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Abstract. The effects of COVID-19 on cancer patients are concerning. This
work proposes a framework that employs a multilabel classifier processing lon-
gitudinal proteomics patients’ data to identify potential proteomic biomarkers
that correlate cancer and COVID-19. The framework uses Olink NPX data from
305 COVID-19-positive cancer patients. Stratified k-fold cross-validation ad-
dresses data imbalance. The overall average results show a Jaccard index of
88.79%, a hamming loss of 0.32%, a Wasserstein distance of 0.64%, and an
area under the curve of 94.47%, across 312 labels, with four proteins present-
ing a Jaccard index of 97% or above, identified as proeminent biomarkers.

1. Introduction

The COVID-19 disease has raised significant concerns about its implications for cancer
patients. Due to immunosuppression from the disease and its treatments, cancer patients
face a higher risk of severe COVID-19 outcomes [Zhou et al. 2023]. Studies suggest that
COVID-19 can significantly impact this vulnerable population, increasing their risk of
severe outcomes [Fung and Babik 2021]. SARS-CoV-2 infection leads to chronic inflam-
mation, which may influence tumor behavior and prognosis. Therefore, evaluating the
impact of COVID-19 on inflammatory proteins and identifying biomarkers of systemic
inflammation in recovering cancer patients is essential [Kocsmar et al. 2024].

Proteomics, through blood plasma analysis, offers valuable insights into the ef-
fects of COVID-19 on cancer patients, early diagnosis, and customized treatments. Iden-
tifying proteomic biomarkers linked to COVID-19 can improve early detection and treat-
ment strategies [Liew et al. 2024]. Al-driven analysis of proteomics accelerates the pro-
cessing of large biological datasets. Machine Learning (ML) techniques help identify
patterns in proteomic data, revealing biomarkers tied to COVID-19 and its long-term ef-
fects [Lv et al. 2024]. However, limited studies have explored the correlation between
COVID-19 and cancer.

The present article proposes an Al-integrated longitudinal proteomics framework
to investigate the COVID-19 effects on cancer patients. By using a longitudinal pro-
teomics study design and deep learning methodology, this article contributes to Al-driven
proteomics in oncology by:

* Presenting a deep-learning model that predicts COVID-19 potential biomarkers
through proteome data and multilabel classification.



* Advancing Al and proteomics integration to improve cancer patient outcomes un-
der COVID-19 influence.

The article is structured as follows: Section 2 provides an overview of related
works and highlights the key differences between those approaches and our proposal.
Section 3 describes the data used and the methods employed in constructing our architec-
ture. Section 4 presents the results of our experiments, while Section 5 offers a discussion
and comparison of these results with state-of-the-art approaches. Finally, Section 6 draws
conclusions based on our findings.

2. Related Work

The effects of COVID-19 on cancer patients have raised the need for a deeper analysis of
the extent of damage to the immune status. This section presents related works involving
proteomics and machine learning to identify proteins correlating to cancer and COVID-
19.

Hossain et al. [Hossain et al. 2024] employed traditional ML techniques to exam-
ine the impact of smoking and COVID-19 on lung cancer. They identified 10 proteins
from the intersection of lung cancer (LC) and smoking and between LC and COVID-19.
They tested 76 shared proteins and 10 hub proteins. Yadalam et al. [Yadalam et al. 2025]
applied ML modeling to uncover novel serum proteomic biomarkers for oral squamous
cell carcinoma influenced by COVID-19. The study suggested that 28 proteins showed
significant differential abundance in COVID-19 patients with oral cancer compared to the
control. Patel et al. [Patel et al. 2023] used targeted proteomics to compare the expression
of 2925 unique blood proteins in long-COVID outpatients versus COVID-19 inpatients
and healthy control subjects. They used the Boruta algorithm, which is based on Random
Forest classifiers, to reduce the number of biomarkers and discard the ones obtained by
chance.

While the studies referenced showcase the effectiveness of machine learning in
correlating proteomics with cancer and COVID-19, they rely on targeted proteomics,
which fails to capture the temporal dynamics of protein expression. In contrast, the
present work utilizes a longitudinal proteomics study design to investigate the dynamic
changes in protein expression over time. Additionally, it employs a deep learning-based
multilabel classification approach to predict potential biomarkers, taking into account a
diverse array of proteins as input, thus allowing for the analysis of large-scale proteomic
data.

3. Methodology

The proposed methodology employs a framework to study a cohort of COVID-19-positive
patients. The input acquires a Normalized Protein Expression (NPX) proteomic as-
say from the mass-spectrometry analysis, and the output returns the potential proteomic
biomarkers [Wik et al. 2021]. The study cohort is from the Massachusetts General Hospi-
tal Emergency Department COVID-19 dataset, comprising 391 patients, with 305 individ-
uals from the Olink oncology panel [Filbin et al. 2021]. The participants are all COVID-
19-positive and have pre-existing symptoms, diseases (PESD), or immune conditions (IC)



such as cancer, chemotherapy, transplant, immunosuppressant use, or asplenia, according
to Table 1. The PESD information is pertinent to cancer studies [Liu et al. 2023]. The
proteomic NPX assay comprehends a maximum period of seven days.

Table 1. Olink Oncology Panel from MGH emergency department cohort

Variables Category | Specifics
Cohort 305 COVID-19-positive
Unique proteins 1472 Protelq expression
per patient
.\ 0 Competent
Immune condition (IC) 1 Compromised
1 Lung
. . 2 Kidney
Pre-existing symptoms or diseases (PESD) 3 Respiratory symptom
4 Fever symptom
Dy Day 0
) Ds Day 3
Proteomic research blood draws D, Day 7
Dg Interruption

After acquiring the NPX assay from the Olink Explore HT tool, the methodology
reads the NPX assay, performs the proteomic analysis to determine significant proteins
(SP) involved, then uses a multi-hot encoding technique to transform the SP into binary
labels. The methodology concatenates IC and PESD as features and fills gaps for any
missing IC and PESD combination. The Deep Learning (DL) multilabel classifier iden-
tifies SPs as potential biomarkers (PB) for further biological investigation. This article
outlines the identified PB, their corresponding UniProt identifiers, and their associated
tissue specificity, providing a concise description of each biomarker [Consortium 2019].
Figure 1 outlines the framework details.
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Figure 1. Framework workflow and stages proposed in this methodology.



3.1. Deep Learning Multilabel Classifier

A supervised Deep Learning (DL) multilabel classifier is the core of the workflow, pre-
dicting PB based on significant proteomic patterns in the patient cohort. The model uti-
lizes a dataset from the Olink Analysis of Variance (ANOVA) F-test, computed using the
OlinkAnalyze R package [Boberg et al. 2023], which captures the expression variances
of significant proteins as input features. The DL model processes an input dataset of
paired observations {(Xj, Y;)}},, where X represents the feature set and Y denotes the
corresponding labels. The neural network architecture consists of two hidden layers, A,
and ho, structured such that |hy| > |hs|. We selected a two-layer architecture to achieve
a higher Fl-macro score under a multilabel classification framework with the adopted
cross-validation strategy.

The output layer produces predictions {(¥;)}Y,, where Y contains the predicted
labels representing the PB. The number of predicted labels matches the true labels, main-
taining N = |Y;| = |Y;|. Let n; and ny be number of neurons in hidden layers h; and
hs, respectively, with ny > ng.

3.2. Proteomic Data Analysis

The first stage involves analyzing the NPX assay data collected from the patient cohort
on days Dy, D3, D7, and Dg. The first stage involves analyzing the NPX assay data
collected from the patient cohort on days Dy, D3, D7, and Dg. The NPX dataset contains
each patient’s proteomic levels from the research blood draw. We sort the NPX assay into
two arrays based on IC: one array for samples where IC is present and another for samples
where IC is absent for each PESD. This sorting step helps define the features needed for
the subsequent DL model training.

The stage calculates the ANOVA F-test on each sorted NPX assay to assess
the variance in protein expression. The ANOVA calculation adjusts the p-values for
protein expressions by applying the Benjamini-Hochberg false discovery rate (FDR)
to control for multiple testing, in line with standard practices for protein significance
[Kluger and Owen 2024]. Proteins with a threshold of FDR<0.05 are considered signif-
icant. This threshold identifies the SP that will serve as labels in the DL preprocessing
stage.

3.3. Data Preprocessing

Since we use a multilabel classifier, we need to transform SP into labels because com-
binations of IC and PESD may point to various proteins simultaneously. We use the
multi-hot encoding (MHE) strategy to achieve this task, which is present in the Multil-
abelBinarizer class from Python’s sci-kit-learn package. To transform the SP names into
labels, we only consider the protein names as labels because all proteins are significant.
Next, the Multi-Hot Encoding (MHE) multilabel binarization technique is applied to the
pre-candidate proteins identified through ANOVA, converting them into matrix binary
columns [Li et al. 2022]. This MHE transformation assigns each protein a label, forming
the Y; label set for the multilabel classification approach.

After generating the MHE labels, the process incorporates the combinations of
IC and PESD variables as feature columns, producing the ML training input dataset



{(X;,Y;)} M, with both features and labels. The final dataset forms a matrix, combining
the features and MHE labels, as shown in Equation (1).

aq P1 ct S1 ... SN
as D2 Ca S1 ... SN

(X, Yi)} = : : S e (1)
ay Pm Cym S1 ... SN

where M is the number of data points, NV is the number of labels with N = |Y;|,a € [0, 1]
is the IC, p represents each PESD, ¢ € [0, 1] is the presence or absence of PESD, and
S1,82,...,SN_1, Sy are the labels. The final dimension of {(X;,Y;)} is M x (F 4+ N),
where F' is the number of features (a, p and c¢).

3.4. Model Training and Evaluation

The final stage of the workflow involves training and evaluating the DL model to predict
PB. Given the limited patient cohort size, this experiment employs stratified k-fold (SKF)
cross-validation to mitigate bias and variance [Szeghalmy and Fazekas 2023]. The F1-
macro score is favored over accuracy for multilabel classification approach, as it treats
each label with equal weight [Garcia-Pedrajas et al. 2024].

The stage processes {(X;, Y;)}M, and tests different k-folds to improve the F1-
macro score. Grid search cross- Vahdatlon (GSCV) fine-tunes the hyperparameters and
tests sensitivity to outliers. SKF also applies balanced class weights to equalize loss
penalties and reduce data imbalance. An early stopping mechanism halts the training
epoch to prevent overfitting when the F1-macro score stops improving [Bai et al. 2021].

This experiment evaluates the model using the Jaccard index, Wasserstein distance
(WD), hamming loss (HM), and the area under the curve-receiver operating characteris-
tic (AUCROC), as these metrics have been shown to outperform confusion matrices in
multilabel classification [Doknic and Moller 2025]. The Jaccard index measures the sim-
ilarity between predicted and true labels, as per Equation (2). Labels with higher Jaccard
index values denote PB. A high threshold of J >0.97 is intentionally set to identify the
most relevant PB. The Wasserstein distance quantifies differences between probability
distributions, where a lower value indicates higher similarity, as per Equation (3), with
d(Y;, Yi) measuring the distance between elements Y; and Y;, and p(Y;) representing
the associated probability or mass for the element Yj.

M
Y:NY; ~ .
Z Bl WY ¥) =Y d(Y Y0 - p(Yr) ()
i=1 ’Y | i=1
The hamming loss metric evaluates classification errors

[Esti Anggraini et al. 2023].  Lower values indicate better performance, as shown
in Equation (4). N is the number of labels. We also calculate the AUCROC for each
label and then average the results through Equation (5), where I(\?i > ?j) checks if the
predicted value for the i-th data point is greater than that for the j-th when the true label
of Yi is 1 (positive) and Yj is O (negative). M is the total number of data points.
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The final stage’s result is to identify PB based on the best evaluation metrics found
during the experiment.

3.5. Architecture

To summarize the methodology, Figure 2 presents the whole architecture in the context
of this article. The bioinformatics cloud platforms (BCP) like AWS and DNANexus can
typically host the Repository (REP) and Microservice Consumption modules (MCM).
This experiment is the MCM. We execute the experiment outside the BCP due to current
environment constraints.
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Figure 2. Proposed architecture for testing the methodology.

The mass spectrometer reads the blood plasma for the longitudinal proteomics
analysis and produces the spectrum output data in raw format. The Olink Explorer HT tool
normalizes the data to NPX units in the REP. The NPX normalized file is then ingested
into a clinical-omic database and becomes available for the users described at the bottom
of Figure 2.

The MCM reads the NPX file from the data source and applies the OlinkAnalyze
R package to identify the SPs through the ANOVA F-test with FDR<0.05. The prepro-
cessing utilizes the MultilabelBinarizer library from Python’s scikit-learn package and
transforms the SPs into binary labels. The Pandas and numpy libraries perform all data
manipulation to concatenate the features to the labels. The resultant data serves as input
to the MC. Finally, we use Tensorflow and Keras libraries to fine-tune the hyperparam-
eters via GSCV, train the DL multilabel classifier, and issue the evaluation metrics. The
identified PB are then available in a results storage.

With the proposal of the MCM architecture, we aim to contribute to early cancer
diagnostic capabilities alongside COVID-19 infection management for improved patient
outcomes and accelerate the understanding of the relationship between COVID-19 and
cancer. Using longitudinal proteomics and deep learning, it is also possible to customize
the treatment and improve the well-being of the patients infected with SARS-CoV-2 dur-
ing immunotherapy.



4. Results

This section presents the results of each stage involved in the experiment based on the
provided cohort.

4.1. Proteomic Data Preparation

The exploratory analysis of the cohort results in the distribution of the patients across
different ICs, according to Table 2. The detailed cohort distribution per PESD and IC is
available in Figure 3.

Table 2. COVID-positive cohort No. of

Cohort Patients ! iy
MGH dataset 391 o I 150
(-) Control 8 . ;80
(-) COVID-19-negative 78 0
Immunocompetent 214 _ .

n Fever Kidney Lung Respiratory

Immunocompromised 91 PESD
Total in oncology panel 305 Figure 3. Patients distribution per

immune status

4.2. Proteomic Results

The ANOVA F-test returns 312 SP with for FDR<0.05, as shown in Table 3 on the NPX
expression assays for days Dy, Ds, D7, and Dg. Also, the heatmap from Figure 4 shows
the characteristic of the SP distribution per PESD and IC.

Fever Kidney Lung espirator

No. of
Table 3. Calculated signif- 1 Proteins
icant proteins

Proteins Totals S 200
Signiﬁcapt 312 0 100
Non-significant | 1160
Total 1472 0

No Yes No Yes No Yes No Yes
PESD

Figure 4. Significant proteins distribution.

4.3. Multi-Hot Encoding Results

The MHE transforms each of the 312 SP into a binary label and appends each evaluated
parameter combination of a, p, and c as features, thereby completing the data preparation
process for model training and evaluation. Tables 4a and 4b show the MHE transformation
results for the SMOC1 and CDS5 as an example, with a=1,p=3, c=1. For this cohort, the
experiment found 1751 data points, and there were no empty labels for all combinations
of a, p, and c.



Table 4. MHE transformation process for SMOC1 and CD5 proteins.

Protein | Adjusted p-value FDR Threshold a|p|b|SMOC1 | CD5
SMOC1 1.26x10~4 Significant 1131 1 0
CD5 3.67x10737 Significant 1131 0 1

(a) Respiratory Symptom=Yes, Imnmunocompromised (b) MHE-transformed data

4.4. Training and Evaluation Results

The GSCV analysis combines different k-folds with softmax activation function, fixed
dropout rate at 0.2 for hy and hs, batch size, epochs, and ny, no parameters. Table 5
shows the best hyperparameter tuning during the GSCV process by testing different k-
fold scenarios. The second scenario fixes the best found hyperparameters n; = 32, ny =
12, batch size = 5, and epochs = 50 and varies k-fold to obtain the Fl-macro results,
according to Table 6. Using more k-folds improves the F1-macro score.

Table 5. Cross-validation results for
k-folds={20,30,40,50} Table 6. F1-macro variation per k-

Parameter | Range | Result ters found mnTabe s
n {32,40.48} | 32 k-folds | Fits | F1-macro

ny {12,18,24} | 12 20 720 0.72
Epochs {50,100} | 50 30 1080 | 0.81

Batch Size {5,10}f 5 40 1440 | 0.86
Activation softmax 50 1800 0.89
Dropout rate 0.2

The evaluation metrics obtained in the experiment rely on the best hyperparam-
eters found in Table 5, and follow the same pattern by variating the k-folds and testing
each of the presented evaluation metrics. Table 7 shows the average metrics obtained in
each k-fold scenario.

Table 7. Average metrics obtained in various k-fold scenarios

k-fold | Jaccard % | WD % | HL % | AUCROC %
10 44.04 0.63 0.35 71.81
20 71.97 0.64 0.32 85.96
30 81.31 0.64 0.32 90.70
40 85.99 0.64 0.32 92.94
50 88.79 0.64 0.32 94.47

For the best scenario in k-fold=50, the experiment identifies 4 labels with J >0.97
as PB, according to Table 8. Each identified biomarker may contribute to cancer progres-
sion in the context of COVID-19. CEACAM3 regulates immune activation, particularly
in neutrophils, and its dysregulation may promote immune evasion and tumor progres-
sion, exacerbated by COVID-19-induced inflammation [Skubitz 2024]. CNTN?2 facili-
tates cancer cell migration and metastasis, potentially worsened by COVID-19-related
neurological effects [Upadhyai et al. 2022]. NINJ1, involved in immune response and tis-
sue repair, may accelerate metastasis and tissue damage under COVID-19-driven inflam-
mation [Xu et al. 2022]. LPCAT?2 supports cancer growth and metastasis, with COVID-



Table 8. Identified potential biomarkers

Tissue specificity Protein UniProt ID | Description
Bone marrow NINJ1 Q92982 Ninjurin-1
CEACAM3 | P40198 Carcinoembryonic cell

adhesion molecule 3
Bone marrow, thyroid gland | LPCAT?2 Q7L5N7 Lysophosphatidylcholine
acyltransferase 2

Brain CNTN2 Q02246 Contactin-2

19-related inflammation potentially intensifying its effects, particularly in lung cancers
[Dahal et al. 2024].

5. Discussion

The DL multilabel classifier identifies four proteins from Table 8 with the highest Jaccard
index (J > 0.97). Lowering this threshold increases the number of PB candidates but may
introduce proteins less relevant to the possible relationship between cancer and COVID-
19.

During the data preparation stage, each resultant data point contains only one
label set to 1. Setting multiple labels to 1 for the same data point would lead the DL
model to mathematically consider the combination of all labels set to 1 as the ground
truth for training and evaluation. This scenario is equivalent to combining two or more
non-correlated proteins as mutually dependent, potentially disrupting the preservation of
proteomics characteristics for the cohort.

The application of the SKF technique effectively addresses the issue of imbal-
anced data within the cohort, as evidenced in the consistent performance metrics, includ-
ing the Jaccard index, hamming loss, and Wasserstein distance, across the deep learning
model labels. While the conventional confusion matrix may not be the most suitable
approach for evaluating DL model performance, particularly in multilabel settings, our
experiment bring the Jaccard index, AUCROC and Wasserstein distance as reliable tools
for assessing the behavior of individual labels within the multilabel deep learning model.
This, in turn, enhances the credibility of the identified PB. Furthermore, the complemen-
tary nature of the Wasserstein distance and hamming loss proves valuable in analyzing
the losses during model training and evaluation.

6. Limitations

This section details the limitations encountered during the experiment and highlights the
future directions of this work.

Firstly, with the available cohort of only 305 patients, the data preprocessing stage
returns 1751 data points. In this scenario, we decide on the SKF technique to mitigate
the imbalanced data during DL model training. For larger cohorts, we can instead adopt
the traditional train-test split strategy for DL. model training and evaluation, as more sub-
stantial cohorts would generate more data points. The MHE binarization strategy remains
the same, preserving the overall methodology presented in this article. Secondly, the pro-
vided cohort brings blood draws for 1472 proteins only. The same architecture can reach



more than 5400 proteins, enhancing the scope of this methodology and the chances to
find more PB. Lastly, we implement the entire MCM locally due to constraints in using a
suitable existing BCP. Using a BCP makes the MCM scalable to parallelism and expands
to Big Data scenarios for proteomic analysis.

7. Conclusion

This article presents a novel supervised deep learning multilabel classification framework
to uncover PB associated with the interplay between cancer and COVID-19. The findings
contribute to proteomics research by demonstrating promising evaluation metrics, and the
identified candidate biomarkers offer valuable insights into this critical relationship. Im-
plementing this methodology in a real-world biological clinical practice environment for
larger-scale validation can enhance the results and benefit health organizations, laborato-
ries, and academic institutions in the public health domain.

The MCM is a convenient tool for researchers, bioinformaticians, and hospital
laboratory professionals seeking accelerated diagnosis and customized, guided therapy
for oncology patients infected with COVID-19.
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