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Abstract. Biomechanics laboratories typically use kinematic cameras and force
platforms as the gold standard for gait assessment. However, these systems
are expensive and have limited availability. Wearable devices, equipped with
sensors—primarily inertial sensors—can capture movement data, enabling the
inference of human gait behavior. To enhance the quality of measurements ob-
tained from wearables, this study investigates the feasibility of predicting kine-
matic parameters from inertial data collected by wearable sensors. Machine
learning techniques, including Random Forest, XGBoost, and Gradient Boost-
ing, were used to correlate inertial measurements with data from traditional
motion capture systems. Feature importance analysis and SHAP highlighted
the significance of velocity and acceleration in predicting kinematic parame-
ters. Experimental results indicate that tree-based models, particularly Gradi-
ent Boosting and XGBoost, achieved the best performance, with coefficient of
determination values close to 0.989, demonstrating the feasibility of the pro-
posed approach.

Resumo. Laboratorios de biomecdnica normalmente utilizam cdmeras
cinemdticas e plataformas de for¢ca como padrdo-ouro na avaliagdo da marcha.
Contudo, tais sistemas sdo custosos e tém disponibilidade limitada. Disposi-
tivos vestiveis podem conter sensores, principalmente inerciais, que capturam
movimentos permitindo inferir o comportamento humano em uma marcha. Com
o objetivo aumentar a qualidade das medicoes obtidas por vestiveis, este estudo
investiga a viabilidade de prever parametros cinemdticos a partir de dados in-
erciais coletados por sensores vestiveis. O estudo utiliza técnicas de apren-
dizado de mdquina, incluindo Random Forest, XGBoost e Gradient Boosting,
que correlacionam medigoes inerciais com dados obtidos por sistemas tradi-
cionais de captura de movimento. A andlise de importdncia de caracteristicas
e SHAP destacou a relevincia da velocidade e aceleracdo na predicdo dos
pardmetros cinemdticos. Os resultados experimentais indicam que modelos
baseados em drvores, especialmente Gradient Boosting e XGBoost, apresen-
taram os melhores desempenhos, com coeficientes de determinagcdo proximos a
0,989, mostrando a viabilidade da abordagem proposta.



1. Introduction

Biomechanical gait assessments are essential for identifying locomotion issues, enabling
personalized rehabilitation, and enhancing athletic performance [Benson et al. 2018]]
[Akhtaruzzaman et al. 2016]. Traditional motion capture systems utilizing kinematic
cameras and plantar pressure measurements are considered the gold standard due to
their precision and ability to capture detailed biomechanical data [Zhang et al. 2017]]
[Jakob et al. 2021]]. Inertial Measurement Units (IMUs) have emerged as a promising
alternative, offering portability, cost-effectiveness, and versatility for gait analysis out-
side laboratory settings [Akhtaruzzaman et al. 2016]] [Kotiadis et al. 2010], in contrast to
biomechanics laboratories, which are associated with high costs, the need for specialized
equipment, and limitations to controlled laboratory environments [Benson et al. 2018]].

While traditional motion capture systems provide high precision in measuring
joint angles, stride length, and speed, wearable sensors offer the advantage of continuous
real-time monitoring, despite their lower accuracy [Kotiadis et al. 2010]. The primary
challenge lies in establishing a direct relationship between inertial and kinematic data
[Silva and Stergiou 2020]. Our study employs data processing and correlation analysis to
address this issue and identify significant relationships between the datasets. Based on
these correlations, we developed a comprehensive analysis using various machine learn-
ing algorithms, including Linear Regression, Random Forest, XGBoost, Multi-Layer Per-
ceptron (MLP), Support Vector Machine (SVM), and Gradient Boosting, to predict kine-
matic parameters from inertial data.

Our approach incorporates advanced techniques such as hyperparameter optimiza-
tion, cross-validation, and feature importance analysis (including Feature Importance and
SHAP values). We aim to establish model accuracy and understand which aspects of
inertial data are most relevant for predicting kinematic parameters. Through this com-
prehensive methodology, we strive to develop wearable IMUs as reliable tools for gait
analysis.

2. Related Work

Understanding human biomechanics is crucial for optimizing health outcomes, enhanc-
ing athletic performance, and accelerating recovery processes [Silva and Stergiou 2020,
Benson et al. 2018} /Akhtaruzzaman et al. 2016]]. In this context, wearable devices for gait
analysis have gained prominence due to their portability and practicality, enabling studies
beyond traditional laboratory settings [Benson et al. 2018]].

While biomechanics laboratories rely on sophisticated equipment such as high-
speed cameras, force platforms, and electromyographs to capture precise movement
data during gait [Akhtaruzzaman et al. 2016]], wearable sensors have emerged as a
more versatile alternative, albeit with some limitations in precision and accuracy
[Akhtaruzzaman et al. 2016]. These devices, primarily composed of strategically placed
inertial sensors on the body, allow continuous motion monitoring in various environments
[Kotiadis et al. 2010].

Current scientific literature reveals a significant gap in the correlation be-
tween data obtained from inertial sensors and those derived from laboratory-based op-
tical camera systems [Tsakanikas et al. 2023, Silva and Stergiou 2020]. Existing re-



search has predominantly focused on specific applications, such as Parkinson’s dis-
ease diagnosis, rather than direct comparative analyses between the two methodologies
[da Rosa Tavares et al. 2023]].

Investigating the correlation between datasets is essential to validate the accu-
racy and reliability of inertial sensors in replicating kinematic measurements tradition-
ally obtained in laboratory settings [Desai et al. 2024} |He et al. 2024, Kvist et al. 2024,
Ripic et al. 2023, Rousanoglou et al. 2024]. This study examines the distinctions be-
tween laboratory-based motion capture systems and wearable sensors; it seeks to un-
derstand how inertial data correlates with kinematic parameters and how it can contribute
to precise biomechanical analyses.

3. Methodology

Figure |1| presents the proposed methodology for analyzing and training gait kinematic
data obtained from a motion capture system (gold standard) and inertial data collected
from wearable sensors. The goal is to develop a model capable of accurately relating
inertial and kinematic data using a dataset of inertial measurements highly correlated with
kinematic points. The first step involves data collection (Subsection 3.1), conducted in a
biomechanics laboratory equipped with high-speed cameras and a wearable IMU system,
both from BTS Bioengineering. Next, data preprocessing (Subsection[3.2) was performed
to make the data comparable and apply necessary filters.

COIEEE?M +| Preprocessing ‘ Ei[e:;tcuézn }>> Cross-correlation }»»N
Yes
Machine

Figure 1. Flowchart of the proposed methodology for analyzing kinematic and
inertial data.

After preprocessing, new features were extracted from the inertial data (Subsec-
tion [3.3)) using mathematical and physical techniques, generating information such as
velocity, angular acceleration, magnitude, jerk (a derivative of acceleration), and position
from the raw data. Subsequently, cross-correlation was applied to temporally align the
data and identify the highest correlations (Subsection [3.4). This analysis identified the
time lag between the kinematic point and the inertial data with the highest correlation.
Finally, in Subsection [3.5] the data grouped by highest correlation was used to train Al
models, varying the algorithms, to evaluate which performs best with the lowest error.

3.1. Data Collection

The data collection experiments were conducted following a standardized gait analy-
sis protocol after approval of the ethics committee. Participants performed a linear
course that included walking in a straight line, stepping on a force platform, and re-
turning to the starting point. Data was collected at the GaitLab biomechanics labo-
ratory [BTS Bioengineering 2024bf], using a motion capture camera system and force
platform. For inertial data acquisition, we employed the GWalk wearable sensor
[BTS Bioengineering 2024a], positioned in the participants’ lumbar region. This device



records accelerometer and gyroscope data, including acceleration (acc) and rotational
movement (gyro) in three axes, as well as roll (roll), pitch (pitch), and yaw (yaw) ori-
entation angles. Figure 2| shows the positioning of wearable IMUs on participants during
collection, demonstrating the orientation of X, Y, and Z axes and rotation directions. Raw
data were extracted through device-specific software.

Figure 2. Positioning of kinematic points and wearable IMUs for data collection
experiments.

Among the various kinematic points available in the biomechanics laboratory, we
selected the most relevant ones based on literature [Delval et al. 2021]]. These points were
organized into anatomical groups, as illustrated in Figure |2 according to Upper Trunk -
Cervical vertebra C7 (c7 - 1), Right shoulder (r_should - 2), Left shoulder ({_should - 3);
Lower Trunk - Sacrum (sacrum_s - 4), Right anterior superior iliac spine (r_asts - 5),
Left anterior superior iliac spine (/_asis - 6), Midpoint between iliac crests (M IDASIS
- 7); for Lower Limbs - Right and left knees (r_knee_1 - 8, [_knee_1 - 9), Right and left
ankles (r_mall - 10, [_mall - 11), Right and left heels (r_heel - 12, [_heel - 13), Right
and left metatarsals (r_met - 14, [_met - 15); and Calculated Points - Average shoulder
position (PO - 16), and Center of mass (SHO - 17)

In the collected kinematic data, as illustrated in Figure |2} the X-axis corresponds
to lateral movement, the Y-axis to vertical movement, and the Z-axis to gait progression.
Complementary to the inertial data, the force platforms provide force measurements for
both feet (r_force and [_force) in all three axes. The complete datasetﬂ is publicly avail-
able for experiment reproduction.

3.2. Data Preprocessing

In gait analysis, abrupt changes in X, Y, and Z axes derived from acceleration data rep-
resent significant variations in forces acting on the body, potentially indicating specific
events or gait irregularities.

'www.kaggle.com/dataset/wrfrohlich/artemis-dataset
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Figure 3. Flowchart for evaluating similarities and correlation between kinematic
and inertial data.

Data processing and analysis were conducted using Python 3.10, employing
NumPy, Pandas, Scipy, and Scikit-Learn libraries. Data preprocessing followed es-
tablished methodologies in the literature [Millecamps et al. 2015, [Parashar et al. 2023]],
proving crucial for ensuring data quality and consistency for advanced analyses.

Initial treatment focused on missing data (NaN), which can arise for various rea-
sons and potentially distort results. We removed NaNs from the beginning and end of
files, corresponding to periods outside recorded movement. For technical failures, we
performed imputation using the mean of neighboring values, while for data not detected
by force platforms, we substituted zeros, indicating absence of contact. We also applied
linear interpolation to fill additional gaps, maintaining temporal continuity of gait data.

We implemented a low-pass Butterworth filter for noise reduction, which proved
more effective in preserving crucial data patterns. We applied a 3.0 Hz cutoff frequency
with a 5Sth-order filter for GaitLab (250 Hz) and GWalk (100 Hz) data. This configuration
allowed retention of essential low-frequency components critical for gait analysis.

Data normalization was performed using Min-Max scaling, which proved supe-
rior to standardization by better preserving relative importance between features, espe-
cially in a dataset with different scales. Finally, we performed data fusion to temporally
align different equipment sampling rates based on timestamps from each system to ensure
synchronized analysis of gait cycles captured by various sensors.

3.3. Features Extraction

We implemented a feature extraction process from the inertial data to ensure that all kine-
matic data exhibit at least a 0.5 correlation. This process is fundamental in gait analysis
for establishing significant correlations between inertial and kinematic data. Inertial sen-
sors, comprising accelerometers and gyroscopes, capture forces and rotations acting on
the body during movement.

The extracted features include velocities (vel) in X, Y, and Z axes, obtained
through temporal integration of acceleration data in each axis. Angular acceleration
(ang-acc_gyro) in all three axes was calculated from the derivative of gyroscope data,
which measures rotation rate in each direction. Acceleration magnitude (mag_acc) was
determined by the square root of the sum of squares of accelerations in all three axes,
representing the total intensity of the resultant force on the body.

Similarly, we calculated angular velocity magnitude (mag_gyro) from gyroscope-
recorded rotations. Jerk (jerk), obtained from the derivative of acceleration in X, Y, and Z
axes, quantifies the acceleration change rate over time, revealing sudden changes in acting
forces. Finally, position (pos) in each axis was determined through temporal integration of
velocity data, allowing estimation of spatial location of body segments and approximating
a kinematic measure derived from velocity.



3.4. Cross-Correlation Analysis

After preprocessing and feature extraction, we applied a cross-correlation technique to
quantify relationships between kinematic points and inertial data. This technique is par-
ticularly suitable for time series analysis, as it evaluates similarity between two signals
considering different time lags. This analysis identified patterns of highest correlation,
and the data showed no significant relationships in their temporal behavior.

Cross-correlation serves two essential functions in our analysis: besides quantify-
ing the degree of correlation between signals, it determines the optimal temporal synchro-
nization between data. The method systematically shifts one signal relative to another and
calculates correlation for each time lag, thus identifying the displacement that maximizes
correlation between signals. Although data were initially synchronized during collection
based on their timestamps, cross-correlation provided additional refinement of this align-
ment, precisely determining the optimal time lag between inertial and kinematic signals.

Cross-correlation analysis was systematically applied to all possible kinematic
points and inertial data combinations. We established a 0.5 correlation threshold as a
criterion for selecting the most relevant data pairs, thus ensuring that only statistically
significant correlations were considered in subsequent analyses. This threshold was de-
fined based on previous literature studies indicating that correlations above 0.5 represent
moderate to strong associations between biomechanical variables.

3.5. Machine Learning Model Development

The core development of this work focuses on applying machine learning algorithms
based on methods from previous stages. We aim to evaluate how well inertial data corre-
late with kinematic points and predict their behavior. We began this phase by implement-
ing ML modeling using regression models to predict gold-standard data from inertial data.
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Figure 4. Flowchart for artificial intelligence model training stages.

Experiments were conducted using six algorithms: linear regression, Random For-
est, XGBoost, Multi-Layer Perceptron (MLP), Support Vector Machine (SVM), and Gra-
dient Boosting. Each algorithm was used for all subsequent steps. Data was split into
training (80%) and test (20%) sets for model performance evaluation.

We employed Randomized Search with cross-validation to optimize model per-
formance and identify the best-performing algorithm (k=3). This approach efficiently ex-
plored each algorithm’s hyperparameter space, identifying combinations that maximize
performance. Linear Regression required no hyperparameter tuning due to its fundamen-
tal nature. For Random Forest, we adjusted the number of trees (n_estimators: 100-500),
maximum tree depth (max_depth: None, 10, 20, 30, 50), minimum samples for node



splitting (min_samples_split: 2-20), minimum samples per leaf (min_samples_leaf:
1-10), and bootstrap sampling options (bootstrap).

For XGBoost, we tuned the number of trees (n_estimators: 100-500), maxi-
mum depth (max_depth: 3-10), learning rate (learning_rate: 0.01, 0.05, 0.1, 0.2),
sample proportion per tree (subsample: 0.8, 0.9, 1.0), and feature proportion per tree
(colsample_bytree: 0.8, 0.9, 1.0). The MLP algorithm was optimized by adjusting
hidden layer neurons (hidden_layer_sizes: 50-200), activation functions (activation:
“relu”/’tanh”), L2 regularization term (alpha: 0.0001-0.01), and learning rate strategy
(learning _rate: ’constant”/”’adaptive”).

For SVM, we configured the regularization parameter (C: 0.1-100), kernel coeffi-
cient (gamma: “’scale”, ”auto”, 0.01-1), and kernel type (kernel: ”rbf”, "linear”, ’poly”).
Gradient Boosting parameters included number of trees (n_estimators: 100-500), max-
imum depth (maz_depth: 3-10), learning rate (learning_rate: 0.01-0.2), and sample
proportion (subsample: 0.8-1.0).

Model evaluation employed k-fold cross-validation (k=5) to assess generalization
and prevent overfitting. Performance metrics included R-squared (Coefficient of Determi-
nation), Mean Squared Error (MSE), Mean Absolute Error (MAE), Mean Absolute Per-
centage Error (MAPE), and Relative Absolute Error (RAE). Additionally, we conducted
residual analysis to identify prediction patterns or outliers.

Furthermore, we utilized SHapley Additive exPlanations (SHAP) analysis to inter-
pret model predictions, generating feature importance and dependency plots as additional
evaluation metrics.

4. Results and Discussion

This section presents and discusses the results obtained through the experiments per-
formed. Initially, as detailed in Subsection 4.1} the hyperparameters that demonstrated
the best performance for each algorithm are presented. Next, the results related to the
errors (Subsection obtained by each algorithm are presented. Subsequently, we eval-
uate the results regarding the importance of variables (Subsection and, finally, we
discuss the results of the SHAP analysis (Subsection 4.4).

4.1. Hyperparameters

Regarding hyperparameters, we found that the best-performing models were Gradient
Boosting and XGBoost, with average scores close to 0.989. Random Forest also per-
formed well, with an average score of 0.959. On the other hand, SVM and MLP showed
inferior results, with average scores of 0.835 and 0.682, respectively.

We observed the best performance for Gradient Boosting, with an average test
score of 0.989 using a learning rate of 0.05, a maximum depth of 4, 291 estimators, and
a subsampling rate of 0.8. Thus, we can conclude that slightly smaller trees, a moderate
number of estimators, and a reduced learning rate effectively prevented overfitting and
generalization.

For XGBoost, we achieved an average test score of 0.989 using a learning rate of
0.1, amaximum depth of 5, 269 estimators, a col sample_bytree of 0.8, and a subsampling
rate of 1.0. Like Gradient Boosting, we found that moderate-sized trees, a reasonable



number of estimators, and a learning rate of 0.1 strike a good balance between bias and
variance. Gradient Boosting and XGBoost produced better results using a lower learning
rate and smaller maximum depth.

The Random Forest model showed an average test score of 0.959 using a maxi-
mum depth of 10, a relatively small number of estimators (154), and bootstrap enabled.
It also used a minsamples;eaf of 3 and minsamplesgplit of 13. Based on smaller trees,
bootstrap and careful tuning of leaf and split constraints benefit this dataset. The greater
diversity among the trees generated by the bootstrap benefited the final result.

The model generated by the SVM algorithm with the best performance used an
RBF kernel with a gamma of ’scale’ and a large C value of 100, achieving an average
test score of 0.8346. This suggests that a non-linear kernel with appropriate scaling and a
high penalty for misclassification is essential for good performance on this data type. As
for the MLP models, even with hyperparameter tuning, they achieved lower average test
scores compared to the other algorithms (0.6817), obtained with a constant learning rate,
hidden layer sizes of (100, 50), an alpha of 0.0001, and the Re LU activation function.

4.2. Error Analysis

Regarding the error analysis for the algorithms, Random Forest and Gradient Boosting
show the best results in terms of error (MSE, MAE) and coefficient of determination
(R?). These models have MSE values close to zero and 12? values close to 1, indicating
an almost perfect fit to the data. XGBoost also stands out, with very similar metrics,
suggesting it is a robust approach for this data, as observed in the hyperparameter analysis.

MLP (Multi-Layer Perceptron) and SVM (Support Vector Machine) perform
worse compared to tree-based models, with higher MSE values and lower R?, especially
for some variables, making further experiments unnecessary. Linear Regression showed
the worst performance, with significantly higher MSE values and lower R?, indicating
that the data may not be linearly separable or that there are nonlinear relationships.

Gradient Boosting achieved very good performance, reaching low MSE values and
relatively high R?. The minimal performance difference between GBM and XGBoost
suggests that either would be an excellent choice. XGBoost achieved very good error
values, though it is more computationally demanding. Random Forest also showed strong
performance, with high R? values, mostly above 0.99 for position variables, and low MSE
values indicating its effectiveness in modeling complex relationships.

Variables with the Best Performance were c¢7_z, r_should_z, [_should_z,
sacrum_s_z, and r_asis_z, which have the lowest errors and highest R? values across
all models, with MSE in the order of 10~7 to 10~°, suggesting these variables are easier
to predict. On the other hand, [_force_x, r_met_x, and [_met_y have the highest errors
and lowest R? values.

4.3. Feature Importance

The feature importance analysis is relevant to identifying which inertial points influence
the model most and which could introduce noise or bias. All three main models prioritize
velocity for positions. Random Forest tends to have the highest dependence on velocity
features, often with a single dominant velocity component. It is followed by Gradient
Boosting and then XGBoost.



XGBoost utilizes a broader range of inertial features, particularly acceleration,
gyroscope, and IMU-derived position, suggesting it can capture additional nuances in
gait data. While the overall trends are similar, there are differences in specific feature
importance for certain anatomical landmarks among the three models. Random Forest
relies more on vel v for [ _asis_y, whereas XGBoost uses less vel_v compared to Random
Forest and more vel _x and pos_z, in addition to significantly increasing pos_z and acc_z.
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Figure 5. Feature Importance in [_asis_y for the machine learning models. a)
Random Forest model. b) XGBoost model

The feature importance from XGBoost highlights its focus on a broad set of fea-
tures and its tendency to find clear patterns in some cases, such as sacrum_s_z. All three
models heavily rely on velocity for predicting the position of anatomical landmarks, em-
phasizing the fundamental relationship between movement and position. The relatively
lower importance of explicit orientation features (pitch, roll, yaw) for position prediction
suggests that their influence is indirectly captured through velocity and acceleration.

4.4. SHAP

The SHAP method provides an in-depth understanding of each feature’s impact on ma-
chine learning models, allowing for the evaluation of how each variable contributes to
prediction outcomes. This interpretability is crucial for identifying the features that most
influence model performance.

Analyzing the SHAP plot results, velocity (vel_z, vel_y, vel_z) is the dominant
factor in kinematic predictions, with vel_x and vel_z standing out. High values of these
variables (represented by red dots in the plots) tend to increase predictions, while lower
values (blue dots) decrease them. Additionally, some variables, such as r_mall_x and
sacrum_s_z, strongly depend on velocities for their predictions.

Specifically, vel_z and vel_z exhibit positive and negative impacts depending on
their magnitudes, whereas vel_y has less relevance in the model. Regarding sensors that
capture rotational movements, variables like gyro_y and yaw stand out, directly affecting
sensors such as r_should_y and r_asts_y. Accelerations (acc_x, acc_z) also prove essen-
tial in specific sensors like ¢7_y and r_should_y, though their relevance varies depending
on the model. For example, in XGBoost, acc_r and acc_z have greater importance than
Random Forest.



When comparing algorithms, XGBoost assigns more weight to accelerations
(acc_z, acc_z) and angles (yaw, pitch), while Random Forest places more value on mag-
nitudes (mag_acc) and velocities (vel_x, vel_z). In XGBoost, the most relevant features
were vel_x and acc_z, which had high SHAP values. In contrast, vel_z and gyro_y dom-
inated in Random Forest. For Gradient Boosting, velocities vel_x and vel_z had the most
significant impact on predictions.
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Figure 6. SHAP summary plots for [_asis_y in the machine learning models. a)
Random Forest model. b) XGBoost model

Analyzing the SHAP summary plots for [_asis_y reveals distinct patterns between
the models. In XGBoost, vel_r shows a mixed impact, with high values increasing pre-
dictions and low values decreasing them. In contrast, Random Forest displays a dominant
positive impact from vel_z. In both models, gyro_y shows a mixed impact, indicating that
its influence depends on the specific context. The variable acc_x stands out in XGBoost
and Gradient Boosting but holds less relevance in Random Forest.

Overall, vel_x and vel_z emerge as the most consistent and influential features
across all analyzed algorithms, positively impacting the predictions of [_asis_y. These
results highlight the importance of velocity components in kinematic modeling using in-
ertial data.

5. Conclusion

The biomechanical analysis of gait is essential for identifying locomotion issues. Two
main methods are used for this purpose: biomechanics laboratories, considered the gold
standard, and wearable sensors. This study aims to evaluate how to approximate the
results from wearable sensors to those obtained in biomechanics laboratories. The pri-
mary challenge lies in establishing a direct relationship between inertial and kinematic
data. Our study employs data processing and correlation analysis to identify significant
relationships between the dataset. Based on these correlations, we developed a com-
prehensive analysis using several machine learning algorithms, including Linear Regres-
sion, Random Forest, XGBoost, Multi-Layer Perceptron (MLP), Support Vector Machine
(SVM), and Gradient Boosting, to predict kinematic parameters from inertial data.

Our approach incorporates advanced techniques such as hyperparameter optimiza-
tion, cross-validation, Feature Importance analysis, and SHAP values, aiming not only to



establish model accuracy but also to understand which aspects of inertial data are most
relevant for predicting kinematic parameters. The results demonstrate the superiority
of tree-based models, with Gradient Boosting and XGBoost achieving the best scores,
around 0.989, based on error metrics like MSE and R?. Random Forest also showed
competitive performance, scoring 0.959, while SVM and MLP yielded lower results.

The hyperparameter analysis revealed that Gradient Boosting and XGBoost ben-
efited from moderate learning rates, controlled maximum tree depth, and an appropriate
number of estimators, avoiding overfitting and promoting generalization. On the other
hand, Random Forest performed well with smaller trees, bootstrap usage, and precise
tuning of leaf and split parameters. The error analysis confirmed the effectiveness of tree-
based models, especially for variables such as c¢7_z, r _should_z, l _should_z, sacrum_s_z,
and r_asis_z.

The feature importance analysis highlighted the significance of velocity variables
for predicting the positions of anatomical landmarks across all three main models. XG-
Boost demonstrated greater sensitivity to a broader set of inertial features, including ac-
celeration, gyroscope, and IMU-derived position. The SHAP analysis corroborated these
findings, revealing the predominant influence of velocities vel_z and vel_z on predictions,
with variable impacts from other features, such as accelerations and angles, depending on
the algorithm.

The comparison between Random Forest and XGBoost, for instance, showed dif-
ferences in the relative importance of acc_x, gyro_y, and vel_z. In summary, this study
demonstrates the potential of machine learning algorithms, particularly Gradient Boosting
and XGBoost, for modeling kinematics from inertial data. Future work could explore in-
corporating additional features, such as data from more sensors or contextual information,
to enhance prediction accuracy and robustness further.
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