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Abstract. The use of channel state information (CSI) for human activity recog-
nition holds promise in healthcare, especially for remote patient monitoring. By
capturing and interpreting Wi-Fi signals in indoor environments, CSI can be
used to detect physical activity, falls, or daily movements of a patient, allowing
caregivers and healthcare professionals to monitor patients without the need
for wearable sensors or invasive cameras. CSI also has great potential in el-
derly care. Therefore, this paper proposes a methodology called DVC-CSI to
identify the floor sweeping activity of a person in a room through the analysis
of CSI data and a dataset used for its evaluation. DVC-CSI uses Transformer
models developed to process time series data featuring a structure that allows
capturing temporal dependencies. DVC-CSI is capable of identifying activities
of people who did not participate in the training phase. The accuracy of floor
sweeping activity identification is 88.89% using a CSI dataset of 86 volunteers
(60 participants for training, 17 participants for validation, and 9 participants
for testing).

Resumo. O uso de informações de estado do canal para reconhecimento de
atividades humanas é promissor na área da saúde, especialmente para moni-
toramento remoto de pacientes. Ao capturar e interpretar sinais Wi-Fi em am-
bientes internos, o CSI pode ser usado para detectar atividade fı́sica, quedas
ou movimentos diários de um paciente, permitindo que cuidadores e profissio-
nais de saúde monitorem pacientes sem a necessidade de sensores vestı́veis ou
câmeras invasivas. O CSI tem grande potencial no atendimento a idosos. Por-
tanto, este artigo propõe uma metodologia chamada DVC-CSI para identificar
a atividade de varrer de uma pessoa em uma sala por meio da análise de dados
CSI e um conjunto de dados usado para sua avaliação. O DVC-CSI usa modelos
Transformer desenvolvidos para processar dados de séries temporais com uma
estrutura que permite capturar dependências temporais. O DVC-CSI é capaz de
identificar a atividade de pessoas que não participaram da fase de treinamento
do modelo. A acurácia da identificação da atividade de varrer dentro de um



conjunto de dados de 17 atividades é de 88,89% usando um conjunto de dados
CSI de 86 voluntários (60 participantes para treinamento, 17 participantes para
validação e 9 participantes para teste).

1. Introdução

No contexto de aplicações em saúde, o CSI (Channel State Information) é um con-
junto de dados que descreve como os sinais Wi-Fi se propagam dentro de um
ambiente [Soto et al. 2022, Caballero et al. 2023]. O CSI captura informações de-
talhadas sobre a amplitude e a fase dos sinais Wi-Fi em várias subportadoras de
frequência [Caballero et al. 2023]. Quando uma pessoa se move dentro de um espaço, ela
causa mudanças sutis nos sinais Wi-Fi devido ao efeito Doppler e à atenuação do sinal.
Analisando os padrões no CSI, é possı́vel detectar essas variações, permitindo o monito-
ramento de movimentos corporais e atividades fı́sicas sem a necessidade de dispositivos
vestı́veis ou câmeras.

Sendo assim, é possı́vel monitorar a atividade fı́sica para avaliar o nı́vel de in-
dependência de um idoso ou paciente, identificando atividades como caminhar, cor-
rer, sentar, deitar ou até mesmo tarefas domésticas, como varrer o chão. Esse método
não é intrusivo e preserva a privacidade, pois usa apenas mudanças nos sinais Wi-Fi,
sem recorrer à gravação de vı́deo ou áudio. Em sistemas de monitoramento de ido-
sos, detectar atividades como varrer o chão pode ajudar a garantir que a pessoa está
ativa e realizando tarefas domésticas com segurança, além de avaliar o seu grau de in-
dependência, visto que essa é uma atividade que demanda tempo e esforço. Em mo-
nitoramento remoto de pacientes, essa detecção pode ajudar a acompanhar o nı́vel de
autonomia de um idoso, verificando se ele consegue realizar atividades diárias como
varrer o chão. Em casas inteligentes, saber que alguém está varrendo o chão pode ati-
var funcionalidades automáticas, como pausar robôs aspiradores ou ajustar a iluminação.
Em ambientes públicos ou comerciais, isso pode ajudar a analisar padrões de compor-
tamento para fins de segurança ou otimização de espaço (por exemplo, verificando se
funcionários estão realizando tarefas de limpeza em horários programados). Assisten-
tes pessoais e dispositivos IoT podem adaptar suas interações com base nas atividades
identificadas, como ajustar o volume de notificações quando a pessoa está ocupada var-
rendo [Santos et al. 2020, de Almeida et al. 2023, dos Santos et al. 2022].

Detectar a atividade de varrer o chão usando dados CSI e aprendizado de
máquina apresenta vários desafios. Varrer envolve movimentos repetitivos, geral-
mente sutis, de braços e tronco que podem ser difı́ceis de distinguir de outras ativida-
des [Caballero et al. 2023], tornando a distinção de caracterı́sticas únicas dos dados CSI
um desafio. Em conjuntos de dados de reconhecimento de atividade, a baixa frequência
dessa atividade em comparação com atividades como andar ou sentar pode levar ao de-
sequilı́brio de classes, o que pode enviesar o modelo para atividades mais comuns, redu-
zindo a precisão da detecção para varredura [Santos et al. 2020]. Além disso, as pessoas
têm diferentes estilos de varredura, velocidades e mãos dominantes. Um modelo trei-
nado em um grupo de usuários pode não generalizar bem para outros, sem diversidade
suficiente nos dados de treinamento.

Este artigo propõe uma metodologia baseada em Transformer [Rothman 2021]
para reconhecimento da atividade humana de varrer o chão utilizando dados de



informação do estado do canal (CSI - Channel State Information) em redes Wi-Fi, cha-
mada DVC-CSI- Detecção de Varrer o Chão usando CSI. No cenário experimental, foram
realizadas coletas de dados CSI de 86 voluntários (60 participantes para treinamento, 17
participantes para validação e 9 participantes para teste) realizando diversas atividades em
uma sala, incluindo a atividade de varrer e os dados CSI da sala vazia. O DVC-CSI foi
treinado, validado e testado utilizando dados CSI de voluntários varrendo de diferentes
formas, de diferentes gêneros, idades e caracterı́sticas fı́sicas, coletados em um ambiente
controlado [Galdino et al. 2023], produzindo resultados muito promissores em um con-
junto de dados com ampla variedade. A acurácia da identificação da atividade de varrer
dentro de um conjunto de dados de 17 atividades é de 88,89%. O conjunto de dados co-
letado inclui 17 posturas e atividades diárias diferentes. O modelo Transformer binário
desenvolvido é capaz de identificar se a pessoa está varrendo ou não, dentre todas as ou-
tras atividades como correr, sentar, deitar, etc. O modelo Transformer desenvolvido é
robusto o suficiente para extrair caracterı́sticas únicas e reconhecer quando a pessoa está
varrendo o chão. O modelo analisa o sinal Wi-Fi transmitido por pontos de acesso sem fio
de prateleira, frequentemente presentes em ambientes indoor, onde as atividades diárias
do indivı́duo e seus movimentos resultam em alterações no sinal coletado. Por meio da
captura e interpretação dessas alterações nos dados CSI, o DVC-CSI é capaz de detectar
a atividade fı́sica.

O DVC-CSI utiliza um modelo Transformer [Rothman 2021] desenvolvido para
processar séries temporais, com codificação posicional, atenção multi-cabeça e uma ca-
mada totalmente conectada, proporcionando aprendizado sofisticado de relações tempo-
rais e gerando previsões refinadas com base nos padrões encontrados na sequência de
entrada. Diferentemente de outros modelos baseados em aprendizado de máquina na lite-
ratura, o DVC-CSI possui um modelo capaz de identificar a atividade de pessoas que não
participaram da fase de treinamento.

O restante do artigo está organizado da seguinte maneira. A Seção 2 descreve tra-
balhos relacionados, enquanto a Seção 3 apresenta a metodologia proposta. A descrição
dos experimentos, resultados e discussões é fornecida na Seção 4. Finalmente, as con-
clusões e sugestões para trabalhos futuros são apresentadas na Seção 5.

2. Trabalhos Relacionados

O monitoramento de pessoas portadoras de deficiências durante atividades domésticas
básicas, como dormir e sentar, ganhou interesse no desenvolvimento de tecnologias de
inteligência ambiental [Wang et al. 2017]. O reconhecimento de atividade humana pode
ser realizado usando sistemas baseados em visão computacional, sensores vestı́veis e/ou
sinais de radiofrequência [Santos et al. 2020, de Almeida et al. 2023]. No entanto, os sis-
temas baseados em visão computacional exigem uma linha de visão direta e levantam
preocupações de privacidade, enquanto os sensores vestı́veis podem ser desconfortáveis
para idosos [Galdino et al. 2023, dos Santos et al. 2024].

Caballero et al. (2023) propuseram um sistema baseado em CSI para identificar
a atividade de varrer o chão. O estudo analisa um grande volume de dados e compara
cinco algoritmos de aprendizado de máquina para avaliar o desempenho no reconheci-
mento de atividade humana. Uma classificação multiclasse foi realizada para identifi-
car seis diferentes atividades humanas: ficar em pé, sentar, deitar, andar, correr e varrer.



Seus resultados mostram que o algoritmo Random Forest obteve o maior desempenho de
classificação, atingindo uma acurácia geral de 86,65% e uma precisão variando de 85,68%
a 88,35% em todas as classes. Dentre estas, as classes correr e varrer obtiveram a melhor
precisão, com 87,45% e 88,35%, respectivamente. No entanto, um modelo RF deve ser
treinado individualmente para cada pessoa para detectar sua posição. Portanto, o modelo
proposto é especı́fico de cada indivı́duo, diferindo da solução proposta deste trabalho.

Galdino et al. (2023) descrevem a estrutura geral da detecção de presença humana
baseada em Wi-Fi e apresentam as ferramentas de processamento de sinal usadas para
avaliar o desempenho do sistema. O desempenho do conjunto de dados apresentado na
detecção de presença humana para exemplificar sua aplicabilidade. O trabalho fornece um
conjunto de dados especı́fico para o desenvolvimento de novas aplicações de CSI, além
de uma descrição detalhada do experimento, equipamentos e protocolos. O conjunto de
dados CSI inclui coletas da atividade de varrer o chão, mas não foi utilizado no modelo
proposto no artigo para detecção de presença humana.

Figura 1. Gesto de varrer conforme Zheng et al. [Zheng et al. 2019].

Os trabalhos de Isack Bulugu (2023) e Zheng et al. (2019) propõem um método
de reconhecimento de gestos. Os métodos propostos são capazes de analisar os dados CSI
para identificar o movimento da mão e do braço conforme a Figura 1. Esse movimento
foi caracterizado como o movimento de varrer. Embora os trabalhos de Isack Bulugu
(2023) e Zheng et al. (2019) possam identificar esse gesto de varrer, nem todas as pes-
soas varrem o chão dessa maneira. Assim, os métodos não foram avaliados em situações
reais de uma pessoa varrendo o chão de diferentes formas e se movimentando pelo am-
biente. Além disso, os trabalhos não levam em consideração a movimentação do corpo,
mas apenas das mãos, limitando o reconhecimento da atividade de varrer em situações
reais. O trabalho de Isack Bulugu (2023) propõe um método de reconhecimento de ges-
tos entre domı́nios usando redes neurais convolucionais 3D (3DCNN). O reconhecimento
de gestos é amplamente usado na interação humano-computador, incluindo casas inteli-
gentes e realidade virtual, mas métodos tradicionais que dependem de câmeras, sensores
vestı́veis ou equipamentos especializados enfrentam limitações, como preocupações com
privacidade e alcance de detecção restrito. Os resultados do artigo mostram que no re-
conhecimento de cenas conhecidas, a taxa de reconhecimento de varrer é 85% e que no
reconhecimento de cenas desconhecidas, a taxa de reconhecimento de varrer é 86%.

Zheng et al. (2019) propuseram um sistema de reconhecimento de gestos baseado
em Wi-Fi projetado para atingir alta acurácia, que introduz um novo recurso independente
de domı́nio chamado perfil de velocidade de coordenada corporal (BVP) para capturar
padrões de movimento humano em presença de um nı́vel de sinal baixo. A principal
contribuição do Widar3.0 é estimar perfis de velocidade de gestos no nı́vel de sinal mais
baixo, que representam caracterı́sticas cinéticas únicas de gestos e são independentes de
domı́nios. Contudo, o modelo funciona apenas em linha de visada direta. O sistema de-
pende da existência de caminhos de propagação indo diretamente do transmissor Wi-Fi



para o humano e do humano para os receptores Wi-Fi, ou seja, o LOS (Line of Sight)
entre dispositivos Wi-Fi e humanos. Isso ocorre porque o sistema requer que os caminhos
LOS estabeleçam geometricamente a relação entre a propagação do sinal e a velocidade
de movimento dos refletores. Embora a condição LOS seja comum ao realizar a interação
com dispositivos inteligentes em casas inteligentes, o sistema não funcionará quando o
LOS não for garantido em alguns outros cenários. Para obter um Espectro Doppler dis-
tinto para estimativa de BVP, o sistema requer que os usuários fiquem dentro de uma
zona predefinida com alguma flexibilidade em locais e orientações. Embora o sistema
tenha potencial para aplicações mais especı́ficas, ainda existe uma lacuna entre o cenário
avaliação proposto e a aplicabilidade no mundo real.

Xiao et al. (2019) propuseram uma rede generativa adversarial semi-
supervisionada (GAN) para o reconhecimento de atividades baseado em dados CSI. Eles
desenvolveram um modelo para abordar a degradação do desempenho da validação leave-
one-subject-out para o reconhecimento de atividades baseado em CSI. Os autores avalia-
ram eficácia do CsiGAN em dois conjuntos de dados em cenários semi-supervisionados
e supervisionados. Três componentes são propostos e integrados ao CsiGAN para lidar
com a escassez de dados não rotulados e aprimorar o desempenho de reconhecimento de
atividades humanas. Para dados SignFi, a acurácia da CNN é de 77%, o que é quase
o mesmo que o resultado da validação leave-one-subject-out usando CNN, enquanto a
acurácia do CsiGAN atinge mais de 84%, o que é cerca de 9% maior do que a da CNN.
Da mesma forma, para dados FallDeFi, a precisão do CsiGAN, 86%, também é signifi-
cativamente maior do que a do SVM, 80%. Entretanto, dados de apenas três voluntários
foram utilizados para treinar o modelo e, ainda, foi utilizado um conjunto limitado de
atividades, resultando em baixa precisão.

A Tabela 1 apresenta uma comparação do DVC-CSI com outros estudos que em-
pregam técnicas de aprendizado de máquina para monitorar atividades humanas por meio
de dados CSI. O DVC-CSI se destaca por ter envolvido um número significativamente
maior de participantes (86), em contraste com a maioria dos estudos comparados. Esse
fator é crucial, pois uma maior diversidade na amostragem de dados contribui para a ro-
bustez e generalização do modelo. A proposta se diferencia pela abrangência e variedade
das atividades monitoradas. Enquanto os estudos comparados geralmente incluem entre 5
e 6 atividades, o DVC-CSI cobre 17 atividades distintas, além de considerar uma condição
de ambiente vazio, sendo capaz de distinguir a atividade de varrer o chão dentre todas as
outras atividades. Essa diversidade permite ao modelo discriminar dentro de uma ampla
gama de comportamentos e situações. Os estudos relacionados empregam uma variedade
de métodos de aprendizado de máquina. A proposta deste artigo utiliza modelo Transfor-
mer, reconhecido por sua eficácia no aprendizado de padrões temporais complexos. Essa
caracterı́stica pode ser particularmente vantajosa para capturar as sutilezas das atividades
humanas, em comparação com métodos tradicionais como GAN e Random Forest, utili-
zados em trabalhos anteriores. O DVC-CSI é único por utilizar exclusivamente dados CSI
de coletas reais, ou seja, não são dados gerados por IA, independentemente das carac-
terı́sticas individuais dos participantes varrendo o chão. Essa abordagem apresenta van-
tagens significativas para aplicações práticas, eliminando a necessidade de calibração do
modelo para cada usuário e, consequentemente, ampliando sua aplicabilidade em cenários
reais. O DVC-CSI alcança uma acurácia de 88,89%, demonstrando competitividade em
relação a outros métodos. É importante destacar que essa elevada acurácia foi obtida sem



a utilização de dados personalizados para cada indivı́duo. Essa caracterı́stica, combinada
com a alta precisão, evidencia a eficiência e adaptabilidade do modelo proposto. Ademais,
diferentemente de outros trabalhos correlatos, o DVC-CSI é capaz de detectar a atividade
da pessoa em tempo real, demandando aproximadamente 0.56s de processamento.

Tabela 1. Tabela comparativa de trabalhos relacionados.

Ref. Partic. Atividades Método ML

Dados reais coletados
em tempo real com detecção

independente da pessoa
enquanto varre e se move

Resultado

[Xiao et al. 2019] 3
Cair, andar, pular,

abrir portas, levantar
mãos, sentar

GAN Não
86.27% acurácia

(não inclui varrer)

[Bulugu 2023] 16
Empurrar, puxar,

varrer, bater palmas,
deslizar, desenhar cı́rculos

3DCNN Não
86% reconhecimento

de varrer

[Zheng et al. 2019] 16
Empurrar, puxar,

varrer, bater palmas,
deslizar, desenhar cı́rculos

BVP Não
80% acurácia

de varrer

[Caballero et al. 2023] 125
Sentado, em pé,

deitado, caminhando,
correndo, varrendo

Random Forest Não
88,35% precisão

para varrer

DVC-CSI 86 17 posturas distintas
e sala vazia Transformer Sim 88, 89% precisão

para varrer

3. Metodologia
O DVC-CSI1 implementa uma sequência de testes com base em diferentes hiper-
parâmetros. Cada combinação é avaliada no conjunto de validação de acordo com as
métricas de precisão, recall, acurácia e F1-score e o modelo final é avaliado no con-
junto de dados de teste. DVC-CSI explora a otimização de um modelo Transformer para
classificação binária de séries temporais de dados CSI, avaliando diferentes combinações
de hiperparâmetros. O objetivo é identificar as configurações que maximizam o desem-
penho em termos de precisão, recall e F1. O modelo permite explorar como o número
variável de cabeças, número de camadas, taxa de aprendizado, número de épocas e tama-
nho do lote afetam as métricas de desempenho. Após isso, o DVC-CSI pode identificar a
atividade humana de varrer em ambientes internos, analisando dados CSI mesmo de uma
pessoa nunca vista pelo modelo durante o treino. As seguintes combinações de hiper-
parâmetros foram testadas: número de cabeças: [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16], número de camadas: [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], taxa de aprendizagem (lr):
[0,00001, 0,0001, 0,001, 0,01], número de épocas: [20, 40, 60, 100], tamanho do lote:
[4, 8, 12, 16, 20, 24]. A Tabela 2 mostra as combinações de hiperparâmetros do modelo
final.

Tabela 2. As combinações de parâmetros do modelo final.

Modelo Heads Camadas L. Rate Épocas Batch Size
Reconhecer Varrendo 6 4 0.0001 40 20

O DVC-CSI envolve o desenvolvimento de um modelo de classificação binário,
cujo fluxo geral de processamento é ilustrado na Figura 2. O bloco ‘Coleta de dados CSI’

1Os detalhes de implementação, os códigos e arquivos estão disponı́veis no GitHub:
https://github.com/mestrelan/gloss-blue.



ilustra o processo de coleta e processamento dos dados CSI. O bloco ‘Estrutura do mo-
delo Transformer’ ilustra o modelo com sua codificação posicional, camadas do Encoder,
agregação temporal e a camada totalmente conectada. O bloco ‘Fluxo de treinamento e
valiação’ ilustra a inicialização do treinamento, o treinamento e a validação do modelo.
O bloco ‘Teste’ ilustra a avaliação final do modelo no conjunto de dados de teste.

Figura 2. Diagrama de blocos do DVC-CSI.

Dados de 86 participantes, incluindo homens e mulheres, foram utilizados nos
experimentos realizados. Desses, 60 participantes (75%) foram utilizados para treina-
mento do modelo, 17 participantes (15%) para validação e 9 participantes (10%) para
teste. Os dados foram coletados usando um Raspberry Pi B4 equipado com um chip-
set bcm43455c0. Os dispositivos utilizados nos experimentos foram posicionados a
aproximadamente um metro dos participantes. Além disso, os participantes não tiveram
restrições quanto ao uso de roupas ou dispositivos eletrônicos, e o ambiente experimental
foi projetado para simular um ambiente doméstico.

3.1. Base de Dados

Os dados CSI2 usados nesta pesquisa foram cedidos pelos autores do trabalho
[Galdino et al. 2023]. Foram coletados de uma rede Wi-Fi operando a 5 GHz com uma
largura de banda de 80 MHz. Para garantir a qualidade ideal dos dados, foi realizada
uma configuração meticulosa da montagem experimental, incluindo análise espectral para
identificar um canal desocupado dentro da banda ISM de 5 GHz. Os dados foram coleta-
dos usando um Raspberry Pi equipado com NEXMON [Galdino et al. 2023] capturando
33−34 amostras por segundo durante 60 segundos, resultando em 2000 amostras em cada
uma das 256 subportadoras. O conjunto de dados abrange 17 posturas distintas mais uma
coleção de sala vazia, abrangendo uma gama mais ampla de comportamentos humanos
em comparação com estudos anteriores.

2Projeto aprovado pelo Comitê de Ética sob número CAAE 54359221.4.0000.5243.



3.2. Processamento de dados CSI
A análise apresentada por Sousa et al. [de Sousa et al. 2024] mostrou que as subportado-
ras abaixo do ı́ndice 60 exibiram amplitudes significativamente maiores do que aquelas
acima. Portanto, foram utilizadas as primeiras 60 subportadoras, resultando em uma ma-
triz complexa de dimensões 2000 × 60 para cada uma das coletas das 17 posições de
cada participante. Em seguida, foram removidos os dados de 12 subportadoras nulas e
piloto dentre as 60, que não carregam dados significativos, resultando em 48 subportado-
ras. Dessa forma, a matriz complexa de dados final utilizada foi de dimensões 2000× 48.
Posteriormente, foram calculadas as amplitudes dos sinais coletados em cada uma das
subportadoras. Esse cálculo foi realizado considerando os componentes dos números
complexos obtidos a partir dos sinais coletados. Como um número complexo é definido
por suas partes real e imaginária (amlitude e fase), foi determinada a amplitude com base
no módulo do número complexo. Assim, foram obtidas amplitudes para todas as 2000
amostras ao longo das 48 subportadoras resultantes para cada coleta de dados. Assim, os
dados CSI são processados em uma série temporal de um minuto de duração (tempo de
execução de uma atividade do conjunto de dados), que será usada como entrada para o
modelo Transformer.

3.3. Geração & Treinamento do Modelo
Foi desenvolvido um modelo independente que recebe como entrada os dados CSI cole-
tados e processados anteriormente para detectar e classificar a atividade humana de varrer
em um ambiente indoor. O modelo gerado utiliza todas as atividades do conjunto de
dados e compara com a atividade especı́fica de varrer para concluir se a pessoa está var-
rendo ou não. Esse modelo realiza uma classificação binária, produzindo apenas dois
resultados possı́veis. Foi empregado o algoritmo Transformer com várias configurações
de hiperparâmetros para o modelo proposto. A especificação de hiperparâmetros e dis-
positivos é essencial para a proposta do modelo. Como mencionado anteriormente, tais
hiperparâmetros incluem o número de cabeças, camadas e taxa de aprendizado, junta-
mente com a escolha de CPU ou GPU, conforme apresentado na Tabela 2. O modelo
Transformer é instanciado e colocado no dispositivo designado.

Entrada do encoder

Transformer

Multi-head

attention Norm MLP Norm
Sáıda do enconder

Transformer

L ×

Figura 3. Camadas do encoder transformer.

A Figura 3 apresenta as camadas do Encoder: Os dados entram com o formato
[batch size, seq len, num channels], onde: batch size = Número de amostras processa-
das simultaneamente (20). seq len = Número de amostras no tempo (2000 amostras).
num channels = Número de variáveis medidas em cada instante (48 subportadoras).

Passagem pelos num layers Blocos do Encoder: O encoder consiste em várias
camadas idênticas empilhadas (conforme num layers), onde cada camada aplica os se-
guintes passos: Mecanismo de Autoatenção Multi-cabeças (Multi-Head Self Atten-
tion) [Rothman 2021]: Permite que o modelo aprenda relações entre diferentes instan-
tes da sequência. Cada cabeça de atenção (definido por num heads) processa uma parte
diferente da informação.



Ainda na Figura 3, o bloco ‘Multi-head attention’ realiza o cálculo dos Tenso-
res Q, K e V: Q (Query) que representa os elementos consultando outros instantes da
sequência. K (Key): representa os elementos que podem fornecer informações relevan-
tes. V (Value): Contém os valores reais das caracterı́sticas a serem processadas.

Cálculo da Atenção, conforme a Equação 1: A similaridade entre Q e K é calcu-
lada para identificar quais instantes no tempo são mais relevantes para cada outro instante.
A saı́da é uma combinação ponderada de V, onde instantes mais importantes recebem pe-
sos maiores.

√
dk é a dimensão das chaves. Cada cabeça de atenção (head) é calculada

usando a fórmula de Atenção Escalonada [Rothman 2021] e depois concatenada e trans-
formada por um peso(WO).

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (1)

Resumindo as etapas do processo, a entrada dos dados com codificação posicional,
seguida por Autoatenção multi-cabeças para encontrar dependências temporais, então,
Normalização e conexões residuais para estabilização, para então a Rede Feed-Forward
para capturar padrões mais complexos, mais normalização e conexão residual e repetição
do processo num layers vezes. Essa estrutura permite que o Transformer aprenda padrões
globais e locais em séries temporais, sem a limitação da recorrência (como em RNNs)
com a saı́da refinada com relações temporais destacadas [Rothman 2021].

3.4. Validação & teste dos modelos

O conjunto de dados foi dividido em conjuntos de treinamento 75%, utilizado na Seção
3.3, validação, 15%, e teste, 10%. O modelo itera sobre lotes de validação, proces-
sando dados de entrada e rótulos de verdade fundamental, e acumula métricas de perda
e acurácia. O teste avalia o desempenho do modelo treinado em dados nunca vistos com
a configuração dos hiperparâmetros do modelo que alcançou a maior acurácia e a menor
perda na etapa de validação. Aqui, calculam-se várias métricas, incluindo perda, acurácia,
recall, precisão, F1-score e uma matriz de confusão.

4. Resultados e Discussão

A Figura 4 reflete um conjunto de teste balanceado, composto por 9 voluntários conside-
rando atividades de varrer e outras atividades. Portanto a base de testes tem 18 instâncias.
Devido ao equilı́brio dos dados, a tarefa de detecção de varrer apresenta matriz de con-
fusão com 9 casos de teste, representando um teste por voluntário. Isso ocorre porque
cada voluntário contribui com uma amostra especı́fica para essas atividades, refletindo
um equilı́brio controlado entre as classes.

A Tabela 3 apresenta os resultados gerais obtidos na identificação da atividade de
varrer dos voluntários da base de teste.

Tabela 3. Resultados gerais dos testes.

Modelo Voluntários Acurácia Precisão Recall F1-Score Test Loss
Reconhecer Varrendo 86 88.89% 88.89% 88.89% 88.89 0.38589



Figura 4. Matriz de confusão.

A sensibilidade, ou recall, que mede a taxa de verdadeiros positivos, foi de
88.89%, com um F1-Score correspondente de 88.89. Esses resultados indicam que o
modelo é capaz de detectar com precisão a atividade de varrer em um ambiente fechado.
Essa tecnologia tem o potencial de ser aplicada a uma variedade de aplicações cotidianas
não crı́ticas.

As colunas Heads e Layers na Tabela 3 especificam o número de cabeças de
atenção e camadas do modelo Transformer para cada tarefa. Em geral, tarefas mais com-
plexas utilizam mais cabeças (6) e camadas intermediárias (4), indicando a necessidade
de maior capacidade de atenção para capturar nuances nas posturas. A taxa de aprendi-
zado é ajustada para cada tarefa. Tarefas mais difı́ceis possuem uma taxa de aprendizado
mais baixa, o que permite que o modelo se ajuste gradualmente e evite o overfitting. Para
tarefas mais simples uma taxa mais alta é suficiente. Tarefas mais complexas exigem
mais épocas para alcançar bons resultados, permitindo que o modelo aprenda padrões su-
tis. Os tamanhos dos lotes (batch size) são ajustados. Atividades mais simples, utilizam
um lote maior, enquanto atividades mais complexas exigem lotes menores para otimizar
a capacidade de aprendizado e o uso da memória.

A Figura 5 apresenta as perdas de treinamento ao longo das épocas. A perda
é uma métrica utilizada para avaliar o desempenho do modelo durante o treinamento,
sendo valores menores indicativos de melhor desempenho. O valor inicial da perda de
treinamento, aproximadamente 0, 8288, diminui para aproximadamente 0, 6442. Isso é
um bom sinal, pois indica que o modelo está aprendendo e melhorando ao longo do tempo.

Figura 5. Perdas de treinamento para diferentes categorias do DVC-CSI.

Os valores de Perda de Teste variam significativamente entre as atividades, com



a detecção de movimento apresentando a menor perda e a detecção de sentado/deitado
a maior. Isso sugere que o modelo é mais eficiente em atividades mais simples ou com
padrões claros, enquanto tarefas com maior variabilidade ou maior complexidade postu-
ral, como sentado/deitado e caminhar/correr, exigem ajustes para reduzir a Perda de Teste
e aumentar a generalização.

5. Conclusões
As caracterı́sticas do sinal Wi-Fi podem ser afetadas pelo ambiente, com suas carac-
terı́sticas de sinal influenciadas por vários fatores ambientais, incluindo presença e movi-
mento humanos. Essas variações podem ser detectadas em dados de CSI, que fornecem
detalhes da camada fı́sica (PHY), como amplitude e fase. Este artigo propôs o DVC-CSI

para identificar a atividade de uma pessoa de varrer em um cômodo através da análise
de dados CSI. Considerando um conjunto de dados de 86 voluntários utilizados para sua
avaliação, foi atingida uma acurácia de 88.89% para identificar a atividade em um con-
junto de dados treinado com diferentes pessoas. A detecção de movimento apresentou um
aprendizado rápido e estável, atingindo valores desejáveis de perda e acurácia mesmo sem
a necessidade de muitas épocas de treinamento. A proposta do DVC-CSI se destaca pelo
número de participantes envolvidos nos experimentos, pela variedade de atividades mo-
nitoradas, pelo uso de modelos Transformer e pela sua independência do usuário. Essas
qualidades tornam o DVC-CSI mais robusto e adequado para aplicações em cenários reais
de monitoramento de atividade humana. Esses resultados são promissores e espera-se que
sejam usados para monitorar idosos em suas atividades diárias. Essa abordagem inova-
dora possibilita a reaproveitação da infraestrutura já existente, o que gera uma redução
de custos em relação ao emprego de dispositivos especı́ficos. Além disso, o DVC-CSI

proporciona um monitoramento de dados CSI não invasivo e confortável, eliminando a
necessidade de contato fı́sico ou do uso de dispositivos conectados ao corpo.

Como trabalhos futuros, pretende-se aprimorar o desempenho do DVC-CSI em
tarefas desafiadoras (caminhar/correr e sentar/deitar) refinando o pré-processamento de
dados e explorando modelos hı́bridos que combinam Transformers com outras aborda-
gens de aprendizado. Análise do desempenho do modelo em ambientes com nı́veis va-
riados de interferência (por exemplo, vários dispositivos Wi-Fi ou paredes), o que pode
afetar a confiabilidade do modelo em situações cotidianas. Sendo assim, avaliar possı́veis
estratégias de mitigação da interferência.
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(SBCAS).

de Sousa, C., Fernandes, V., Coimbra, E. A., and Huguenin, L. (2024). Subcarrier Selec-
tion for HAR Using CSI and CNN: Reducing Complexity and Enhancing Accuracy.
In 2024 IEEE Virtual Conference on Communications (VCC), pages 1–7.

dos Santos, A. C. N., de Paula, K., Vidal, M. T. L., da Silva, J. M. M., de Sousa, C., Fer-
nandes, L. A. F., de Castro, T. B., Bedo, M., Kohwalter, T. C., Bastos, C. A. M., Seixas,
F. L., Fernandes, N. C., Muchaluat-Saade, D. C., and Ghinea, G. (2024). A computer
vision model to support individuals with disabilities within university campuses. In
2024 IEEE International Conference on E-health Networking, Application & Services
(HealthCom), pages 1–7.

dos Santos, A. C. N., Seixas, F. L., and Fernandes, N. C. (2022). Provendo um mo-
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