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Abstract. This study evaluates the performance of convolutional neural
networks (CNN)-based models and Transformers for histological image seg-
mentation using public datasets: OCDC and GlaS. Four models were analyzed:
UNet, UNet++, SharpUNet, and TransUNet, with and without data augmen-
tation. Data augmentation proved crucial for improving model generalization,
with SharpUNet and UNet++ achieving the best results in Dice coefficient and
accuracy. TransUNet, despite its hybrid architecture, underperformed, possibly
due to its complexity and need for large training data. The results indicate that
CNN-based models, such as UNet++ and SharpUNet, are effective for histolo-
gical image segmentation, especially when combined with data augmentation.

Resumo. Este estudo avalia o desempenho de modelos baseados em redes neu-
rais convolucionais (CNN) e Transformers para segmentacdo de imagens his-
tolégicas, utilizando os conjuntos de dados piiblicos OCDC e GlaS. Quatro
modelos foram analisados: UNet, UNet++, SharpUNet e TransUNet, com e
sem aumento de dados. O aumento de dados mostrou-se crucial para melhorar
a generalizacdo dos modelos, com SharpUNet e UNet++ alcancando os me-
lhores resultados em coeficiente Dice e precisdo. O TransUNet, apesar de sua
arquitetura hibrida, teve desempenho inferior, possivelmente devido a sua com-
plexidade e necessidade de grandes volumes de dados. Os resultados indicam
que modelos baseados em CNN, como UNet++ e SharpUNet, sdo eficazes na
segmentagdo de imagens histologicas, especialmente quando combinados com
aumento de dados.



1. Introducao

A segmentacdo de imagens histolégicas desempenha um papel fundamental no di-
agnostico assistido por computador (do inglés, Computer-Aided Diagnosis - CAD)
[Moscalu et al. 2023], permitindo a deteccdo de estruturas celulares e teciduais em
imagens médicas [Basu et al. 2024, Xu et al. 2024]. Na histopatologia, a crescente
demanda por técnicas automatizadas de segmentacdo reflete a importancia dessas
abordagens na complementacdo da andlise clinica e na categorizacdo de tumores
[Banerji and Mitra 2022]. Entre as abordagens existentes, a segmentacdo semantica tem
se destacado por possibilitar a diferenciacdo automética de tecidos normais e anomalos
em imagens histologicas, podendo auxiliar na identificagdo precoce e na quantificacdo de
padrdes histopatoldgicos relevantes [Silva et al. 2023, Silva et al. 2022]. No entanto, de-
safios persistem na drea, incluindo a variabilidade morfoldgica das amostras, a escassez
de dados anotados e a generalizacdo dos modelos para diferentes condi¢gdes patolégicas
[Banerji and Mitra 2022].

Redes neurais convolucionais (do inglés, Convolutional Neural Networks - CNNs)
tém sido amplamente utilizadas para segmentacdo e classificacio de imagens médicas
[Srinidhi et al. 2021, Springenberg et al. 2023]. No contexto de segmentagdo semantica,
a UNet [Ronneberger et al. 2015] tem sido uma uma das arquiteturas mais populares de-
vido a sua capacidade de representar tanto informacoes de baixo nivel (bordas e texturas)
quanto de alto nivel (formas e padrdes globais). Com esse avango, novos aprimoramentos
surgiram como UNet++ [Zhou et al. 2018] e SharpUNet [Zunair and Hamza 2021]. Es-
ses foram propostos para aprimorar a qualidade da segmentagdo, introduzindo conexoes
densas e mecanismos de realce de bordas. No entanto, modelos baseados em CNNs
apresentam algumas limitagdes que impactam sua aplicagdo na segmentacdo de imagens
médicas. Um dos principais desafios estd na dificuldade de capturar relacdes espaciais
de longo alcance [Mauricio et al. 2023], o que pode comprometer a segmentacao de es-
truturas complexas e altamente heterogéneas, como tecidos tumorais irregulares. Outra
limitacao € a tendéncia de CNNs dependerem de janelas locais de convolugdo, o que pode
resultar na perda de informagdes globais essenciais para uma segmentagao mais precisa.

Com o avangco dos  Transformers, em visdo  computacional
[Dosovitskiy et al. 2020], arquiteturas hibridas como a TransUNet [Chen et al. 2021]
foram desenvolvidas para combinar os pontos fortes das convolugdes com a capacidade
dos mecanismos de autoatencdo de capturar dependéncias entre regides distantes da
imagem. No entanto, essas abordagens frequentemente requerem grandes volumes de
dados para treinamento eficaz [Xu et al. 2023], o que representa um desafio na area
médica, onde a obtencao de imagens rotuladas € limitada por fatores como privacidade,
custo e variabilidade interobservador [Banerji and Mitra 2022]. Assim, a aplicabilidade
dessas arquiteturas em imagens histoldgicas ainda é um desafio, especialmente quando
comparadas a abordagens baseadas exclusivamente em CNNs.

Este estudo apresenta uma investigacdo de modelos de aprendizagem
profunda para a segmentacdo de imagens histolégicas baseada nas arquite-
turas UNet [Ronneberger et al. 2015], UNet++ [Zhou et al. 2018], SharpUNet
[Zunair and Hamza 2021] e TransUNet [Chen et al. 2021]. A avaliacdo dos mode-
los possibilita identificar quais métodos sao mais eficazes na segmentacdo de tecidos
e células em imagens histologicas, fornecendo subsidios para o desenvolvimento de



solu¢des mais robustas em sistemas CAD. Essa pesquisa busca avaliar as abordagens
utilizando as métricas coeficiente Dice, acurécia, sensibilidade e especificidade. O
desempenho dos modelos e o impacto da estratégia de aumento de dados também
foram investigados em dois conjuntos de dados: OCDC [Santos et al. 2023b] e GlaS
[Sirinukunwattana et al. 2017].

2. Materiais e Métodos

A metodologia proposta para a investigacao das abordagens de segmenta¢cdo de imagens
histologicas € ilustrada na Figura 1. O pipeline consistiu na utilizacdo de duas bases de
imagens de dominio ptblico, cada uma dividida em conjuntos de treinamento, validagao
e teste. Também foram investigadas técnicas de aumento de dados para aprimorar a
generalizagdo dos modelos. Diferentes arquiteturas baseadas na UNet foram treinadas
e avaliadas. As segmentacOes geradas foram comparadas com o padrdao ouro marcado por
especialistas, e métricas foram calculadas para avaliar o desempenho dos modelos. Os
detalhes de cada etapa do método sdo descritos nas proximas subsegdes.
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Figura 1. Pipeline da metodologia proposta, incluindo as etapas de divisao dos dados,
treinamento com e sem aumento de dados, e avaliacao dos modelos UNet, UNet++, Shar-
pUNet e TransUNet nos datasets OCDC e GlaS.

2.1. Base de Imagens

Neste estudo, foram empregadas as seguintes bases de imagens (datasets): a) Oral Cavity-
Derived Cancer (OCDC) [Santos et al. 2023b], que contém 508 imagens histologicas de
carcinomas de células escamosas orais e tecidos normais, capturadas com ampliacdo de
20x. As imagens (640x640 pixels) foram anotadas por especialistas e divididas em 393
para treinamento e 61 para teste. No presente estudo, foi utilizada uma subdivisdo com-
posta por 278 imagens para treinamento, 115 para validacdo e 61 para teste. A base é
empregada para treinar modelos de CNNs na segmentacdo e diagndstico do cancer oral
(Figura 2 (A)). b) A base GlaS$ [Sirinukunwattana et al. 2017] contém 165 imagens his-
tologicas do colon coradas com H&E, obtidas de adenocarcinomas colorretais em dife-
rentes pacientes (Figura 2 (B)). As imagens possuem anotacdes manuais de glandulas,



servindo como referéncia para segmentacdo automatica. A divisdo adotada neste estudo
compreende 60 imagens para treinamento, 25 para validacao e 80 para teste.
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Figura 2. Exemplos de imagens histologicas utilizadas no estudo: (A) imagens da base
OCDC com regioes tumorais da cavidade oral; (B) imagens da base GlaS contendo
glandulas colorretais.

2.2. Segmentacao dos Tecidos Histolégicos

Para a andlise proposta neste estudo, foram investigadas as arquiteturas UNet, UNet++,
SharpUNet e TransUNet. Este conjunto é composto por modelos cldssicos, leves e
hibridos. Essa diversidade de arquiteturas contribui para mitigar vieses inerentes a mode-

los especificos e permite uma avaliagdo mais robusta da eficicia das técnicas de aumento
de dados

A UNet [Ronneberger et al. 2015] é uma arquitetura em formato de “U”, que
combina um caminho de contragdo, responsavel pela extracdo de caracteristicas, e
um caminho de expansdo, que refina a segmentacdo (Figura 3 (A)). A UNet++
[Zhou et al. 2018] introduz conexdes densas entre os blocos da rede, melhorando a
propagacdo de informagdes e a precisdo da segmentacgdo (Figura 3 (B)). O modelo Shar-
pUNet [Zunair and Hamza 2021] incorpora mecanismos de realce de bordas, sendo util
para imagens histolégicas onde ha transicOes sutis entre estruturas dos tecidos (Figura 3

(©€)).

Com o advento dos Transformers [Vaswani et al. 2017, Dosovitskiy et al. 2020],
surgiram modelos hibridos que combinam convolu¢des com mecanismos de autoatencao
para capturar relacdes de longo alcance nas imagens. A TransUNet [Chen et al. 2021]
incorpora um codificador baseado em Transformers na estrutura da UNet, permitindo
que o modelo aprenda dependéncias globais enquanto mantém a capacidade de capturar
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Figura 3. Representacoes esquematicas das arquiteturas de segmentacao avaliadas: (A)
UNet original com caminho de contracao e expansao; (B) UNet++ com conexdes densas;
(C) SharpUNet com modulos de realce de bordas; (D) TransUNet com codificador baseado
em Transformer.

detalhes locais por meio das convolucdes (Figura 3 (D)). Essa abordagem tem se mostrado
eficaz na segmentacido de imagens médicas, especialmente em cendrios onde estruturas
anatomicas apresentam grande variacao espacial.
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O aumento de dados é uma etapa essencial para melhorar a capacidade de
generalizagdo dos modelos e reduzir o risco de overfitting, especialmente em conjun-
tos de dados médicos, que costumam ser limitados em tamanho. Neste estudo, fo-
ram avaliadas trés estratégias distintas de aumento de dados. A primeira estratégia
seguiu a abordagem proposta por [Santos et al. 2023a], que combina transformacoes
geométricas e deformacdes ndo lineares. A segunda estratégia empregou exclusivamente
transformacdes geométricas, incluindo flip horizontal e vertical, rotacio aleatdria de até
90° e transposi¢do. A terceira estratégia utilizou técnicas de distor¢do da imagem, como
distor¢do elastica, de grade e Optica. Para cada imagem original do conjunto de trei-
namento, foram geradas trés versdes aumentadas, correspondentes a cada uma das trés
estratégias adotadas.

Os hiperparametros do treinamento foram ajustados de forma empirica para cada
modelo e dataset, conforme mostrado na Tabela 1. O nimero de épocas foi definido em



150 com base na convergéncia das métricas coeficiente Dice e acurdcia no conjunto de
validagcdo. Para evitar overfitting, foi usada uma taxa de dropout entre 0,0 e 0,3. Na
otimizacao, foi empregado o Adam, combinando Binary Cross-Entropy com Logits Loss
e Dice Loss. Os treinamentos foram realizados em ambiente Linux com suporte a CUDA
e PyTorch 2.0, utilizando uma GPU NVIDIA RTX 4070 Ti SUPER (16 GB VRAM).

Tabela 1. Hiperparametros de treinamento para cada modelo e dataset.

Dataset Model Batch Size Learning Rate Epochs Dropout

GlaS UNet, UNet++, SharpUNet 8 0,001 150 0,2
TransUNet 8 0,0001 150 0,1

0CDC UNet, UNet++, SharpUNet 8 0,0005 150 0,0
TransUNet 8 0,0001 150 0,1

O tempo de inferéncia permaneceu constante entre os conjuntos de dados para
cada modelo, sendo de 0,3 ms para SharpUNet e UNet, 0,5 ms para UNet++ e 0,9 ms
para TransUNet. Ja o tempo de treinamento variou conforme a quantidade de amostras
em cada dataset, com os menores tempos observados para o GlaS (SharpUNet: 2,2 min,
TransUNet: 2,3 min, UNet: 2,1 min, UNet++: 5,9 min) e os maiores tempos para o
OCDC (SharpUNet: 8,5 min, TransUNet: 8,9 min, UNet: 8,2 min, UNet++: 24,1 min).

2.3. Métricas de Avaliacao e Analise Estatistica

Para avaliar o desempenho dos modelos de segmentagcdo foram utilizadas as métricas:
coeficiente Dice, Acuricia, Sensibilidade e Especificidade. Essas métricas quantificam a
qualidade das segmentagdes ao comparar as previsdoes do modelo com as méscaras do
padrdao ouro (anotacdes manuais), fornecendo uma andlise detalhada do desempenho.
Além disso, o teste de Friedman foi aplicado separadamente para cada dataset, consi-
derando trés repeti¢cdes independentes por configuracgao.

3. Resultados e Discussao

A Tabela 2 apresenta as métricas de desempenho dos modelos de segmentacdo no dataset
GlaS, comparando os resultados com e sem o uso de aumento de dados. Os melhores
valores para cada métrica estdo destacados em negrito. Observa-se que a aplicacdo de
aumento de dados levou a melhorias expressivas, especialmente para o coeficiente Dice e
a acuracia. O modelo SharpUNet com aumento de dados obteve os maiores valores para
Dice (89,4748, 82) e acurdcia (86, 34+9, 17). A maior especificidade foi alcangada pelo
UNet++ com aumento (89, 76 £ 9, 22), enquanto a maior sensibilidade foi observada no
TransUNet com aumento (91, 95+ 8, 19), indicando uma melhor segmentagao das regides
de interesse.

Na Figura 4 sdo ilustrados os resultados dos modelos avaliados, evidenciando os
problemas de segmentacdo. Os valores de especificidade indicam que a UNet++ (89,76%)
e a SharpUNet (89,26%) foram mais eficazes em evitar a segmentacao indevida de areas
que ndo pertencem ao objeto de interesse, apresentando menor incidéncia de falsos po-
sitivos. Por outro lado, a UNet (86,87%) e a TransUNet (85,02%) demonstraram maior
propensao a identificar erroneamente regides do fundo como parte do objeto segmentado.



Tabela 2. Comparacao dos modelos UNet, UNet++, SharpUNet e TransUNet no dataset
Gla$S [Sirinukunwattana et al. 2017] com e sem aumento de dados.

Modelo Dice (%) Acuracia (%) Sensibilidade (%) Especificidade (%)
UNet! 89,05+ 7,98 85,94+ 8,39 91,39 + 10,27 86,87 + 10,23
UNet® 86,85 £8,90 83,29+ 9,89 91,52 +£ 11,37 80,50 £+ 16,79
UNet® 85,98 +£9,88 83,01 +8,52 89,97+ 9,82 82,50 £+ 13,68
UNet 82,98 £10,61 79,58 +9,96 89,64 + 12,35 75,73 £19,35
UNet++f 89,21 £8,13 86,16 £ 8,32 89,57 £ 11,08 89,76 + 9,22
UNet++2 88,76 £ 7,60 85,69+7,31 90,86 + 8, 32 87,82 + 10,47
UNet++° 87,24 £8,30 84,32+ 7,85 88,80 + 10, 26 86,76 + 10,90
UNet++ 83,64 +£10,72 80,00+ 9,67 91,48 £9,58 74,98 + 18,75
SharpUNet' 89,47 +8,82 86,34+9,17 90,59 + 11,53 89,26 £ 9,90
SharpUNet® 89,30 +£8,52 86,11+ 8,76 90,67 £ 11,55 88,62 + 10, 31
SharpUNet® 88,58 £ 7,87 85,21 +£8,42 90,07 £+ 10,08 87,17 £ 12,45
SharpUNet 86,36 £8,54 82,60+ 9,60 90,54 + 10,57 80,63 £ 17,15
TransUNet! 88,42+ 7,12 85,00+ 7,65 91,23 £ 9,06 85,02 £+ 13,12
TransUNet® 88,27 +7,18 84,70 £8,11 91,95 + 8,19 83,38 £ 15,12
TransUNet® 86,90 £ 7,68 83,40+ 8,64 89,40 + 10,25 83,77+ 14,17
TransUNet 85,60 7,99 82,03+9,14 89,53 + 10,19 80,70 £ 17,16

T Modelos treinados com aumento de dados proposto por [Santos et al. 2023a].

2 Modelos treinados com aumento geométrico.

¢ Modelos treinados com aumento por distor¢io.

Valores em negrito indicam o melhor desempenho entre todos os modelos para cada métrica, enquanto
valores sublinhados representam o melhor desempenho dentro de cada arquitetura especifica.

Esse comportamento € visivel na Figura 4 (A), especialmente nas marcac¢des em cor verde,
onde a UNet e a TransUNet apresentam regides indevidamente segmentadas. Além disso,
a TransUNet demonstrou maior propensado a identificar erroneamente regioes do objeto
segmentado como parte do fundo, conforme identificado em cor verde nas Figura 4 (B)
e 4 (C) . A superioridade da UNet++ e SharpUNet nesse aspecto pode estar relacionada
a presenca de conexdes densas e mecanismos de realce de bordas, que contribuem para
uma melhor discriminacao entre estruturas relevantes e artefatos na imagem.

A Tabela 3 apresenta os resultados obtidos no dataset OCDC. O UNet++ com
aumento alcancou o maior Dice (91,8145, 87) e a maior acurdcia (91,4944, 12). O UNet
com aumento com transformacdes geométricas teve a maior sensibilidade (94, 45+6, 98),
enquanto a SharpUNet com aumento com transformacgdes de distor¢do apresentou a maior
especificidade (90, 87 &+ 14, 69).

Na Figura 5 sdo apresentados os resultados da segmentacao no dataset OCDC. As
areas destacadas em cor verde evidenciam falhas na segmentagdo, como falsos positivos
e falsos negativos. Observa-se que a segmentacdo € desafiada pela presenca de regides de
fundo dentro das dreas segmentadas corretamente, o que resulta na inclusao indesejada
de estruturas na regido alvo. Além disso, algumas dreas segmentadas possuem texturas
similares ao fundo, tornando dificil a distin¢do clara entre as estruturas de interesse € o
tecido ao redor. Essa limita¢do pode estar relacionada a necessidade de aprimoramento
nas técnicas de pré-processamento e aumento de dados, de forma a tornar os modelos
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Figura 4. Comparacao visual dos resultados de segmentacado para amostras do dataset
GlaS. As areas destacadas em cor verde indicam problemas na segmentacao, como falsos
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positivos (UNet e TransUNet (A)) e falsos negativos (TransUNet (B) e (C)).

Tabela 3. Comparacao dos modelos UNet, UNet++, SharpUNet e TransUNet no dataset

OCDC [Santos et al. 2023b] com e sem aumento de dados.

 Modelos treinados com aumento de dados proposto por [Santos et al. 2023a].

Modelo Dice (%) Acuracia (%) Sensibilidade (%) Especificidade (%)
UNetf 90,93 +£9,00 91,30+ 3,92 94,20 + 10,70 88,01 + 16,43
UNet® 91,54 +£5,76 91,41 +3,73 94,45 4+ 6,98 88,57+ 15,74
UNet® 89,39+ 13,08 90,82+ 4,00 91,08 £ 13,77 89,16 £+ 15,39
UNet 88,41 £9,98 89,61 +4,80 91,37+ 12,39 86,00 + 16,69
UNet++1 91,81 +5,87 91,40 +4,12 93,49 + 6,85 89,51 + 15,92
UNet++2 91,61 £6,21 91,49 4+ 3,60 94,03 £ 7,95 89,42 + 14,26
UNet++° 89,85+ 12,87 90,93 44,90 90,19 + 14,01 90, 87 £+ 14,69
UNet++ 89,14 +9,12 90,04 + 4,22 92,58 + 10,93 86,62 + 16,27
SharpUNet' 91,00 £5,75 91,07+ 3,95 91,11 £ 7,63 90,63 + 13,99
SharpUNet® 90,59 £6,56 90,87 + 3,97 91,39 £ 8,81 89,81 + 15,05
SharpUNet® 90,46 £8,07 90,99 + 3,98 90,64 + 10,49 90,57 £+ 13,82
SharpUNet 87,79 +8,96 89,36 + 4,59 87,65 + 11,58 89,44 + 12,96
TransUNet' 90,54 £ 7,42 90,90+ 4,10 92,87 +8,95 88,13 + 16,06
TransUNet®  90,72+5,92 90,67 + 4,61 93,44 £ 7,29 86,73 £ 17,98
TransUNet® 89,82+7,21 90,24+ 4,58 92,57 +£9,79 86,04 + 18,24
TransUNet 88,06 £9,19 89,20+ 5,45 90,57 £ 12,01 85,59 £ 18,12

£ Modelos treinados com aumento geométrico.
¢ Modelos treinados com aumento por distor¢éo.

Valores em negrito indicam o melhor desempenho entre todos os modelos para cada métrica, enquanto

valores sublinhados representam o melhor desempenho dentro de cada arquitetura especifica.



mais robustos a essas variagdes sutis.
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Figura 5. Comparacao visual dos resultados de segmentacao para amostras do dataset
OCDC. As areas destacadas em cor verde na segmentacao indicam regioes do padrao
ouro ((A), (B) e (C)) definidas como fundo e regioes segmentadas como falsos positivos
em todos os métodos e amostras.
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Entre os modelos avaliados, o TransUNet apresentou o menor desempenho nos
bancos de imagens, possivelmente devido a sua maior complexidade computacional e a
necessidade de grandes volumes de dados para generalizacdo. Além disso, ha dificulda-
des em capturar detalhes finos em imagens médicas, resultando em mais falsos positivos e
segmentagOes fragmentadas. Em contrapartida, a UNet++ e a SharpUNet destacaram-se,
com a UNet++ alcancando maior especificidade e reduzindo falsos positivos, enquanto a
SharpUNet mostrou superioridade na segmentacdo de bordas e preservacao de detalhes
morfoldgicos, atribuida as suas conexdes densas e mecanismos de realce de bordas. A
UNet classica, embora mais simples, teve alta sensibilidade, mas desempenho ligeira-
mente inferior em especificidade.

Os resultados indicam que o aumento de dados melhorou a generaliza¢do dos mo-
delos, resultando em segmentacdes mais precisas. Arquiteturas treinadas com aumento
alcangaram maiores valores de coeficiente Dice e acuricia, como a SharpUNet no data-
set GlaS (89,47% e 86,34%) e a UNet++ no dataset OCDC (91,81% e 91,40%). Em-
bora 0 aumento por distor¢ao tenha melhorado os resultados em relacao ao teste sem au-
mento, seu desempenho foi inferior as outras estratégias analisadas, possivelmente devido
a introducgdo de variacdes que dificultam a preservacdo das caracteristicas morfolégicas
essenciais para a segmentacdo. A andlise estatistica (teste de Friedman) confirmou o
impacto significativo das estratégias de aumento de dados nos resultados de ambos os
datasets (p < 0,001). As comparagdes post-hoc de Conover indicaram que todas as
técnicas de aumento superaram a auséncia de aumento, e que as abordagens de aumento
geométrico e [Santos et al. 2023a] foram superiores a0 aumento por distorcao.

A Tabela 4 apresenta uma andlise dos modelos em relagdo aos métodos de



segmentacdo propostos na literatura para as bases de imagens.

Tabela 4. Comparacao entre modelos baseados em UNet e os métodos de segmentacao
da literatura utilizando o coeficiente Dice.

Modelo 0OCDC GlaS
[Santos et al. 2021] 92,00

[Sirinukunwattana et al. 2017] 86, 80
[Yuan and Cheng 2024] 90,56 £ 0,54
UNet 91,54 £5,76 89,05+ 7,98
UNet++ 91,81 +5,87 89,21 8,13
SharpUNet 91,00 £5,75 89,47 + 8,82
TransUNet 90,72 +5,92 88,42+ 7,12

Entre as arquiteturas avaliadas, observa-se que a UNet++ obteve os melhores re-
sultados no conjunto de dados OCDC (91,81%), enquanto a SharpUNet obteve a me-
lhor desempenho no GlaS (89,47%), com resultados competitivos aos da literatura. Es-
ses resultados indicam que arquiteturas com aprimoramentos estruturais, como conexoes
densas (UNet++) e mecanismos de realce de bordas (SharpUNet), contribuem para uma
segmentacdo mais precisa em diferentes dominios histologicos. No entanto, € importante
notar que o desempenho dos modelos varia de acordo com as caracteristicas dos con-
juntos de dados, incluindo a complexidade das estruturas segmentadas e a qualidade das
anotacgoes.

4. Conclusao

Este trabalho investigou modelos de aprendizagem profunda para a etapa de segmentacao
de estruturas histolégicas em imagens da cavidade oral e colorretal. As abordagens foram
investigadas em diferentes estruturas histoldgicas, tais como regides tumorais e glandulas.
Foram analisados os modelos baseados em segmentacdo semantica de arquiteturas de
CNNs baseadas na arquitetura UNet (UNet, UNet++ e SharpUNet), assim como um mo-
delo hibrido entre as abordagens CNN e Transformer, denominado TransUNet. O estudo
destaca que a UNet++, SharpUNet e UNet obtiveram resultados consistentes, enquanto o
TransUNet apresentou desempenho inferior, possivelmente devido a sua complexidade e
necessidade de grandes volumes de dados para treinamento eficaz. O aumento de dados se
mostrou essencial para melhorar a generalizagdo dos modelos, reforcando a importancia
de técnicas que ampliem a diversidade dos conjuntos de treinamento, especialmente em
dominios médicos com dados limitados. Trabalhos futuros podem explorar ajustes de
hiperparametros, técnicas avangadas de pré-processamento, uso de cross-validation e a
avaliacdo desses modelos em conjuntos de dados mais amplos e variados, visando apri-
morar a precisao e a robustez da segmentacdo em cendrios clinicos diversos.
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