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Abstract. This study focuses on deep learning models for predicting coma out-
comes using electroencephalogram (EEG) data, exploring convolutional neural
networks (CNNs), particularly Shallow and Deep ConvNets, based on Filter
Bank Common Spatial Patterns. A dataset of 121 EEG samples (42 favorable,
79 unfavorable) was analyzed. EEG segments were selected using two strategies
and frequencies. Models were trained with 10-fold cross-validation and FTSur-
rogate for class balance. Shallow ConvNet showed stable performance across
frequencies, while Deep ConvNet excelled at 200Hz. Simple segment selection
and sampling frequency methods improved CNN performance. The findings of-
fer insights for future research and potential clinical applications.

1. Introduction
This paper presents the development of deep learning models for the prognosis of patients
in coma using electroencephalogram (EEG) data. In recent years, advances in machine
learning techniques, especially deep neural networks, have provided new possibilities for
analyzing biomedical signals, enabling the extraction of complex patterns that are difficult
to identify with traditional methods [LeCun et al. 2015, Mathew et al. 2021]. The appli-
cation of these techniques to EEG data, which measures brain electrical activity, shows
considerable promise for obtaining more accurate and reliable prognoses for patients in
coma [Hossain et al. 2023, Saeidi et al. 2021, Xu et al. 2023].

The electroencephalogram (EEG) is a valuable tool for monitoring comatose pa-
tients, as it captures brain electrical activity in a non-invasive and relatively accessible
manner [İnce et al. 2021, Iwama et al. 2023]. However, interpreting EEG traces poses
significant challenges due to the high variability and noise present in the recorded sig-
nals [Aellen et al. 2023, Baldo Júnior et al. 2023]. Thus, the increasing length of record-
ings and number of electrodes significantly amplify the complexity and volume of data
to be analyzed. This study conducts an exploratory analysis of the potential of con-
volutional neural networks (CNNs), specifically Deep ConvNet and Shallow ConvNet
[Schirrmeister et al. 2017] for processing and analyzing EEG signals in the context of
coma prognosis. Our main contributions are:

• Design of a random selection method of EEG segments as a fast and simple alter-
native to gold standard (experts) selection;



• Evaluation of Shallow and Deep ConvNets based on Filter Bank Common Spa-
tial Patterns (FBCSP) for different sampling frequencies and segment selection
strategies using real EEG data related to the coma prognosis task.

The subsequent sections of the paper are organized as follows. Section 2 presents
related work, discussing relevant research in the context of this study. Section 3 describes
the materials and methods, including the EEG-Coma Dataset, implementation details,
preprocessing, CNN models, hyperparameter optimization, and performance evaluation.
Section 4 presents the results for both Expert-Selected Segments and Randomly Selected
Segments, along with a discussion of the experimental findings. Finally, Section 5 pro-
vides the conclusions, summarizing the findings, contributions, limitations, and proposals
for future work.

2. Related Works
[Schirrmeister et al. 2017] analyzed various ConvNet architectures for decoding imag-
ined or executed tasks from raw EEG data. They found that deep ConvNets outperformed
conventional methods and could learn spectral power modulations across different fre-
quencies, highlighting the growing interest and potential of deep ConvNets for advanced
EEG analysis and brain mapping without predefined features.

[Ramos et al. 2022] investigated the classification of comatose patient prognoses
using time and frequency domain quantifiers in EEG signals. Applying classical machine
learning algorithms like Support Vector Machines (SVM), K-Nearest Neighbors (KNN),
and Logistic Regression (LR), their study highlighted the importance of comprehensive
signal analysis in predicting patient outcomes by improving performance through the in-
corporation of both time-domain and frequency-domain features.

The study by [Aellen et al. 2023] investigated the prognosis of comatose patients
after cardiac arrest using auditory stimulation and deep learning. They hypothesized
that Convolutional Neural Networks could extract interpretable patterns from EEG re-
sponses to auditory stimuli during the first day of coma, predicting awakening and sur-
vival chances at three months. The use of CNNs resulted in a positive predictive value of
0.83 and an area under the curve of 0.69, demonstrating the potential of deep learning to
improve coma prognostication.

[Bissaro et al. 2023] addressed EEG signal decoding for coma prognosis using
Echo-State Networks (ESNs) and CNNs. Introducing a spatial dimension to the EEG data
by modeling electrode placement and relationships, the transformed data fed into CNN
architectures surpassed state-of-the-art approaches for predicting two and three possible
outcomes, demonstrating the robustness of their method.

[Carneiro et al. 2023] explored high-level classification techniques for coma prog-
nosis, focusing on assortativity and shortest path metrics. Compared with nine other ap-
proaches, including CNNs, their method showed potential to enhance predictive perfor-
mance, emphasizing the value of advanced classification techniques in improving prog-
nostic models.

Unlike previous related works, this paper assesses the potential of Shallow and
Deep ConvNets based on FBCSP, considering both Gold-standard and Random EEG seg-
ment selection.



3. Material and Methods
This section presents the materials and methods used in this study. The process is sum-
marized in Figure 1, beginning with data collection by specialists. The second step in-
volves selecting the dataset, considering gold and random selection, resampling, and data
augmentation as pre-processing techniques. In the third phase, the training-evaluation
pipeline is configured, along with the definition of the hyperparameter optimization setup.
The fourth step consists of splitting the dataset into training and validation sets and instan-
tiating the CNN models under study. As part of this step, data augmentation is applied
exclusively to the training set in order to improve model generalization. Next, the models
are evaluated using the validation set, and partial results are collected and fed back into
the pipeline. In the final step, partial results from all pipelines are aggregated and ranked,
leading to the final results.

Figure 1. Overview of the study training-evaluation workflow.

3.1. EEG-Coma Dataset
The EEG-coma dataset was clinically collected at the adult intensive care unit of the
Clinical Hospital of the Federal University of Uberlândia (HCU-UFU). The collection
was approved by the Research Ethics Committee of the Federal University of Uberlândia.
The aim of this study was to develop models to assist in the prognosis of patients in coma
by categorizing EEG signals into favorable and unfavorable outcomes. A favorable out-
come is defined as the patient being discharged from the intensive care unit in satisfactory
health, while an unfavorable outcome includes either death from various clinical causes
or a diagnosis of brain death.

A total of 121 EEG samples were used, consisting of 42 favorable and 79 unfa-
vorable outcomes, with sampling frequencies ranging from 100Hz to 600Hz. Within each
record, EEG signal experts segmented ten significant 2-second segments deemed crucial
for prognosis, referred to as Gold-standard EEG segment selection. Additionally, the
study explored an automated strategy, randomly selecting non-overlapping segments from
the original EEG data, termed Random EEG segment selection. This dual approach
aimed to evaluate whether deep learning models are capable of extracting discriminative



patterns that are comparable to, or potentially more informative than, those identified by
experts, even when models were fit on data that is presumably not significant for the
outcome [Costa et al. 2022, de Paiva et al. 2018].

3.2. Implementation Details

This study utilized Python as the programming language. Key libraries included NumPy
for numerical operations, Pandas for data manipulation, SciPy for scientific computing,
and Scikit-learn for machine learning algorithms. For deep learning models, Braindecode
was employed, providing robust tools for building and training neural networks.

3.3. Pre-processing

In this study, two approaches for pre-processing EEG data were investigated. The first
approach utilized 9 out of 10 segments of EEG traces, previously separated by specialists.
The second approach involved randomly selecting 9 segments from the original exam
trace, ensuring no data overlap. This process divided the raw EEG into 9 equal segments,
followed by the selection of a 2-second window with a randomly chosen starting point.
If overlap occurred, a new point was selected until the non-overlapping condition was
met. In both cases, the samples underwent resampling to standardize the dataset sampling
frequency at 100Hz and 200Hz.

The implementation, facilitated by the MNE library [Gramfort et al. 2013], ap-
plied a low-pass filter before point selection or interpolation for downsampling and up-
sampling, respectively. The data distribution revealed approximately 2 unfavorable out-
comes for every favorable outcome, indicating a class imbalance issue. To address this,
the FTSurrogate [Caza-Szoka and Massicotte 2022] data augmentation technique was
used, similar to [Al-Hussaini and Mitchell 2023]. This technique was applied to each
electrode’s EEG traces, using standard parameters for phase noise magnitude and channel
independence, resulting in a balanced training set with equal numbers of favorable and
unfavorable outcome samples. Notice that FTSurrogate is applied exclusively over the
training set, as the validation set remains separated.

3.4. CNN Models

This study utilized different approaches of CNN models to classify EEG signals and pre-
dict coma outcomes. The architecture was chosen for its ability to effectively process
temporal and spatial data inherent in EEG signals. The models implemented included
Deep ConvNet and Shallow ConvNet architectures, which were selected for their varying
depths and complexities to capture a broad range of features from the EEG data.

Deep ConvNet, proposed by [Schirrmeister et al. 2017] is a comprehensive archi-
tecture designed to efficiently extract features from EEG signals through deep layers. The
first block of the Deep ConvNet incorporates the FBCSP (Filter Bank Common Spatial
Patterns) technique. This stage employs a convolutional layer to perform convolution
over the temporal channels of the EEG signal. The filters generated are then passed to an-
other convolutional layer that extracts spatial filters capable of discriminating the signal
characteristics. The resulting features are processed by a Max Pooling layer. Subsequent
blocks operate similarly to traditional convolutional networks, with an increasing number



Figure 2. Deep ConvNet Architecture [Schirrmeister et al. 2017].

of filters at each stage to capture low-level local features initially and evolving to high-
level global features as the network depth increases. The final layer is densely connected,
aimed at performing the final classification of the EEG record.

Shallow ConvNet, proposed by [Schirrmeister et al. 2017] is a simpler alternative
to the Deep ConvNet that does not include the three convolutional blocks that precede
the densely connected layer. Instead, Shallow ConvNet adopts the Average Pooling to
summarize the block of temporal and spatial filter extraction. This architecture is de-
signed to capture more localized patterns with fewer layers, making it computationally
less intensive compared to its deeper counterpart.

Figure 3. Shallow ConvNet Architecture [Schirrmeister et al. 2017].

Both architectures were implemented using the Braindecode library
[Schirrmeister et al. 2017], which is optimized for EEG deep learning applications.
Braindecode’s integration with PyTorch allowed development and training of these
models. The library also contributes in the application of standard preprocessing steps
and data augmentation techniques, ensuring that the models could generalize well to new
data.

3.5. Hyperparameter Optimization

Unlike model weights, hyperparameters require fine-tuning before training,
a computationally intensive process due to numerous possible combinations
[Yang and Shami 2020]. The parameters studied in this work were stored as key-
value pairs in YAML text files, with configurations determined through manual
experimentation.



These files were processed by a Python pipeline running in an environment
integrated with Optuna [Yu and Zhu 2020], a versatile framework designed for in-
tegration and optimization across various Python-based machine learning libraries
[Akiba et al. 2019]. A MySQL database was utilized for external data storage and man-
agement of the results of optimization experiments.

The optimization parameters for various architectures were systematically defined
and evaluated. Table 1 lists the hyperparameters considered for optimizing the Deep
ConvNet architecture.

Table 1. Parameters considered for optimizing the Deep ConvNet architecture.

Architecture Parameter Values

Deep ConvNet

n filters spat 8, 12, 16, 20, 24, 28, 32
n filters time 8, 12, 16, 20, 24, 28, 32
n filters 2 20, 24, 28, 32, 36
n filters 3 42, 46, 50, 54, 58
n filters 4 62, 66, 70, 74, 78
drop prob 0.1, 0.2, 0.5
batch size 16, 24, 32, 40, 48, 56, 64
learning rate low: 0.0001; 0.0001; 0.0001

high: 0.099; 0.099; 0.099
step: 0.0001; 0.001; 0.01

For the Shallow ConvNet, Table 2 details the hyperparameter setup, focusing on
parameters like pool time stride, filter time length, and pool time length. These settings
allowed a broader search due to the architecture’s lower computational cost compared to
Deep ConvNet.

Table 2. Parameters considered for optimizing the Shallow ConvNet architecture.

Architecture Parameter Values

Shallow ConvNet

n filters spat 8, 12, 16, 20, 24, 28, 32
n filters time 8, 12, 16, 20, 24, 28, 32
filter time length 15, 20, 25, 30, 35, 40, 45

50, 55, 60
pool time stride 10, 15, 20
pool time length 40, 50, 60, 70, 80, 90, 100
drop prob 0.1, 0.2, 0.5
batch size 16, 24, 32, 40, 48, 56, 64
learning rate low: 0.0001; 0.0001; 0.0001

high: 0.099; 0.099; 0.099
step: 0.0001; 0.001; 0.01

3.6. Performance Evaluation

For a more reliable evaluation of the models’ performance, the stratified K-Fold cross-
validation technique was used. This approach was chosen to preserve the class imbalance
during model evaluation, a common condition in healthcare-related problems. After par-
titioning into folds, the training set underwent data augmentation using the FTSurrogate
technique.

The final patient prognosis was determined by the mode of the classifications
across all its corresponding EEG segments. Model performance was ranked primarily
based on sensitivity and F1-score, alongside accuracy and specificity. This emphasis



aimed to identify models that effectively detect patients with a higher probability of coma
recovery while ensuring balanced classification of both outcomes. Finally, the mean and
standard deviation of all metrics were computed, stored, and sent to the optimization tool
for extracting new values for further experimentation.

4. Results and Discussion
The results obtained in this study are presented in this section and consider the different
convolutional neural network architectures applied to the dataset. Each architecture is
specified with the sampling frequency (Samp.Freq) considered during the dataset prepro-
cessing (100Hz or 200Hz). The results are presented as percentages, including the mean
and standard deviation, in relation to various performance metrics, including accuracy,
specificity, sensitivity, and F1-Score. The findings are detailed for both expert-selected
(gold standard) segments and randomly selected segments, highlighting the performance
differences across these preprocessing techniques.

4.1. Results with Expert-Selected Segments
Table 3 presents the classification results of EEG trace segments selected by experts, con-
sidering sampling frequencies of 100Hz and 200Hz. The Shallow ConvNet architecture
demonstrated consistent performance across both sampling frequencies. However, the
Deep ConvNet architecture showed lower performance at 100Hz but improved signifi-
cantly at 200Hz.

Table 3. Results of CNN models using gold standard segments (selected by ex-
perts), with mean and standard deviation.

Architecture Samp.Freq Accuracy Specificity Sensitivity F1-Score
Shallow ConvNet 100Hz 71.15 ±08.93 70.00 ±16.01 74.50 ±18.90 69.08 ±09.64

Shallow ConvNet 200Hz 71.79 ±14.15 72.50 ±21.51 71.00 ±13.93 68.96 ±13.04

Deep ConvNet 100Hz 64.49 ±09.01 66.25 ±14.84 62.50 ±13.28 62.45 ±08.74

Deep ConvNet 200Hz 71.92 ±12.94 74.82 ±20.05 67.50 ±16.62 67.56 ±13.24

The Shallow ConvNet architecture demonstrated solid performance, achieving an
F1-Score of 69.08% and a sensitivity of 74.5% at 100Hz, and an F1-Score of 68.96% and
a sensitivity of 71% at 200Hz. This indicates its robustness and stability across different
sampling frequencies. On the other hand, the Deep ConvNet architecture exhibited lower
performance at 100Hz, with an F1-Score of 62.45% and sensitivity of 62.50%. How-
ever, it improved significantly at 200Hz, achieving an accuracy of 71.92%, specificity of
74.82%, and an F1-Score of 67.56%, demonstrating its potential when higher temporal
resolution data is available.

The Shallow ConvNet consistently outperformed Deep ConvNet at 100Hz, achiev-
ing the highest mean F1-Score (69.08%) and sensitivity (74.50%). This suggests that
Shallow ConvNet may be more effective for lower sampling frequencies, maintaining
both high accuracy and stability in performance metrics.

At 200Hz, Deep ConvNet showed a considerable improvement, achieving the
highest accuracy (71.92%) and specificity (74.82%). This indicates that the increased
dimensionality provided by the higher sampling frequency was better leveraged by the
deeper architecture of Deep ConvNet. Nevertheless, the Shallow ConvNet still maintained



competitive performance, with all key metrics (accuracy, specificity, sensitivity, and F1-
Score) above 70%.

These findings highlight the significant impact of sampling frequency on the per-
formance of these architectures. The Shallow ConvNet demonstrated strong performance
and stability across both frequencies, while Deep ConvNet benefited from higher tem-
poral resolution, suggesting its suitability for applications where higher sampling rates
are feasible. Overall, the results underscore the importance of considering both model
architecture and data resolution in EEG signal classification for coma prognosis.

4.2. Results with Randomly Selected Segments

Table 4 presents the results for randomly selected segments, which may represent a sim-
ple and fast alternative for segment selection in some EEG applications. At a sampling
frequency of 200Hz, the Shallow ConvNet demonstrated the best overall performance,
achieving the highest mean accuracy (72.76%), mean sensitivity (76.50%), and F1-Score
(69.03%). This indicates a strong ability to correctly identify true positive patients. Ad-
ditionally, Shallow ConvNet maintained good specificity at 71.07%.

Table 4. Results of models using randomly selected segments, with mean and
standard deviation.

Architecture EEG-Coma Accuracy Specificity Sensitivity F1-Score
Shallow ConvNet 100Hz 71.15 ±16.13 71.25 ±25.65 71.50 ±14.15 67.24 ±15.25

Shallow ConvNet 200Hz 72.76 ±09.03 71.07 ±15.69 76.50 ±24.19 69.03 ±14.34

Deep ConvNet 100Hz 67.76 ±10.84 70.00 ±26.93 66.00 ±31.13 55.68 ±17.46

Deep ConvNet 200Hz 66.92 ±11.81 66.25 ±20.19 69.00 ±19.08 63.83 ±09.84

The Deep ConvNet also presented satisfactory indicators when data were sampled
at 200Hz, but its performance was not as strong as Shallow ConvNet. It achieved a mean
accuracy of 66.92%, specificity of 66.25%, and an F1-Score of 63.83%, demonstrating
that while it performed adequately, it was outperformed by Shallow ConvNet in this con-
figuration.

At a sampling frequency of 100Hz, Deep ConvNet exhibited the lowest mean F1-
Score (55.68%) and mean sensitivity (66.00%), indicating difficulty in correctly identify-
ing true positive and true negative samples. This poorer performance could be attributed
to the high standard deviation of 31.13% for sensitivity and 26.93% for specificity, high-
lighting instability in the patterns learned within each K-Fold iteration.

In contrast, the Shallow ConvNet maintained solid performance at 100Hz with a
mean accuracy of 71.15%, specificity of 71.25%, sensitivity of 71.50%, and an F1-Score
of 67.24%. These results underscore the robustness of Shallow ConvNet across different
sampling frequencies and highlight its effectiveness in learning from randomly selected
EEG segments.

Overall, these findings suggest that the Shallow ConvNet achieved better overall
performance when exposed to randomly selected EEG traces compared to Deep Con-
vNet. The simpler structure and fewer parameters of Shallow ConvNet likely contributed
to its superior pattern learning capabilities across various preprocessing techniques and
sampling frequencies, as evidenced by its consistent performance metrics.



4.3. Discussion of Experimental Results

Based on the analysis of the results in Tables 3 and 4, for expert-selected segments, the
Shallow ConvNet achieved the most consistent and superior results in terms of mean ac-
curacy, specificity, sensitivity, and F1-Score when analyzing all architectures and sam-
pling frequencies. This architecture demonstrated the highest stability among the expert-
selected segments, showing good consistency in mean accuracy and F1-Score across each
K-Fold iteration. Overall, Shallow ConvNet performed best for both segment selection
approaches, particularly excelling when the data was sampled at 200Hz and randomly
selected. This superior performance can be attributed to the higher amount of captured
information, greater temporal resolution, and the architecture’s adaptability to the prob-
lem domain.

The Deep ConvNet architecture showed the highest mean accuracy (71.92%) and
specificity (74.82%) among all expert-selected segment experiments. However, it ex-
hibited the lowest mean F1-Score (55.68%) when segments were randomly selected and
sampled at 100Hz. For expert-selected segments, higher temporal resolution (200Hz) im-
proved the results of Deep ConvNet, highlighting that its complex and deeper structure
benefits from finer-grained data.

When considering all results, Shallow ConvNet at 200Hz with random selection
showed the best overall performance. This emphasizes the potential of these architec-
tures to uncover hidden patterns in the data, which might be overlooked by experts. On
the other hand, Deep ConvNet struggled to consistently learn patterns that discriminated
between classes across all tested sampling frequencies and random selections. The low-
est mean F1-Score of 55.68% and the highest standard deviation for sensitivity (31.13%)
were observed in this architecture when exposed to randomly selected data at 100Hz.
This suggests that in deeper architectures gold standard selection may contribute signifi-
cantly to identifying more relevant, less noisy, and reliable data, leading to more accurate
machine learning model results.

The application of CNN architectures combined with densely connected layers
for learning patterns in EEG signals was also explored by [Bissaro 2021], adding a new
dimension to model the electrode positioning on the patient’s scalp, with relationships
modeled based on averages between neighboring electrodes. For this work, temporal
and sequential modeling was performed using the FBCSP technique, which enabled pat-
tern learning in different significant bandwidths for better class discrimination. Although
[Bissaro 2021] simulations were not reproduced, the Shallow ConvNet model at 200Hz
demonstrated superior overall results compared to the standard CNN architecture with
attention.

In general, models showed a standard deviation close to or above 10% across all
evaluation metrics, with the highest standard deviation observed in the sensitivity and
specificity of the Deep ConvNet-100Hz architecture with random segments. Several fac-
tors may contribute to this issue, including the inherent complexity of EEG data, as noted
by [Bissaro et al. 2023] in their work. [Delorme 2023] and [Coelli et al. 2024] explored
the application of automated pipelines for preparing EEG trace signals. This type of au-
tomated approach, applied to all records in the dataset, could be explored in future work
to potentially improve model performance and reliability.



5. Conclusion

This study investigated the use of convolutional neural networks to classify EEG signals
and predict coma outcomes from gold standard and random EEG segment selections. The
Shallow ConvNet consistently outperformed the Deep ConvNet across various sampling
frequencies and segment selection methods. Particularly, the Shallow ConvNet excelled
at a 200Hz sampling frequency with random segment selection, showcasing its robustness
and adaptability to different data preprocessing techniques.

The results demonstrated the impact of sampling frequency and segment selec-
tion strategy. The Shallow ConvNet maintained high accuracy, specificity, sensitivity, and
F1-Score across both 100Hz and 200Hz frequencies. In contrast, the Deep ConvNet per-
formed better at higher temporal resolutions (200Hz) but struggled with lower sampling
rates and random segment selections, resulting in lower F1-Scores and higher variability
in performance metrics.

These findings emphasize the need to consider both model architecture and data
resolution in EEG signal classification for coma prognosis. The Shallow ConvNet’s sim-
pler structure and fewer parameters contributed to its superior pattern learning capabili-
ties, making it a valuable tool for clinical applications. Moreover, this architecture per-
formed very well with our fast and simple random selection of EEG segments, which
achieved competitive results when compared to the use of gold standard segments se-
lected by experts, which are time-consuming and expensive.

To address class imbalance, we employed the FTSurrogate technique. However,
the use of randomly selected EEG segments, although presumably not significant for
prognosis, may help deep learning architectures identify and learn relevant patterns to
coma outcome prediction, as this strategy shifts part of the interpretative burden from
human experts to the model itself, allowing it to effectively filter noise and uncover pat-
terns that may be overlooked by experts. This approach can be explored in future work
using various length and stride configurations, as it offers the potential to extract a greater
number of segments from the positive outcome.

Despite the promising results, the study had several limitations, including the in-
herent variability in EEG data, which poses challenges to model generalization. The
random selection strategy aimed to replicate the segment length and quantity used in the
gold standard approach but was not extensively explored across different window lengths
and stride configurations. Additionally, the size of the EEG-Coma dataset constrains the
capacity of the explored deep learning architectures and hinders experimentation with an
environment closer to real-world clinical applications. Future research should explore
larger and more diverse datasets, advanced hybrid models combining CNNs with tech-
niques like LSTM or attention mechanisms, and automated pre-processing pipelines to
enhance model reliability and generalization.
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