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Abstract. This study evaluates the performance of convolutional neural
networks (CNN)-based models and Transformers for histological image seg-
mentation using public datasets: OCDC and GlaS. Four models were analyzed:
UNet, UNet++, SharpUNet, and TransUNet, with and without data augmen-
tation. Data augmentation proved crucial for improving model generalization,
with SharpUNet and UNet++ achieving the best results in Dice coefficient and
accuracy. TransUNet, despite its hybrid architecture, underperformed, possibly
due to its complexity and need for large training data. The results indicate that
CNN-based models, such as UNet++ and SharpUNet, are effective for histolo-
gical image segmentation, especially when combined with data augmentation.

Resumo. Este estudo avalia o desempenho de modelos baseados em redes neu-
rais convolucionais (CNN) e Transformers para segmentação de imagens his-
tológicas, utilizando os conjuntos de dados públicos OCDC e GlaS. Quatro
modelos foram analisados: UNet, UNet++, SharpUNet e TransUNet, com e
sem aumento de dados. O aumento de dados mostrou-se crucial para melhorar
a generalização dos modelos, com SharpUNet e UNet++ alcançando os me-
lhores resultados em coeficiente Dice e precisão. O TransUNet, apesar de sua
arquitetura hı́brida, teve desempenho inferior, possivelmente devido à sua com-
plexidade e necessidade de grandes volumes de dados. Os resultados indicam
que modelos baseados em CNN, como UNet++ e SharpUNet, são eficazes na
segmentação de imagens histológicas, especialmente quando combinados com
aumento de dados.



1. Introdução

A segmentação de imagens histológicas desempenha um papel fundamental no di-
agnóstico assistido por computador (do inglês, Computer-Aided Diagnosis - CAD)
[Moscalu et al. 2023], permitindo a detecção de estruturas celulares e teciduais em
imagens médicas [Basu et al. 2024, Xu et al. 2024]. Na histopatologia, a crescente
demanda por técnicas automatizadas de segmentação reflete a importância dessas
abordagens na complementação da análise clı́nica e na categorização de tumores
[Banerji and Mitra 2022]. Entre as abordagens existentes, a segmentação semântica tem
se destacado por possibilitar a diferenciação automática de tecidos normais e anômalos
em imagens histológicas, podendo auxiliar na identificação precoce e na quantificação de
padrões histopatológicos relevantes [Silva et al. 2023, Silva et al. 2022]. No entanto, de-
safios persistem na área, incluindo a variabilidade morfológica das amostras, a escassez
de dados anotados e a generalização dos modelos para diferentes condições patológicas
[Banerji and Mitra 2022].

Redes neurais convolucionais (do inglês, Convolutional Neural Networks - CNNs)
têm sido amplamente utilizadas para segmentação e classificação de imagens médicas
[Srinidhi et al. 2021, Springenberg et al. 2023]. No contexto de segmentação semântica,
a UNet [Ronneberger et al. 2015] tem sido uma uma das arquiteturas mais populares de-
vido à sua capacidade de representar tanto informações de baixo nı́vel (bordas e texturas)
quanto de alto nı́vel (formas e padrões globais). Com esse avanço, novos aprimoramentos
surgiram como UNet++ [Zhou et al. 2018] e SharpUNet [Zunair and Hamza 2021]. Es-
ses foram propostos para aprimorar a qualidade da segmentação, introduzindo conexões
densas e mecanismos de realce de bordas. No entanto, modelos baseados em CNNs
apresentam algumas limitações que impactam sua aplicação na segmentação de imagens
médicas. Um dos principais desafios está na dificuldade de capturar relações espaciais
de longo alcance [Maurı́cio et al. 2023], o que pode comprometer a segmentação de es-
truturas complexas e altamente heterogêneas, como tecidos tumorais irregulares. Outra
limitação é a tendência de CNNs dependerem de janelas locais de convolução, o que pode
resultar na perda de informações globais essenciais para uma segmentação mais precisa.

Com o avanço dos Transformers, em visão computacional
[Dosovitskiy et al. 2020], arquiteturas hı́bridas como a TransUNet [Chen et al. 2021]
foram desenvolvidas para combinar os pontos fortes das convoluções com a capacidade
dos mecanismos de autoatenção de capturar dependências entre regiões distantes da
imagem. No entanto, essas abordagens frequentemente requerem grandes volumes de
dados para treinamento eficaz [Xu et al. 2023], o que representa um desafio na área
médica, onde a obtenção de imagens rotuladas é limitada por fatores como privacidade,
custo e variabilidade interobservador [Banerji and Mitra 2022]. Assim, a aplicabilidade
dessas arquiteturas em imagens histológicas ainda é um desafio, especialmente quando
comparadas a abordagens baseadas exclusivamente em CNNs.

Este estudo apresenta uma investigação de modelos de aprendizagem
profunda para a segmentação de imagens histológicas baseada nas arquite-
turas UNet [Ronneberger et al. 2015], UNet++ [Zhou et al. 2018], SharpUNet
[Zunair and Hamza 2021] e TransUNet [Chen et al. 2021]. A avaliação dos mode-
los possibilita identificar quais métodos são mais eficazes na segmentação de tecidos
e células em imagens histológicas, fornecendo subsı́dios para o desenvolvimento de



soluções mais robustas em sistemas CAD. Essa pesquisa busca avaliar as abordagens
utilizando as métricas coeficiente Dice, acurácia, sensibilidade e especificidade. O
desempenho dos modelos e o impacto da estratégia de aumento de dados também
foram investigados em dois conjuntos de dados: OCDC [Santos et al. 2023b] e GlaS
[Sirinukunwattana et al. 2017].

2. Materiais e Métodos
A metodologia proposta para a investigação das abordagens de segmentação de imagens
histológicas é ilustrada na Figura 1. O pipeline consistiu na utilização de duas bases de
imagens de domı́nio público, cada uma dividida em conjuntos de treinamento, validação
e teste. Também foram investigadas técnicas de aumento de dados para aprimorar a
generalização dos modelos. Diferentes arquiteturas baseadas na UNet foram treinadas
e avaliadas. As segmentações geradas foram comparadas com o padrão ouro marcado por
especialistas, e métricas foram calculadas para avaliar o desempenho dos modelos. Os
detalhes de cada etapa do método são descritos nas próximas subseções.
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Figura 1. Pipeline da metodologia proposta, incluindo as etapas de divisão dos dados,
treinamento com e sem aumento de dados, e avaliação dos modelos UNet, UNet++, Shar-
pUNet e TransUNet nos datasets OCDC e GlaS.

2.1. Base de Imagens
Neste estudo, foram empregadas as seguintes bases de imagens (datasets): a) Oral Cavity-
Derived Cancer (OCDC) [Santos et al. 2023b], que contém 508 imagens histológicas de
carcinomas de células escamosas orais e tecidos normais, capturadas com ampliação de
20×. As imagens (640×640 pixels) foram anotadas por especialistas e divididas em 393
para treinamento e 61 para teste. No presente estudo, foi utilizada uma subdivisão com-
posta por 278 imagens para treinamento, 115 para validação e 61 para teste. A base é
empregada para treinar modelos de CNNs na segmentação e diagnóstico do câncer oral
(Figura 2 (A)). b) A base GlaS [Sirinukunwattana et al. 2017] contém 165 imagens his-
tológicas do cólon coradas com H&E, obtidas de adenocarcinomas colorretais em dife-
rentes pacientes (Figura 2 (B)). As imagens possuem anotações manuais de glândulas,



servindo como referência para segmentação automática. A divisão adotada neste estudo
compreende 60 imagens para treinamento, 25 para validação e 80 para teste.

Figura 2. Exemplos de imagens histológicas utilizadas no estudo: (A) imagens da base
OCDC com regiões tumorais da cavidade oral; (B) imagens da base GlaS contendo
glândulas colorretais.

2.2. Segmentação dos Tecidos Histológicos

Para a análise proposta neste estudo, foram investigadas as arquiteturas UNet, UNet++,
SharpUNet e TransUNet. Este conjunto é composto por modelos clássicos, leves e
hı́bridos. Essa diversidade de arquiteturas contribui para mitigar vieses inerentes a mode-
los especı́ficos e permite uma avaliação mais robusta da eficácia das técnicas de aumento
de dados

A UNet [Ronneberger et al. 2015] é uma arquitetura em formato de “U”, que
combina um caminho de contração, responsável pela extração de caracterı́sticas, e
um caminho de expansão, que refina a segmentação (Figura 3 (A)). A UNet++
[Zhou et al. 2018] introduz conexões densas entre os blocos da rede, melhorando a
propagação de informações e a precisão da segmentação (Figura 3 (B)). O modelo Shar-
pUNet [Zunair and Hamza 2021] incorpora mecanismos de realce de bordas, sendo útil
para imagens histológicas onde há transições sutis entre estruturas dos tecidos (Figura 3
(C)).

Com o advento dos Transformers [Vaswani et al. 2017, Dosovitskiy et al. 2020],
surgiram modelos hı́bridos que combinam convoluções com mecanismos de autoatenção
para capturar relações de longo alcance nas imagens. A TransUNet [Chen et al. 2021]
incorpora um codificador baseado em Transformers na estrutura da UNet, permitindo
que o modelo aprenda dependências globais enquanto mantém a capacidade de capturar



Figura 3. Representações esquemáticas das arquiteturas de segmentação avaliadas: (A)
UNet original com caminho de contração e expansão; (B) UNet++ com conexões densas;
(C) SharpUNet com módulos de realce de bordas; (D) TransUNet com codificador baseado
em Transformer.

detalhes locais por meio das convoluções (Figura 3 (D)). Essa abordagem tem se mostrado
eficaz na segmentação de imagens médicas, especialmente em cenários onde estruturas
anatômicas apresentam grande variação espacial.

O aumento de dados é uma etapa essencial para melhorar a capacidade de
generalização dos modelos e reduzir o risco de overfitting, especialmente em conjun-
tos de dados médicos, que costumam ser limitados em tamanho. Neste estudo, fo-
ram avaliadas três estratégias distintas de aumento de dados. A primeira estratégia
seguiu a abordagem proposta por [Santos et al. 2023a], que combina transformações
geométricas e deformações não lineares. A segunda estratégia empregou exclusivamente
transformações geométricas, incluindo flip horizontal e vertical, rotação aleatória de até
90° e transposição. A terceira estratégia utilizou técnicas de distorção da imagem, como
distorção elástica, de grade e óptica. Para cada imagem original do conjunto de trei-
namento, foram geradas três versões aumentadas, correspondentes a cada uma das três
estratégias adotadas.

Os hiperparâmetros do treinamento foram ajustados de forma empı́rica para cada
modelo e dataset, conforme mostrado na Tabela 1. O número de épocas foi definido em



150 com base na convergência das métricas coeficiente Dice e acurácia no conjunto de
validação. Para evitar overfitting, foi usada uma taxa de dropout entre 0,0 e 0,3. Na
otimização, foi empregado o Adam, combinando Binary Cross-Entropy com Logits Loss
e Dice Loss. Os treinamentos foram realizados em ambiente Linux com suporte a CUDA
e PyTorch 2.0, utilizando uma GPU NVIDIA RTX 4070 Ti SUPER (16 GB VRAM).

Tabela 1. Hiperparâmetros de treinamento para cada modelo e dataset.

Dataset Model Batch Size Learning Rate Epochs Dropout

GlaS UNet, UNet++, SharpUNet 8 0,001 150 0,2
TransUNet 8 0,0001 150 0,1

OCDC UNet, UNet++, SharpUNet 8 0,0005 150 0,0
TransUNet 8 0,0001 150 0,1

O tempo de inferência permaneceu constante entre os conjuntos de dados para
cada modelo, sendo de 0,3 ms para SharpUNet e UNet, 0,5 ms para UNet++ e 0,9 ms
para TransUNet. Já o tempo de treinamento variou conforme a quantidade de amostras
em cada dataset, com os menores tempos observados para o GlaS (SharpUNet: 2,2 min,
TransUNet: 2,3 min, UNet: 2,1 min, UNet++: 5,9 min) e os maiores tempos para o
OCDC (SharpUNet: 8,5 min, TransUNet: 8,9 min, UNet: 8,2 min, UNet++: 24,1 min).

2.3. Métricas de Avaliação e Análise Estatı́stica

Para avaliar o desempenho dos modelos de segmentação foram utilizadas as métricas:
coeficiente Dice, Acurácia, Sensibilidade e Especificidade. Essas métricas quantificam a
qualidade das segmentações ao comparar as previsões do modelo com as máscaras do
padrão ouro (anotações manuais), fornecendo uma análise detalhada do desempenho.
Além disso, o teste de Friedman foi aplicado separadamente para cada dataset, consi-
derando três repetições independentes por configuração.

3. Resultados e Discussão

A Tabela 2 apresenta as métricas de desempenho dos modelos de segmentação no dataset
GlaS, comparando os resultados com e sem o uso de aumento de dados. Os melhores
valores para cada métrica estão destacados em negrito. Observa-se que a aplicação de
aumento de dados levou a melhorias expressivas, especialmente para o coeficiente Dice e
a acurácia. O modelo SharpUNet com aumento de dados obteve os maiores valores para
Dice (89, 47±8, 82) e acurácia (86, 34±9, 17). A maior especificidade foi alcançada pelo
UNet++ com aumento (89, 76 ± 9, 22), enquanto a maior sensibilidade foi observada no
TransUNet com aumento (91, 95±8, 19), indicando uma melhor segmentação das regiões
de interesse.

Na Figura 4 são ilustrados os resultados dos modelos avaliados, evidenciando os
problemas de segmentação. Os valores de especificidade indicam que a UNet++ (89,76%)
e a SharpUNet (89,26%) foram mais eficazes em evitar a segmentação indevida de áreas
que não pertencem ao objeto de interesse, apresentando menor incidência de falsos po-
sitivos. Por outro lado, a UNet (86,87%) e a TransUNet (85,02%) demonstraram maior
propensão a identificar erroneamente regiões do fundo como parte do objeto segmentado.



Tabela 2. Comparação dos modelos UNet, UNet++, SharpUNet e TransUNet no dataset
GlaS [Sirinukunwattana et al. 2017] com e sem aumento de dados.

Modelo Dice (%) Acurácia (%) Sensibilidade (%) Especificidade (%)

UNet† 89, 05± 7, 98 85, 94± 8, 39 91, 39± 10, 27 86, 87± 10, 23
UNet△ 86, 85± 8, 90 83, 29± 9, 89 91, 52± 11, 37 80, 50± 16, 79
UNet⋄ 85, 98± 9, 88 83, 01± 8, 52 89, 97± 9, 82 82, 50± 13, 68
UNet 82, 98± 10, 61 79, 58± 9, 96 89, 64± 12, 35 75, 73± 19, 35

UNet++† 89, 21± 8, 13 86, 16± 8, 32 89, 57± 11, 08 89,76± 9, 22
UNet++△ 88, 76± 7, 60 85, 69± 7, 31 90, 86± 8, 32 87, 82± 10, 47
UNet++⋄ 87, 24± 8, 30 84, 32± 7, 85 88, 80± 10, 26 86, 76± 10, 90
UNet++ 83, 64± 10, 72 80, 00± 9, 67 91, 48± 9, 58 74, 98± 18, 75

SharpUNet† 89,47± 8, 82 86,34± 9, 17 90, 59± 11, 53 89, 26± 9, 90
SharpUNet△ 89, 30± 8, 52 86, 11± 8, 76 90, 67± 11, 55 88, 62± 10, 31
SharpUNet⋄ 88, 58± 7, 87 85, 21± 8, 42 90, 07± 10, 08 87, 17± 12, 45
SharpUNet 86, 36± 8, 54 82, 60± 9, 60 90, 54± 10, 57 80, 63± 17, 15

TransUNet† 88, 42± 7, 12 85, 00± 7, 65 91, 23± 9, 06 85, 02± 13, 12
TransUNet△ 88, 27± 7, 18 84, 70± 8, 11 91,95± 8, 19 83, 38± 15, 12
TransUNet⋄ 86, 90± 7, 68 83, 40± 8, 64 89, 40± 10, 25 83, 77± 14, 17
TransUNet 85, 60± 7, 99 82, 03± 9, 14 89, 53± 10, 19 80, 70± 17, 16

† Modelos treinados com aumento de dados proposto por [Santos et al. 2023a].
△ Modelos treinados com aumento geométrico.
⋄ Modelos treinados com aumento por distorção.
Valores em negrito indicam o melhor desempenho entre todos os modelos para cada métrica, enquanto
valores sublinhados representam o melhor desempenho dentro de cada arquitetura especı́fica.

Esse comportamento é visı́vel na Figura 4 (A), especialmente nas marcações em cor verde,
onde a UNet e a TransUNet apresentam regiões indevidamente segmentadas. Além disso,
a TransUNet demonstrou maior propensão a identificar erroneamente regiões do objeto
segmentado como parte do fundo, conforme identificado em cor verde nas Figura 4 (B)
e 4 (C) . A superioridade da UNet++ e SharpUNet nesse aspecto pode estar relacionada
à presença de conexões densas e mecanismos de realce de bordas, que contribuem para
uma melhor discriminação entre estruturas relevantes e artefatos na imagem.

A Tabela 3 apresenta os resultados obtidos no dataset OCDC. O UNet++ com
aumento alcançou o maior Dice (91, 81±5, 87) e a maior acurácia (91, 49±4, 12). O UNet
com aumento com transformações geométricas teve a maior sensibilidade (94, 45±6, 98),
enquanto a SharpUNet com aumento com transformações de distorção apresentou a maior
especificidade (90, 87± 14, 69).

Na Figura 5 são apresentados os resultados da segmentação no dataset OCDC. As
áreas destacadas em cor verde evidenciam falhas na segmentação, como falsos positivos
e falsos negativos. Observa-se que a segmentação é desafiada pela presença de regiões de
fundo dentro das áreas segmentadas corretamente, o que resulta na inclusão indesejada
de estruturas na região alvo. Além disso, algumas áreas segmentadas possuem texturas
similares ao fundo, tornando difı́cil a distinção clara entre as estruturas de interesse e o
tecido ao redor. Essa limitação pode estar relacionada à necessidade de aprimoramento
nas técnicas de pré-processamento e aumento de dados, de forma a tornar os modelos



Figura 4. Comparação visual dos resultados de segmentação para amostras do dataset
GlaS. As áreas destacadas em cor verde indicam problemas na segmentação, como falsos
positivos (UNet e TransUNet (A)) e falsos negativos (TransUNet (B) e (C)).

Tabela 3. Comparação dos modelos UNet, UNet++, SharpUNet e TransUNet no dataset
OCDC [Santos et al. 2023b] com e sem aumento de dados.

Modelo Dice (%) Acurácia (%) Sensibilidade (%) Especificidade (%)

UNet† 90, 93± 9, 00 91, 30± 3, 92 94, 20± 10, 70 88, 01± 16, 43
UNet△ 91, 54± 5, 76 91, 41± 3, 73 94,45± 6, 98 88, 57± 15, 74
UNet⋄ 89, 39± 13, 08 90, 82± 4, 00 91, 08± 13, 77 89, 16± 15, 39
UNet 88, 41± 9, 98 89, 61± 4, 80 91, 37± 12, 39 86, 00± 16, 69

UNet++† 91,81± 5, 87 91, 40± 4, 12 93, 49± 6, 85 89, 51± 15, 92
UNet++△ 91, 61± 6, 21 91,49± 3, 60 94, 03± 7, 95 89, 42± 14, 26
UNet++⋄ 89, 85± 12, 87 90, 93± 4, 90 90, 19± 14, 01 90,87± 14, 69
UNet++ 89, 14± 9, 12 90, 04± 4, 22 92, 58± 10, 93 86, 62± 16, 27

SharpUNet† 91, 00± 5, 75 91, 07± 3, 95 91, 11± 7, 63 90, 63± 13, 99
SharpUNet△ 90, 59± 6, 56 90, 87± 3, 97 91, 39± 8, 81 89, 81± 15, 05
SharpUNet⋄ 90, 46± 8, 07 90, 99± 3, 98 90, 64± 10, 49 90, 57± 13, 82
SharpUNet 87, 79± 8, 96 89, 36± 4, 59 87, 65± 11, 58 89, 44± 12, 96

TransUNet† 90, 54± 7, 42 90, 90± 4, 10 92, 87± 8, 95 88, 13± 16, 06
TransUNet△ 90, 72± 5, 92 90, 67± 4, 61 93, 44± 7, 29 86, 73± 17, 98
TransUNet⋄ 89, 82± 7, 21 90, 24± 4, 58 92, 57± 9, 79 86, 04± 18, 24
TransUNet 88, 06± 9, 19 89, 20± 5, 45 90, 57± 12, 01 85, 59± 18, 12

† Modelos treinados com aumento de dados proposto por [Santos et al. 2023a].
△ Modelos treinados com aumento geométrico.
⋄ Modelos treinados com aumento por distorção.
Valores em negrito indicam o melhor desempenho entre todos os modelos para cada métrica, enquanto
valores sublinhados representam o melhor desempenho dentro de cada arquitetura especı́fica.



mais robustos a essas variações sutis.

Figura 5. Comparação visual dos resultados de segmentação para amostras do dataset
OCDC. As áreas destacadas em cor verde na segmentação indicam regiões do padrão
ouro ((A), (B) e (C)) definidas como fundo e regiões segmentadas como falsos positivos
em todos os métodos e amostras.

Entre os modelos avaliados, o TransUNet apresentou o menor desempenho nos
bancos de imagens, possivelmente devido à sua maior complexidade computacional e à
necessidade de grandes volumes de dados para generalização. Além disso, há dificulda-
des em capturar detalhes finos em imagens médicas, resultando em mais falsos positivos e
segmentações fragmentadas. Em contrapartida, a UNet++ e a SharpUNet destacaram-se,
com a UNet++ alcançando maior especificidade e reduzindo falsos positivos, enquanto a
SharpUNet mostrou superioridade na segmentação de bordas e preservação de detalhes
morfológicos, atribuı́da às suas conexões densas e mecanismos de realce de bordas. A
UNet clássica, embora mais simples, teve alta sensibilidade, mas desempenho ligeira-
mente inferior em especificidade.

Os resultados indicam que o aumento de dados melhorou a generalização dos mo-
delos, resultando em segmentações mais precisas. Arquiteturas treinadas com aumento
alcançaram maiores valores de coeficiente Dice e acurácia, como a SharpUNet no data-
set GlaS (89,47% e 86,34%) e a UNet++ no dataset OCDC (91,81% e 91,40%). Em-
bora o aumento por distorção tenha melhorado os resultados em relação ao teste sem au-
mento, seu desempenho foi inferior às outras estratégias analisadas, possivelmente devido
à introdução de variações que dificultam a preservação das caracterı́sticas morfológicas
essenciais para a segmentação. A análise estatı́stica (teste de Friedman) confirmou o
impacto significativo das estratégias de aumento de dados nos resultados de ambos os
datasets (p < 0, 001). As comparações post-hoc de Conover indicaram que todas as
técnicas de aumento superaram a ausência de aumento, e que as abordagens de aumento
geométrico e [Santos et al. 2023a] foram superiores ao aumento por distorção.

A Tabela 4 apresenta uma análise dos modelos em relação aos métodos de



segmentação propostos na literatura para as bases de imagens.

Tabela 4. Comparação entre modelos baseados em UNet e os métodos de segmentação
da literatura utilizando o coeficiente Dice.

Modelo OCDC GlaS

[Santos et al. 2021] 92,00

[Sirinukunwattana et al. 2017] 86, 80
[Yuan and Cheng 2024] 90, 56± 0, 54

UNet 91, 54± 5, 76 89, 05± 7, 98
UNet++ 91,81± 5, 87 89, 21± 8, 13
SharpUNet 91, 00± 5, 75 89,47± 8, 82
TransUNet 90, 72± 5, 92 88, 42± 7, 12

Entre as arquiteturas avaliadas, observa-se que a UNet++ obteve os melhores re-
sultados no conjunto de dados OCDC (91,81%), enquanto a SharpUNet obteve a me-
lhor desempenho no GlaS (89,47%), com resultados competitivos aos da literatura. Es-
ses resultados indicam que arquiteturas com aprimoramentos estruturais, como conexões
densas (UNet++) e mecanismos de realce de bordas (SharpUNet), contribuem para uma
segmentação mais precisa em diferentes domı́nios histológicos. No entanto, é importante
notar que o desempenho dos modelos varia de acordo com as caracterı́sticas dos con-
juntos de dados, incluindo a complexidade das estruturas segmentadas e a qualidade das
anotações.

4. Conclusão
Este trabalho investigou modelos de aprendizagem profunda para a etapa de segmentação
de estruturas histológicas em imagens da cavidade oral e colorretal. As abordagens foram
investigadas em diferentes estruturas histológicas, tais como regiões tumorais e glândulas.
Foram analisados os modelos baseados em segmentação semântica de arquiteturas de
CNNs baseadas na arquitetura UNet (UNet, UNet++ e SharpUNet), assim como um mo-
delo hı́brido entre as abordagens CNN e Transformer, denominado TransUNet. O estudo
destaca que a UNet++, SharpUNet e UNet obtiveram resultados consistentes, enquanto o
TransUNet apresentou desempenho inferior, possivelmente devido à sua complexidade e
necessidade de grandes volumes de dados para treinamento eficaz. O aumento de dados se
mostrou essencial para melhorar a generalização dos modelos, reforçando a importância
de técnicas que ampliem a diversidade dos conjuntos de treinamento, especialmente em
domı́nios médicos com dados limitados. Trabalhos futuros podem explorar ajustes de
hiperparâmetros, técnicas avançadas de pré-processamento, uso de cross-validation e a
avaliação desses modelos em conjuntos de dados mais amplos e variados, visando apri-
morar a precisão e a robustez da segmentação em cenários clı́nicos diversos.

5. Agradecimentos
Os autores agradecem o apoio financeiro do Conselho Nacional de Desenvolvimento
Cientı́fico e Tecnológico – CNPq (Processos nº 313643/2021-0, nº 311404/2021-9 e nº
307318/2022-2), da Fundação de Amparo à Pesquisa do Estado de Minas Gerais – FA-
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