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Abstract. Renal cancer is one of the most common neoplasms of the genitou-
rinary tract, making automatic segmentation an essential tool for assisting in
early diagnosis. This work aims to develop and evaluate a neural network for
segmenting computed tomography images and identifying kidneys, tumors and
cyst. We propose replacing the standard U-Net convolutional layers with Dual-
Scale SE blocks to enhance feature extraction. The proposed methodology achi-
eved a Dice coefficient of 0.93 and 0.86, respectively.

Resumo. O câncer renal é uma das neoplasias mais comuns do trato genitu-
rinário, tornando a segmentação automática uma ferramenta essencial para au-
xiliar no diagnóstico precoce. Este trabalho visa desenvolver e avaliar uma rede
neural para segmentação de imagens de tomografia computadorizada, identifi-
cando rins, tumores e cisto. Propomos a substituição das camadas convolucio-
nais da U-Net por blocos Dual-Scale SE para aprimorar a extração de carac-
terı́sticas. A metodologia proposta obteve um coeficiente Dice de 0,93 e 0,86,
respectivamente.

1. Introdução.

Entre 2008 e 2012, a incidência de câncer aumentou de 12,7 milhões para 14,1 milhões de
casos, com projeções indicando que esse número pode chegar a 25 milhões nas próximas
duas décadas. Além disso, estima-se que as mortes decorrentes da doença atinjam 14,6
milhões até 2035 [Stewart et al. 2014]. Esses dados ressaltam a urgência de investir em
prevenção, diagnóstico precoce e controle da doença, especialmente em paı́ses menos de-
senvolvidos, onde o câncer é frequentemente detectado em estágios avançados e o acesso
ao tratamento é limitado. O impacto será particularmente severo em nações de baixa e
média renda, que enfrentam dificuldades crescentes para lidar com o aumento dos casos.

O carcinoma renal, também chamado de adenocarcinoma de rim, é a terceira ne-
oplasia mais prevalente do trato geniturinário, correspondendo a aproximadamente 3%
dos tumores malignos em adultos e figurando entre os dez tipos de câncer mais comuns
[Siegel et al. 2024]. Segundo [Gloeckler Ries et al. 2003], a incidência do câncer de rim
é de 15,4 por 100.000 homens e 7,7 por 100.000 mulheres. Diante desse cenário, a
detecção precoce desempenha um papel crucial na melhoria do prognóstico e na eficácia
do tratamento, aumentando consideravelmente as chances de cura. Quando identificado



nos estágios iniciais, antes da disseminação para outras partes do corpo, a taxa de so-
brevida relativa em cinco anos é de aproximadamente 93%. No entanto, em casos mais
avançados, com metástase, essa taxa cai drasticamente para 12%. O câncer de rim está
entre as neoplasias com maior impacto prognóstico quando diagnosticadas tardiamente,
evidenciando a importância da detecção precoce para ampliar as chances de sucesso te-
rapêutico [American Cancer Society 2024].

A Tomografia Computadorizada (TC) é amplamente utilizada no sistema de saúde
devido ao seu baixo custo, qualidade de imagem satisfatória, rapidez na execução e apli-
cabilidade em diferentes diagnósticos [Brenner and Hall 2007]. No entanto, o processo
de análise dessas imagens para a identificação e extração de informações relevantes ainda
é altamente complexo, realizado de forma manual e visual pelos médicos. Esse proce-
dimento exige um alto nı́vel de atenção e repetição, podendo resultar em fadiga fı́sica
e visual, além de desvio de atenção, o que pode comprometer a precisão da avaliação
diagnóstica.

Diante desse cenário, a aplicação de aprendizado profundo em problemas médicos
tem se tornado cada vez mais comum, auxiliando os profissionais de saúde no diagnóstico.
As abordagens baseadas em deep learning têm demonstrado resultados promissores e
conquistado espaço na prática clı́nica. A segmentação automática de tumores renais con-
tribui para avaliações mais objetivas e reduz o esforço manual. Nesse sentido, o desafio
de segmentação de tumores renais de 2019 (KiTS19 [Heller et al. 2019]), o KiTS2021
[Heller et al. 2023] e o KiTS2023 [Heller et al. 2023] buscam acelerar o desenvolvimento
de ferramentas confiáveis para essa tarefa. Algumas pesquisas têm utilizado essa base de
dados pública para avaliar algoritmos que podem auxiliar na construção de uma solução.

Entre os desafios de segmentação de regiões de rins e tumores em imagens de
TC, está a extração de caracterı́sticas de maneira eficiente em diferentes escalas espaciais.
Este trabalho visa desenvolver uma versão modificada da rede U-Net por meio de blocos
Dual-Scale SE Block para segmentação de rim e tumor em imagens de tomografia com-
putadorizada visando não somente aprimorar a segmentação das estruturas anatômicas e
patológicas, como também diminuir a carga de trabalho dos profissionais de saúde, au-
tomatizando parte do processo e minimizando a necessidade de intervenção manual, tor-
nando a análise mais eficiente e confiável. Os blocos foram adicionados em substituição
às convoluções da rede, visando ampliar a extração de caracterı́sticas das imagens, com-
binando informações locais e globais e filtrando somente o que é mais relevante.

Pode-se destacar como contribuição do método proposto os seguintes pontos (a)
um novo modelo baseado nos conceitos multinı́vel e U-Net, visando aumentar a quali-
dade das caracterı́sticas extraı́das para a segmentação semântica de imagens de TC; (b)
Adaptação e integração dos conceitos de multinı́vel, atenção e U-Net para o desenvol-
vimento de um novo bloco. (c) Um método robusto para segmentação precisa de rins,
cistos e tumores renais. Dessa forma, o método proposto pode ser integrado a sistemas
Computer Aided Diagnosis (CAD), auxiliando no diagnóstico do câncer renal.

2. Trabalhos Relacionados
Os estudos [Zhao et al. 2022] e [Golts et al. 2022] utilizam o conjunto de dados KiTS21,
porém adotam abordagens distintas para a segmentação. Os autores de [Zhao et al. 2022]
propõem um método coarse-to-fine baseado no nnU-Net, no qual a segmentação ocorre



em duas etapas: primeiro, uma segmentação grosseira identifica a região de interesse
(ROI) do rim; em seguida, uma segmentação refinada é aplicada dentro dessa ROI, sepa-
rando tumores e cistos individualmente.

Além dessas abordagens, outros estudos exploram técnicas alternativas para
segmentação em conjuntos de dados relacionados. Por exemplo, [Oliveira et al. 2022]
utilizaram uma U-Net modificada com um bloco Pyramid Pooling Module na fase de
contração para segmentar imagens do KiTS19, enquanto [Matos et al. 2023] empregaram
a PPM-DeepLab para segmentar dados dos conjuntos KiTS21 e KiTS23.

Já os autores de [Golts et al. 2022] adotam uma estratégia distinta, baseada em um
Ensemble de modelos 3D U-Net para segmentação de rins e tumores em tomografias com-
putadorizadas no desafio KiTS21. Eles incorporam técnicas como aprendizado por trans-
ferência, perda regularizada, amostragem de múltiplas anotações e pós-processamento,
visando aprimorar a precisão das predições.

Os pesquisadores de [Hou et al. 2019] apresentaram uma abordagem em cascata
composta por duas redes neurais totalmente convolucionais: a primeira para a localização
dos rins e a segunda para a segmentação dos rins e tumores. De maneira semelhante,
[Zhang et al. 2019] adotaram uma metodologia em três etapas, utilizando uma nnU-Net
para a localização renal. Por sua vez, [Isensee and Maier-Hein 2019] propuseram um En-
semble composto por três variações da U-Net 3D, Residual 3D U-Net e Pre-activation
Residual 3D U-Net, enquanto [Türk et al. 2020] apresentaram um modelo hı́brido deno-
minado V-Net, ampliando as possibilidades para a segmentação de rins e tumores. Com-
plementando essas técnicas, [George 2022] propôs um esquema de treinamento em dois
estágios com U-Net 3D: primeiro em volumes reduzidos, depois na ROI em resolução
total. Além disso, [George 2022] implementou um esquema de treinamento em dois
estágios com U-Net 3D: inicialmente em volumes reduzidos, seguido pela região de inte-
resse em resolução total. A Tabela 1 resume os trabalhos que apresentam a métrica dice.
As abordagens, em geral, baseiam-se em variações da U-Net 3D, ensembles ou arqui-
teturas em cascata, alcançando ótimos resultados na segmentação renal. No entanto, a
segmentação de tumores ainda apresenta maior dificuldade, refletida nos valores de Dice
inferiores.

Tabela 1. Resumo dos trabalhos relacionados que apresentam dice.

Trabalho Método Dataset Dice Rim Dice Tumor

[Zhao et al. 2022] nnU-Net (coarse-to-fine) KiTS21 0,97 0,86
[Golts et al. 2022] Ensemble 3D U-Net KiTS21 - 0,83
[Matos et al. 2023] PPM-DeepLab KiTS21 0,94 0,84
[Hou et al. 2019] 3D UNet em Cascata KiTS19 0,90 0,80
[Zhang et al. 2019] nnU-Net em Cascata KiTS19 0,97 0,83
[Isensee and Maier-Hein 2019] Ensemble 3D U-Net KiTS19 0,97 0,85
[Türk et al. 2020] V-Net Hı́brida KiTS19 0,97 0,86
[George 2022] U-Net 3D (2 estágios) KiTS21 0,97 0,87

3. Metodologia

Nesta seção, a metodologia proposta neste trabalho é demonstrada. A Figura 1 ilustra uma
visão geral das três etapas desenvolvidas. A primeira consiste na seleção das imagens



Figura 1. Etapas da metodologia proposta.

usadas no trabalho, proveniente do conjunto de dados do desafio de segmentação denomi-
nado KiTS21 [Heller et al. 2023]. Na segunda etapa, é definida a construção do modelo
de segmentação, sendo este baseado em uma modificação da arquitetura U-Net, onde os
blocos de convolução do codificador da rede são substituı́dos pelo bloco Dual-Scale SE
proposto neste trabalho. Na última etapa, compreende a experimentação e avaliação do
método proposto. Cada uma das etapas é apresentada nas seções seguintes.

3.1. Seleção da base.

Para a avaliação do método proposto, foi utilizado o Kits21 Database [Heller et al. 2023],
um banco de dados público voltado para segmentação automática de estruturas renais em
exames de tomografia computadorizada (CT). Essa base de dados reúne o Kidney and
Kidney Tumor Segmentation Challenge, cujo objetivo principal é impulsionar pesquisas
relacionadas à segmentação de tumores e massas renais, contribuindo para avanços no
diagnóstico e tratamento de câncer renal. O conjunto de dados inclui 300 exames de
CT, cada um referente a um paciente, armazenados no formato original NIFTI (Neuroi-
maging Informatics Technology Initiative), amplamente utilizado em neuroimagem, com
resolução de 512 × 512 pixels em escala de cinza. Conforme ilustrado na Figura 2, as ima-
gens apresentam estruturas renais segmentadas manualmente por especialistas, incluindo
rins (roxo), tumores (verde) e cistos (azul).

O dataset disponibiliza segmentações manuais realizadas por especialistas, classi-
ficando as imagens em três categorias principais: rins, tumores renais e cistos renais. No
total, são fornecidas 65.164 fatias, das quais 22.997 correspondem a rins, 8.341 a tumores
e 2.869 a cistos.

Figura 2. Exemplo de uma fatia segmentada.



3.2. Construção do modelo.
A arquitetura de rede analisada neste estudo foi inspirada na U-Net
[Ronneberger et al. 2015], uma rede totalmente convolucional que se destaca por
sua maior eficiência, devido à eliminação de camadas densas e à redução do número de
parâmetros, possibilitando sua aplicação em imagens de diferentes dimensões. Essa rede
realiza uma etapa inicial de redução de amostragem por meio de operações de convolução
e pooling, seguida por uma fase de aumento da resolução. No caso da U-Net, essa etapa
de reconstrução ocorre por meio de conexões de salto (skip connections), que conectam
diretamente as camadas de redução de amostragem às camadas de aumento de resolução,
permitindo o aproveitamento de informações anteriores para aprimorar a qualidade final
das imagens [Long et al. 2014].

Devido à sua estrutura caracterı́stica, essa rede recebeu o nome de U-Net, refle-
tindo seu formato em “U”. A arquitetura é dividida em duas etapas principais: a primeira
fase, chamada de encoder, consiste na contração da imagem para capturar suas principais
caracterı́sticas; já a segunda fase, o decoder, é responsável por restaurar a resolução ori-
ginal da imagem utilizando deconvoluções e conexões de salto (skip connections) para,
ao final, gerar a predição de cada pixel.

Apesar da eficácia da U-Net, algumas variações arquiteturais foram propostas para
aprimorar a extração de caracterı́sticas, incorporando estratégias utilizadas em redes como
a Inception [Szegedy et al. 2016] e a HRNet [Wang et al. 2019]. A aplicação do Dual-
Scale SE visa capturar informações em escalas espaciais distintas, aprimorando a extração
de caracterı́sticas relevantes para a segmentação e combinando-as para obter uma visão
mais precisa do que foi recebido. Isso é alcançado por meio da divisão em dois nı́veis,
utilizando escalas de 3×3 e 7×7, com uma distância razoável entre essas escalas, medida
pelo tamanho do núcleo da convolução. O uso desses dois nı́veis permite capturar tanto
detalhes locais quanto contextos mais amplos, otimizando a segmentação.

Para otimizar ainda mais a retenção de informação para a segmentação, além das
variações estruturais mencionadas, técnicas de atenção como o Squeeze-and-Excitation
(SE) [Hu et al. 2017] foram exploradas. Esse mecanismo melhora redes neurais ao re-
calibrar dinamicamente a importância de cada canal de um mapa de caracterı́sticas. Ele
funciona em duas etapas principais: Squeeze (Compressão), onde a rede aplica o Global
Average Pooling (GAP) para obter uma representação global de cada canal, resumindo a
informação espacial em um vetor; e Excitation (Recalibração), onde o vetor gerado passa
por duas camadas totalmente conectadas (com funções ReLU e Sigmoid) para calcular
pesos para cada canal, indicando sua importância relativa. Ao fim, os pesos recalibram os
canais da feature map original, ajustando sua contribuição para a rede. O bloco SE me-
lhora a capacidade de discriminação da rede, ajudando-a a focar nas caracterı́sticas mais
relevantes.

A integração do módulo SE [Hu et al. 2017] na arquitetura estudada, combinada
com a concatenação de convoluções (Figura 3), visa aprimorar a extração de carac-
terı́sticas, permitindo que a rede capture informações em diferentes escalas e filtre as
partes mais relevantes dos mapas de caracterı́sticas. Essa abordagem segmenta o mapa
de caracterı́sticas em múltiplos nı́veis, possibilitando um refinamento progressivo da
informação extraı́da. O bloco modificado aplica convoluções especı́ficas em cada nı́vel,
inserindo um módulo SE ao final de cada etapa para destacar as caracterı́sticas mais im-



portantes, garantindo que somente as informações mais relevantes sejam transmitidas adi-
ante.

Figura 3. Bloco Dual-Scale SE.

A escolha dessa estrutura foi fundamentada na análise do conjunto de dados, onde
muitos pacientes apresentavam perda total ou parcial do órgão renal. Além disso, os
tumores e cistos frequentemente não estão completamente separados do órgão, apresen-
tando tamanhos variados e localizando-se em regiões de alta similaridade estrutural. A
modificação proposta, ilustrada na Figura 4, contribui para lidar com essa complexidade
ao aprimorar a segmentação das regiões de interesse. A rede recebe como entrada ima-
gens axiais de tomografia computadorizada (TC) com uma única fatia, e produz como
saı́da mapas de segmentação multiclasse com três canais correspondentes às regiões de
rim, cisto e tumor.

Figura 4. Dual-Scale SE UNet.

Por fim, a Figura 5 evidencia o impacto do mecanismo de atenção SE na redução
do ruı́do presente na ativação original das convoluções convencionais (Conv 3×3 e Conv
7×7). As ativações resultantes (SE 3×3 e SE 7×7) demonstram um foco mais seletivo nas
regiões mais relevantes da imagem, melhorando a discriminação dos padrões úteis e mi-
nimizando a dispersão para áreas menos significativas. Dessa forma, a proposta fortalece
a capacidade da rede em identificar estruturas complexas, tornando a segmentação mais
precisa e robusta.

3.3. Avaliação.
Para medir a precisão desta metodologia, aplicaram-se métricas amplamente validadas em
sistemas Computer Aided Diagnosis (CADx) e diversos trabalhos presentes na literatura
voltados para segmentação de imagens médicas.



Figura 5. A comparação entre a atenção antes e depois.

A métrica utilizada para avaliação foi o coeficiente de similaridade de Dice
[Fleiss et al. 1981], amplamente empregado em tarefas de segmentação. Essa métrica
considera simultaneamente a precisão e a sensibilidade, refletindo o equilı́brio entre os
acertos e os erros do modelo. Para isso, são levados em conta os casos corretamente iden-
tificados (verdadeiros positivos) e os erros por omissão ou inclusão (falsos negativos e
falsos positivos).

4. Resultados e Discussão.
Nessa seção, são apresentados os resultados dos experimentos realizados. O método
foi aplicado usando a linguagem Python. Utiliza-se a biblioteca Keras, com o Tensor-
Flow GPU de back-end. A placa de vı́deo utilizada foi a NVIDIA GeForce GTX 3060.
As imagens foram pré-processadas e redimensionadas de 512×512 para 256×256 pixels,
adotando-se uma separação dos dados por paciente para evitar vazamento entre conjuntos.

Realizou-se uma validação cruzada com 5 folds, utilizando-se quatro partes para
treinamento e uma para teste em cada iteração. Em cada execução, 80% do conjunto de
dados foi usado para treinamento e 20% para teste, sendo que 10% dos dados de trei-
namento foram reservados para validação durante o ajuste do modelo, garantindo uma
avaliação robusta e generalizável do desempenho da rede neural. O treinamento foi con-
duzido por até 50 épocas, com interrupção antecipada (early stopping) caso a função de
perda combinada (Dice Loss + Focal Loss [Lin et al. 2018]) no conjunto de validação não
apresentasse redução por 8 épocas consecutivas.

Inicialmente, os hiperparâmetros do modelo foram ajustados utilizando o algo-
ritmo Tree-Structured Parzen Estimator [Bergstra et al. 2011]. O Espaço de busca de
hiperparâmetros é mostrado na Tabela 2. O multinı́vel refere-se ao uso de convoluções
com diferentes tamanhos de kernel. Foram testadas duas configurações: uma com dois
nı́veis (3×3 e 7×7) e outra com quatro nı́veis (3×3, 5×5, 7×7 e 11×11). O batch size foi
avaliado com dois valores distintos: 4 e 8. Por fim, a taxa de aprendizado foi otimizada
em um espaço de busca contı́nuo entre 1× 10−5 e 1× 10−2.

A Tabela 3 apresenta os valores médios do coeficiente Dice obtidos pela Dual-
Scale SE UNet durante o processo de validação cruzada. Os resultados médios foram
de 0,93 para o rim, 0,86 para o tumor e 0,93 para o cisto, com variações discretas en-
tre as iterações, conforme evidenciado pelo baixo desvio padrão. Esses resultados fo-
ram alcançados utilizando o melhor conjunto de hiperparâmetros encontrados durante a
otimização, uma estrutura multinı́vel de dois nı́veis, batch size igual a quatro e uma taxa
de aprendizado reduzida.



Tabela 2. Espaço de busca de hiperparâmetros.

Parâmetros Valores

Multinı́vel 2 ou 4
Batch size 4 ou 8
Taxa de aprendizado [1× 10−5, 1× 10−2]

Tabela 3. Resultados dos valores de Dice obtidos na validação cruzada.

Interação Dice Tumor Dice Rim Dice Cisto

1 0,87168 0,92703 0,93000
2 0,85379 0,93170 0,92878
3 0,83939 0,92799 0,91821
4 0,88846 0,95062 0,94945
5 0,84973 0,93012 0,95026

Média 0,86021 0,93389 0,93534
Desvio padrão 0,01870 0,00851 0,01236

Ao compararmos com a U-Net padrão (Tabela 4), observa-se uma melhora con-
sistente nos resultados: a Dual-Scale SE UNet superou a U-Net nos três alvos de
segmentação, especialmente nos casos de tumor (0,86 contra 0,83) e cisto (0,93 contra
0,86). Esses dados indicam que modificações no caminho de contração da U-Net, como a
inserção de mecanismos de atenção do tipo SE, podem contribuir significativamente para
o aprimoramento do desempenho da segmentação.

4.1. Discussão.

Nessa seção apresentamos alguns resultados qualitativos para analisar as segmentações re-
alizadas. A rede demonstra aprendizado ao analisar o caso 00170 e 00051 da base Kits21
apresentado na Figura 6, onde a primeira imagem corresponde à tomografia computado-
rizada original, no meio a segmentação realizada pelo médico, destacando os rins (verde),
o tumor (vermelho) e o cisto (azul) e a direita a segmentação gerada pela Dual-Scale SE
UNet, que também identifica essas estruturas.

Nesta seção, apresentamos resultados qualitativos das segmentações obtidas. A
rede demonstra aprendizado consistente ao analisar os casos 00170 e 00051 da base
KiTS21, mostrados respectivamente nas Figuras 6 e 7. Na primeira coluna observa-se
a tomografia original, seguida pela segmentação manual do médico com rins (verde), tu-
mor (vermelho) e cisto (azul) e à direita, a segmentação gerada pela Dual-Scale SE UNet,
que mostra boa correspondência com estas estruturas anatômicas.

A análise do caso 00170 e 00051 revela que a rede segmenta as estruturas de ma-
neira semelhante à do especialista, embora apresente pequenas diferenças, especialmente
nos contornos e nas regiões mais complexas. Essas variações podem ser resultados de
desafios na diferenciação de estruturas semelhantes ou de diferenças anatômicas indivi-
duais, o que indica que, apesar do desempenho da rede, ainda é necessário realizar ajustes
ou aperfeiçoamentos para alcançar maior precisão.



Tabela 4. Resultados dos valores de Dice pela metodologia proposta, compara-
dos com a U-Net padrão.

Modelos Dice Rim Dice Tumor Dice Cisto

U-Net 0,93 0,83 0,86
Dual-Scale SE UNet 0,93 0,86 0,93

Figura 6. Estudo de caso 00170 da base Kits21.

Comparando com os trabalhos publicados na literatura, apresentados na Tabela
5, observa-se que algumas abordagens, como as de [Zhao et al. 2022], [Türk et al. 2020],
[Zhang et al. 2019] e [George 2022], alcançaram um Dice de 0,97 na segmentação do rim,
enquanto a Dual-Scale SE UNet obteve um valor inferior, de 0,93. Ao compararmos com
outro estudo que também utilizou imagens 2D [Matos et al. 2023], nota-se um padrão de
desempenho inferior, sugerindo uma limitação intrı́nseca a esse tipo de abordagem. Espe-
cificamente, a utilização de imagens 2D pode levar à perda de continuidade espacial entre
as fatias, comprometendo a representação tridimensional da anatomia. Diferentemente
das imagens 3D, que preservam a coerência entre os cortes axiais, coronais e sagitais, as
imagens 2D tratam cada fatia isoladamente, o que pode resultar na perda de informações
contextuais importantes para a segmentação precisa de estruturas anatômicas contı́nuas
como o rim.

Na segmentação do Tumor, a Dual-Scale SE UNet alcançou um Dice de 0,86,
posicionando-se entre os melhores resultados da literatura, cujos valores variam de 0,80
a 0,87. Esse desempenho competitivo reforça a eficácia da abordagem proposta para essa
estrutura especı́fica.

Já na segmentação de Massas (Tumor + Cisto), somente três estudos repor-
taram valores, e a Dual-Scale SE UNet obteve o maior Dice (0,89), seguido por
[Zhao et al. 2022] com 0,88 e [Matos et al. 2023] com 0,84.

De maneira geral, os resultados demonstram que a Dual-Scale SE UNet apresenta
um desempenho competitivo, especialmente na segmentação do Tumor e das Massas. No
entanto, comparando com outros estudos, a segmentação do Rim ainda pode ser refinada
para alcançar valores próximos aos do estado da arte.



Figura 7. Estudo de caso 00051 da base Kits21.

Tabela 5. Comparando com a literatura.

Redes Dice Rim Dice Tumor Dice Massas

[Golts et al. 2022] – 0,83 –
[Zhao et al. 2022] 0,97 0,86 0,88
[Hou et al. 2019] 0,90 0,80 –
[Zhang et al. 2019] 0,97 0,83 –
[Isensee and Maier-Hein 2019] 0,97 0,85 –
[Türk et al. 2020] 0,97 0,86 –
[George 2022] 0,97 0,87 –
[Matos et al. 2023] 0,94 0,84 0,84

Dual-Scale SE UNet 0,93 0,86 0,89

5. Conclusão.
Este estudo propôs a Dual-Scale SE UNet, uma arquitetura neural inovadora que combina
blocos de atenção Squeeze-and-Excitation (SE) com convoluções em escalas duais (3×3
e 7×7) para aprimorar a segmentação de rins, tumores e cistos em imagens de tomografia
computadorizada. Os resultados demonstram a eficácia da abordagem, com coeficiente
Dice de 0,93 para rins, 0,86 para tumores e 0,93 para cistos, superando a U-Net tradicional
e competindo com o estado da arte.

Apesar do desempenho promissor, a segmentação de rins ainda pode ser melho-
rada, especialmente quando comparada a métodos baseados em imagens 3D, que preser-
vam melhor a continuidade espacial. No entanto, a Dual-Scale SE UNet destacou-se na
segmentação de tumores e massas, alcançando resultados competitivos e reforçando seu
potencial para aplicações clı́nicas. A metodologia proposta não somente reduz a carga de
trabalho dos profissionais de saúde, mas também contribui para diagnósticos mais preci-
sos e eficientes.

Como perspectivas futuras, os autores sugerem explorar novos módulos de
atenção, a automação do processo de configuração dos blocos e a aplicação do modelo
em outras modalidades de imagem e tipos de tumores. Esses avanços podem ampliar a
aplicabilidade clı́nica da rede, consolidando-a como uma ferramenta valiosa no auxı́lio ao
diagnóstico precoce e no tratamento do câncer renal.
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Desenvolvimento Cientı́fico e Tecnológico do Maranhão (FAPEMA) (Brasil) pelo apoio
financeiro.

Referências
American Cancer Society (2024). What is kidney cancer? Disponı́vel em:
https://www.cancer.org/cancer/types/kidney-cancer/about/
what-is-kidney-cancer.html. Acessado em: 1 de maio de 2024.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for hyper-
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