seguido dos experimentos quali-quantitativos para validar o modelo.
Por fim, o framework é analisado, abordando seus impactos e limitagdes.

5.1. Ambiente de desenvolvimento

O método foi desenvolvido em linguagem Python. Utilizou-se principalmente as bibliote-
cas PyTorch e Transformers da HuggingFace para o processamento de linguagem natural,
integradas ao framework Langchain para a constru¢ao e gerenciamento de cadeias conver-
sacionais. A API (Application Programming Interface) do DeepSeek foi empregada para
a geracdo de respostas contextuais. O computador utilizado para os experimentos con-
siste num dispositivo equipado com um processador AMD Ryzen 5 2600X de 3.60GHz,
24,0GB de RAM, rodando em um sistema operacional Windows 11 Pro.

5.2. Experimentos

Nesta secdo, serao apresentados testes de validacao para mensurar as respostas.

5.2.1. Teste A/B para Avaliacao das Respostas

Para validar a qualidade das respostas pelo modelo MarlA, realizou-se um teste A/B com-
parando seu desempenho com os modelos ChatGPT (OpenAl) e Gemini (Google). O ob-
jetivo foi verificar a capacidade de cada modelo em fornecer recomendagdes precisas para
ACS, considerando os desfechos analisados neste estudo. A avaliacdo considerou oito
recomendacoes, distribuidas entre nos quatro desfechos clinicos (obesidade, asma, aler-
gia e cérie), combinados com seus fatores de risco. As respostas geradas foram analisadas



por cinco observadores independentes da drea da saide, com base nos seguintes critérios:
clareza e compreensibilidade, precisdo das informagdes e Relevancia da recomendacao.

Os resultados foram organizados com base na frequéncia de escolhas, permitindo
identificar a abordagem mais alinhada as necessidades dos ACSs. Seguindo principios de
experimentacdo controlada [Kohavi et al. 2009], os testes no GPT-4.0 e no Gemini foram
realizados em contas anOnimas para evitar vieses. A Tabela 1 apresenta os achados.

Tabela 1. Resultados do Teste A/B. IA1 representa a MarlA, IA2 o GPT-4.0 e IA3 o

Gemini.
Desfecho | Fatores Mal}\or q Percentual de
Frequéncia Escolha

Asma Ocupagido miao de obra ndo qualificada, 1A1 80%
Obesidade pré-gestacional, Nascimento
pré-termo, Parto cesarea, Periodontites na
gestacao

Asma Hipertensdo na gestagdo, Consumo de IA1 60%

dlcool na gestacdo, Consumo semanal
de ultraprocessados, Anemia na gestag@o,
Consumo didrio de refrigerante

Alergia Ocupagido miao de obra ndo qualificada, 1A1 60%
Obesidade pré-gestacional, Nascimento
pré-termo, Parto cesarea, Periodontites na
gestacao

Alergia Hipertensdo na gestagdo, Consumo de IA1 100%
dlcool na gestacdo, Consumo semanal
de ultraprocessados, Anemia na gestag@o,
Consumo didrio de refrigerante

Cirie Ocupagdo mdo de obra ndo qualifi- 1A1 100%
cada, Consumo didrio de refrigerante na
gestagdo, Consumo semanal de ultrapro-
cessados, Periodontites na gestacdo, Obe-
sidade pré-gestacional

Cirie Consumo de dlcool na gestagdo, Hiper- 1Al 80%
tensdo na gestagdo, Parto cesdrea, Nasci-
mento pré-termo, Anemia na gestagao
Obesidade | Ocupagdo mao de obra ndo qualificada, 1A1 100%
Obesidade pré-gestacional, Nascimento
pré-termo, Parto cesarea, Periodontites na
gestagao

Obesidade | Hipertensdo na gestagdo, Consumo de IA1 100%
dlcool na gestacdo, Consumo semanal
de ultraprocessados, Anemia na gestag@o,
Consumo didrio de refrigerante

A andlise mostra que respostas da MarlA, com RAG para o dominio da saude,
contribuiu para sua maior aceitagdao. Nos desfechos de cérie e obesidade, a escolha do
MarlA foi unanime, indicando a adaptacdo do modelo ao contexto dos ACS. Por outro
lado, nos desfechos de asma e alergia, onde ha maior volume de evidéncias cientificas,
modelos generalistas como GPT-4.0 e Gemini também foram selecionados como melhor
resposta em algumas avaliacdes. Além disso, fatores como hipertensdo gestacional, con-
sumo de alcool e alimentacdo ultraprocessada foram recorrentes entre os determinantes
dos desfechos analisados, e a capacidade do MarlA de adaptar suas recomendacdes a
essas variaveis reforca seu potencial como ferramenta de suporte a tomada de decisao.

5.2.2. Cosseno de similaridade

O cosseno de similaridade é uma métrica utilizada para medir a proximidade
entre vetores, sendo util na comparacdo de textos gerados por modelos LLM
[Manning and Schiitze 2008]. Seus valores variam de O a 1, onde valores mais altos indi-



cam maior similaridade. Aplicou-se essa métrica para comparar as respostas dos modelos
MarlA, GPT-4.0 e Gemini. A Tabela 2 apresenta os resultados.

Tabela 2. Similaridade entre as respostas dos modelos.

Comparacio de Modelos | Cosseno de Similaridade
MarlA vs. GPT-4.0 0.7699
MarlA vs. Gemini 0.7952
GPT-4.0 vs. Gemini 0.9041

Observa-se que o GPT-4.0 e o Gemini apresentam a maior similaridade (0,90),
sugerindo que suas respostas sao altamente similares. MarlA exibe menor similaridade
com ambos ( 0,76), confirmando que suas respostas sao distintas. Esse achado corrobora
os resultados do teste A/B, onde os observadores tenderam a escolher a MarlA, indicando
que suas respostas sdo de fato diferentes das geradas por GPT-4.0 e Gemini. Isso reforca
a importancia de modelos personalizados, treinados com bases cientificas.

5.3. Framework

Nesta secao, € apresentado o funcionamento da MarlA. A Figura 2 descreve suas etapas.

MarlA &

Explicagao: Explicagho sobre a relagio entre Cirie  os fatores lstados:

1. Ocupacéo (Mao de obra ndo qualificada)

2. Obesidade pré-gestacional

(A)

(B)

Figura 2. Interface do assistente MarlA em diferentes estados.

Na Figura 2 (A), observa-se o status inicial, no qual a recomendacao estd sendo
gerada a partir dos dados recebidos da calculadora. Esse momento representa o processa-
mento das informagdes antes da exibicao dos resultados.

Na Figura 2 (B), o assistente exibe explicacdes detalhadas sobre os fatores de
risco identificados, permitindo que o ACS compreenda melhor as condi¢des associadas
aos desfechos e suas explicacoes. Essa etapa é essencial para fundamentar a tomada de
decisdo e possibilitar um acompanhamento mais preciso da gestante.

Por fim, na Figura 2 (C), s@o apresentadas dicas praticas destinadas a auxiliar
os ACS na comunicagdo com a gestante. Essas sugestdes visam facilitar a orientagdo
sobre os cuidados necessdrios, reforcando a adocao de habitos saudaveis e a prevencao de
problemas relacionados aos fatores de risco identificados.



Além disso, ao final da interface, ha uma caixa de texto que permite novas
interagdes, possibilitando que o usudrio faca perguntas adicionais e refine as informagdes
recebidas. De maneira geral, a interface do MarlA € simples e intuitiva, proporcionando
uma experiéncia fluida e acessivel para os ACS durante o atendimento.

5.3.1. Impactos e Limitacoes

O assistente possui uma interface simples e intuitiva, permitindo que o ACS obtenha
recomendacdes imediatas. Além de descrever os fatores de risco, o modelo oferece
orientagdes claras para facilitar a comunicacdo com a gestante, traduzindo informacoes
médicas complexas em recomendagdes acessiveis e baseadas em evidéncias, o que me-
lhora o aconselhamento e apoia a tomada de decisdes na Atencao Primaria a Saude. Entre
os impactos esperados pelo projeto, destaca-se o aprimoramento do suporte ao ACS, pro-
porcionando recomendacdes mais embasadas. A recuperagdo de dados em banco vetorial
facilita o acesso a protocolos e diretrizes atualizadas, promovendo maior acessibilidade
as informacodes de saude. Além disso, a personaliza¢cdo do atendimento € viabilizada pelo
armazenamento do histrico de respostas, tornando as recomendagdes mais contextuais
e individualizadas, enquanto o fortalecimento técnico do ACS é favorecido ao garantir
acesso continuo a orientacdes atualizadas durante as visitas domiciliares.

Apesar dos beneficios, algumas limitacdes devem ser consideradas. A de-
pendéncia de infraestrutura tecnoldgica pode representar um desafio, especialmente em
regides com acesso limitado a internet e recursos computacionais. Além disso, hd o
risco de imprecisdo ou viés nas respostas devido a lacunas nos dados de treinamento
ou limitagdes inerentes a sistemas baseados em LLM.

6. Conclusao

O assistente MarlA demonstrou-se uma ferramenta promissora, possibilitando
recomendagdes personalizadas no atendimento materno-infantil. A utilizacdo de LLM,
aliada a técnicas como Prompt Chaining ¢ RAG, permitiu um aprimoramento na
contextualizacdo das respostas, superando as limitacdes de abordagens generalistas.

A interface foi projetada para ser intuitiva e acessivel, facilitando a interagdo com
a ferramenta. No entanto, desafios como a necessidade de avaliacao continua da precisao
das recomendagdes e a adaptacao do modelo as especificidades regionais persistem.

Como trabalhos futuros, pretende-se ampliar a base de conhecimento com novas
diretrizes clinicas e integrar uma interface para interacdes por voz. Além disso, apos
validada com profissionais da sadde, serdo conduzidos estudos para avaliar o impacto na
pratica dos ACS e sua aceitacao na atencao primaria pelas gestantes.
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