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Abstract. Lung cancer is the leading cause of cancer mortality, accounting for
approximately 20% of all cancer-related deaths. Nevertheless, despite the de-
velopment of new therapeutic agents and technologies, only 16% of lung cancer
patients are diagnosed at early stages. Therefore, to diagnose in early stages,
when the nodules are very small, is a complex task for specialists and presents
some challenges. To assist the specialists, the main purpose of this work is to
propose the use of Deep Learning to classify 25,200 small pulmonary nodules
balanced with diameter 5-10mm. The result was of 0.992 (+/- 0.001) of area
under ROC curve using 10-fold cross validation. The proposed method showed
to be promising to assist the specialists in classification of small lung nodules.

1. Introduction

Cancer is characterized by a disease that causes the disordered growth of abnormal
cells which spreads through neighboring tissues destroying them. Lung cancer is
the leading cause of cancer-related deaths in the world, accounting for approximately
20% of all cancer-related deaths [Tammemagi and Lam 2014]. Half of the patients
die within one year, and the 5-year survival rate is about 17.8% when diagnosed
[Zappa and Mousa 2016]. Patients diagnosed in early stages have a 1-year survival rate
of 81-85% while in an advanced stage have 15-19% [Blandin Knight et al. 2017]. There-
fore, malignant lung nodules need to be detected and diagnosed as soon as possible to
enable the early treatments. But the process to identify lung nodules in early stages, those
less than 10mm in diameter, is a challenging task even for the experienced radiologist.
Besides small size, the early nodules have low contrast in comparison to the lung tissue
and can be attached to other complex lung structures (Figure 1) [Hua K-L and Y-J 2015]
[Alilou et al. 2014].

With the objective to assist the radiologists in the lung cancer classification,
Computer-Aided Diagnosis (CAD) systems have been used to determine the probabil-
ity of malignancy of a lung nodule [Gillies et al. 2016]. Until recently, the effectiveness
of CAD systems and many other pattern recognition applications depended on meticu-
lously handcrafted features, topped off with a learning algorithm to map it to a decision
variable. Medical image analysis and interpretation are fundamental cognitive tasks in
the radiologist’s diagnosis. During the process of designing features, and features such as
contrast of the lesion, spiculation patterns and the sharpness of the border it is often nec-
essary to consult the experts. These feature transformations provide a platform to instill
task-specific, a priori knowledge but cause a large bias towards how we humans think the
task is performed [Chartrand et al. 2017] [Kooi et al. 2017].



Figure 1. Lung nodules (circulated in gray) with their sizes and anatomical structures
connected to them, respectively [Alilou et al. 2014].

(a) 9.2mm vessel-connected. (b) 6.2mm isolated. (c) 5.7mm isolated.

A technique of machine learning called “Deep Learning” (DL) have attracted
the attention of the scientific community to resolve many problems of computer vision
such as image classification and image retrieval [Guo et al. 2016]. DL has the char-
acteristic of grouping representation-learning methods in which the algorithm learns a
composition of features from multiple levels of representation in a hierarchical way
starting at one level and reaching progressively more abstract levels [LeCun et al. 2015,
Chartrand et al. 2017]. Among the architectures presenting in DL there is the Convolu-
tional Neural Network (CNN). CNN architecture has been the most effective approach
to classify images since 2012 when Krizhevsky et al. [Krizhevsky et al. 2012] won the
ILSVRC2012 competition. CNN is an interleaved set of feed-forward layers composed
of convolutional filters followed by reduction, rectification or pooling layers, where each
layer extracts high-level abstract features from the images [Ravı̀ et al. 2017]. It has been
already applied to classify small lung nodules [Anirudh et al. 2016].

The main goal of this work was to assess the Deep Learning capability in classify
early lung nodules with a diameter of 5-10mm.

The remainder of this paper is organized as follows. First, we present the related
works (Section 2). Next, we show the public database used, how the early nodules were
selected, the techniques used to augment the samples of our database, the CNN’s hyperpa-
rameters used, and how we evaluated our results (Section 3). Next, we presents the main
results obtained by the methodology proposed and the discussion of this work (Section
4). Lastly, we conclude this paper and presents our main contribution to the state-of-art
(Section 5).

2. Related Works
Many works have been done aiming do classify lung nodules, but most focus on both large
and small nodules, and few focus on small nodules. In this paper, we separated the works
made by Felix et al. [Felix et al. 2016], Dilger et al. [Dilger et al. 2015] and Anirudh et
al. [Anirudh et al. 2016].

Felix et al. [Felix et al. 2016] used selected features extracted from 274 small
lung nodules of the Lung Image Database Consortium (LIDC) with a diameter between
3-10mm. The features extracted were Texture Features (TF) and Margin Sharpness Fea-



tures (MSF) and they used the technique called Evolutionary Genetic Algorithm (EGA)
to select the features on the integration of TF and MSF. The best classifier used was Mul-
tilayer Perceptron (MLP) and achieved the area under ROC curve (AUC) of 0.820 (±
0.053) using 10-fold cross validation. They used nodules with up to 10mm and got good
results, but they used many steps: extraction and selection of the most relevant attributes
out of a total of 48 through the technique EGA to classify the small lung nodules finally.

Dilger et al. [Dilger et al. 2015] used an Artificial Neural Network (ANN) to clas-
sify 50 nodules (22 malignant and 28 benign) from high-resolution computed tomography
scans with diameter between 4-30mm and a set of 47 selected features (intensity, shape,
size, and texture), extracted from both the pulmonary nodules and the tissue of the region
of lung parenchyma, and achieved the highest AUC of 0.935 (± 0.0096) using leave-
one-case-out cross validation. The nodules were acquired from the National Institutes
of Health (NIH). They got excellent results, but they used nodules bigger than 10mm
reaching 30mm, which includes nodules in advanced stages.

Anirudh et al. [Anirudh et al. 2016] employed a 3D Convolutional Neural Net-
work (CNN), where 20 and 47 scans were used for training and test, respectively. The
diameter was between 3-20mm and achieved sensitivities of 80% for ten false positives
per scan. Although they used nodules smaller than 3mm, they also used nodules bigger
than 10mm reaching 20mm, so they got nodules more advanced.

3. Materials and methods
The overview schema of this work can be view in Figure 2. First, we got a database from
medical imaging from a public repository (Section 3.1). Next, we measured the nodules’
sizes and selected only small nodules (Sectio 3.2), then the database was balanced for
the experiments in an equal number of benign and malignant nodules (Section 3.3), we
created a Convolutional Neural Network (CNN) architecture (Section 3.4) and applied it
in the database with and without data augmentation to generate the results.

3.1. Lung Database Acquisition

The database used in this work was the Lung Image Database Consortium and Image
Database Resource Initiative (LIDC-IDRI) [Samuel G. Armato et al. 2011]. This base
consists of Computed Tomography (CT) scans with marked-up annotated lesions identi-
fied and classified by four experienced radiologists. It is now composed of 1,010 CT scans
of the patients, 1,308 studies, and 244,529 images. The radiologists identified the nodules
according to subjective characteristics, and one of them is the likelihood of malignancy
on a scale from 1 to 5, following the conditions:

• Malignancy 1: high probability of being benign;
• Malignancy 2: a moderate chance of being benign;
• Malignancy 3: indeterminate probability;
• Malignancy 4: a moderate probability of being malignant;
• Malignancy 5: high probability of being malignant.

The LIDC-IDRI is a collection where there is no correlation between images, ex-
ams data and classification of the nodules by radiologists. Furthermore, information about
nodule size or image features does not exist. So, aiming to integrate information about the



Figure 2. Schema overview applied in this work.

nodules in LIDC and images features we used the database developed by Ferreira Junior
et al. [Ferreira Junior et al. 2016]. All images lesions were manually segmented using
the radiologist’s marks and later placed into the respective database, making access to the
information of the injuries practicable.

Nodules with the likelihood of malignancy three were discarded in this work be-
cause of their probability of malignancy on them is indeterminate.

3.2. Small Lung Nodule Selection
To perform the selection of the nodules according to their diameters, we initially estimated
their sizes which were then attached to our database, as the LIDC-IDRC original database
did not contain. The size of a nodule was calculated as a simple 2D measure of the greatest
diameter, which can be realized in the axial plane along the axis of the longest diameter
[Bartholmai et al. 2015]. These approximations consisted of calculating the Euclidean
distance between the minimum and maximum coordinates in the respective x and y axes
of all slices of a nodule.

According to the literature [Yankelevitz et al. 1999] [Reeves and Kostis. 2000], a
nodule can be as a small nodule when it has a diameter of less than 10mm. However,
Bartholmai et al. [Bartholmai et al. 2015] affirm that tests have already shown that nod-
ules with a diameter less than 5mm are probably benign, even in cases of high-risk pa-
tients, which makes it uninteresting to work with nodules predisposed to be benign. So,
the threshold chosen for this work was nodules greater equal to 5mm and less than 11mm.

3.3. Balancing Database
Counting by slices of all small nodules, we got 3,513 slices, where 2,582 were benign,
and 931 were of malignant nodules. In this work, our focus was early solid nodules, so



nonsolid and ground-glass opacity nodules are out of the scope of this paper. So, our final
number of slices were of 2,172 and 603 of benign and malignant slices of solid nodules,
respectively. To ensure data balancing in all phases of the experiments and to perform
a fair classification we used only 600 slices of benign and 600 slices of small malignant
nodules, totalizing 1200 slices of nodules in early stage (see Table 1).

Table 1. Numbers of small nodules between 5-10mm used from our database balanced in
600 for benign and malignant.

Benign Malignant
Probability of Malignancy 1 2 4 5 Total

Number of nodules 169 431 492 108 1200
Sum 600 600

3.4. Convolutional Neural Network
In the 1960s a Convolutional Neural Network (CNN) is a model inspired by the principles
of Deep Learning was proposed, which is a multi-layer neural network that it can extracts
multi-level hierarchies of features presented in two-dimensional images and is widely
used in the field of computer vision and offers the advantages of being easy to train and
have fewer parameters than fully connected networks with the same number of hidden
units [Song et al. 2017].

The CNN can have several layers composed of three main neural layers: convolu-
tional layers, pooling layers and fully connected layers [Guo et al. 2016]. CNN receives
as input an n x n x m image where n is the height and width and m the number of channels
of the image. If m has value one the image is in grayscale if m is three the image is in RGB
mode. K convolutional filters of size a x a are applied in convolutional layers, where a <
n to extract the features in the image received. The pooling layers are non-linear down-
sampling layers where the operations can be of max-pooling or average-pooling on the
matrices they receive. Max-pooling calculates the maximum and average-pooling cal-
culates the average in a neighborhood of feature points, in which this neighborhood or
filter is usually a matrix of 2 x 2. Pooling layers can be applied optionally after each
convolutional layer. The fully connected layers have the role of classifying the input
images through the patterns learned by the CNN, which is usually a Multilayer Percep-
tron (MLP). During the process of training in each layer is applied some activation func-
tion to normalize the output in the neurons which are non-linear and derivable, and can
be for example Softmax and Rectified Linear Unit (ReLU) [Sonoda and Murata 2015]
[Litjens et al. 2017].

The dropout and data augmentation techniques were used to improve the perfor-
mances and avoid the overfitting problem. Dropout was developed and proposed by Sri-
vastava, N. et al. [Srivastava et al. 2014], and besides reducing overfitting, it still gives a
significant improvement over other regularization methods. In dropout, there is a param-
eter p or “dropout rate” which is a value between zero and one and which excludes the
features proportionally in this fraction put. CNN has the disadvantage to require a large
database of labeled images to be efficient in the task of classification, how we had to this
work few samples, 1200 samples, so, the application of data augmentation was essential
to make progress in the accuracy, and still control the overfitting problem.



CNN can execute it's training in supervised training using some Gradient Descent
Algorithm (GDA), among them there is the Adadelta algorithm which has the advantage
to alleviate the job of choosing a learning rate, a task that we face in Stochastic Gradient
Descent (SGD) algorithm [Zeiler 2012].

The CCN architecture used in this work and its parameters values and outputs in
each layer is shown (Figure 3) and is detailed (see Table 2).

Figure 3. The architecture of the proposed CNN with the parameters and the output
values.

4. Experiments and Results

4.1. Experiment Setup

All the experiments were done on a graphics processing unit (GPU) NVidia Titan X with
12 Gigabytes of RAM, 3584 cores, the speed of 1,5 GHz and Pascal Architecture. The
experiments were done using Keras (v.2.0.9) with Tensorflow version (v.1.3.0) as backend
[Chollet et al. 2015] [Abadi et al. 2015].

The operations applied using the data augmentation technique were: rotation, flip
from left to right and from top to bottom. We applied 21 new samples to each image,
making our database jump from 1,200 to 25,200 (12,600 benign and 12,600 malignant)
samples.



Table 2. CNN architecture and parameters.
Layer Type Input Output

1 Convolutional 256x256x1 250x250x128
2 Convolutional 250x250x128 246x246x32
3 Max-pooling 250x250x128 123x123x32
4 Dropout 123x123x32 123x123x32
5 Flatten 123x123x32 484128
6 Fully-connected 484128 128
7 Dropout 128 128
8 Fully-connected 128 2

Table 3. Comparison of filters and kernel values in CNN in layer 1.
Kernel

Filter 3x3 5x5 7x7
16 69.92% (± 3.60%) 70.33% (± 3.62%) 71.25% (± 3.15%)
32 70.50% (± 3.08%) 71.75% (± 3.22%) 71.83% (± 3.96%)
64 69.58% (± 3.06%) 71.92% (± 4.17%) 71.42% (± 3.05%)

128 70.92% (± 3.52%) 71.58% (± 4.26%) 72.25% (± 4.00%)

We did the experiments in three stages: training, validation, and test, using 80%,
10% and 10% of the samples, respectively. All steps were balanced, and it was used 10-
fold cross-validation to reduce the impact of data bias. We generated two kinds of results,
one using data augmentation, with 25,200 samples, and the other not using, with 1,200
samples.

All images had a resolution of 256x256 in grayscale mode. The only pre-
processing executed was to normalize the pixels between zero and one before the ap-
plication of the CNN.

4.2. Construction of the CNN
The CNN used in this work was very similar applied in mnist with keras
[Fchollet et al. 2018]. The difference is in the first two layers, the convolutional lay-
ers. It contains two convolutional layers, in the first, was made a comparison between
the parameters values, kernel, and filter, where we vary the values of the kernel from 3
to 7 from 16 to 128, respectively. The best result was the combination of the kernel 7x7
and the filter 128, as we can see in Table 3. The second layer had a kernel of size 5x5
and 32 filters; followed by one layer of Max-pooling, with a kernel of size 2x2; next, we
applied a dropout layer with p = 0.25. Next, a flatten layer was applied, where this layer
only took the input in 3D and turned it in 1D without affecting the neurons. Next comes a
Fully-connected layer, followed by another dropout layer, with p = 0.5, and to finish other
Fully-connected layer to output the classification of the image in benign or malignant, to-
talizing our architecture in eight layers. The convolutionals and the first fully-connected
layers used the ReLU activation function, and the last fully-connected layer used the Soft-
max activation function. The batch size and epochs were set with the value of 50 for both
go get the best results in a short time. The GDA used was the Adadelta algorithm.

The rest of the architecture was followed by the example made with the Mnist



database using Keras that is in a grayscale mode like ours [Fchollet et al. 2018].

4.3. Results and Analysis

In this section is presented the results acquired with the CNN architecture showed in the
last part applied in the same database without and with data augmentation. To evaluate
the performances alleviating the impact of data bias, we used 10-fold cross validation,
where training, validation and test sets balanced in all iterations.

The results obtained in the two conditions (without and with data augmentation),
are showed (see Table 4), through the metrics Sensitivity (SEN), Specificity (SPE), Ac-
curacy (ACC) and area under ROC curve (AUC), with mean followed by ± standard
deviation generated by the 10-fold cross validation.

Table 4. Results achieved without and with data augmentation.
Without

Data Augmentation
With

Data Augmentation
Sentivity (%) 67.33% (± 8.95%) 95.87% (± 1.73%)
Specificity (%) 80.33% (± 9.57%) 97.39% (± 0.88%)
Accuracy (%) 73.83% (± 3.50%) 96.63% (± 0.55%)
AUC (%) 0.808 (± 0.048) 0.992 (± 0.001)

Here, is showed the training and validation accuracy, and training and validation
loss acquired in the first iteration of the experiment without data augmentation in the
figures 4a and 4b, respectively.

(a) Training (line above) and validation accuracy
(line below).

(b) Training (line above) and validation (line below)
loss.

Figure 4. Loss and validation accuracy in training without data augmentation.

Next, is presented the training and validation accuracy, and training and validation
loss acquired in the first iteration of the experiment without data augmentation in the



figures 5a and 5b, respectively. Here we can see that the curves are more closed, breaking
the problem of overfitting and improving the validation accuracy.

(a) Training (circles) and validation accuracy (line). (b) Training (line) and validation (circles) loss.

Figure 5. Loss and validation accuracy in training with data augmentation.

The CNN applied in data augmentation’s group achieved the best results, a sensi-
tivity of 95.87%, specificity of 97.39%, the accuracy of 96.63% and AUC of 0.992.

To compare the performance between CNN with and without data augmentation
is presented the ROC curve between both in the first iteration of the experiment in Figure
6, from which we can view that the use of the CNN with data augmentation is better than
using CNN without data augmentation. AUC was of 0.73 without and 0.99 with data
augmentation, respectively.

(a) ROC curve without data augmentation. (b) ROC curve with data augmentation.

Figure 6. AUC results.



The CNN proposed enabled us to achieve excellently results in the metrics evalu-
ated because mainly the CNN can extract essential features from the images like texture,
shape, intensity, and even features so deep that is unknown of two different dimensions.
The number of layers in our CNN architecture was relatively small because of the lim-
itations of the database used, and it was not necessary to modify anything in the CNN
architecture due to the increase of the database.

Next, is showed the comparison between our the best result using CNN with the
results obtained by [Felix et al. 2016], [Dilger et al. 2015], and our results were better
(see Table 5). How Anirudh et al. [Anirudh et al. 2016] evaluated their experiments using
free receiver operating characteristic (FROC), a metric not applied in this work, we didn’t
compare our results with theirs.

Table 5. Comparison with related works
Work Database (samples) AUC Classifier

Felix et al [Felix et al. 2016] LIDC (274) 0.820 (± 0.053) MLP
Dilger et al [Dilger et al. 2015] NIH (50) 0.935 (± 0.0096) ANN
Proposed paper LIDC (22,500) 0.992 (± 0.001) CNN

5. Conclusion
In this paper, we proposed the use of Convolutional Neural Network (CNN) with data
augmentation technique with the objective to improve the accuracy in the classification
of lung nodules in early stages with diameter smaller than 11mm using 10-fold cross
validation balancing the database during all stages of the experiments. Only the operations
(rotation, flip from left to right and flip from top to bottom) were needed to augment our
database in a sufficient quantity without distorting the images.

The CNN architecture used achieved an excellent AUC of 0.992, reaching almost
the perfection of 1. And our results were better than the related works that also used
the AUC as metric to show the results. The main contribution of this work was to show
the efficiency of the CNN integrated with data augmentation in the classification of small
pulmonary nodules.

As future work, we aim to explore the parenchyma, which is a tissue around the
lung nodules, analyze transfer learning techniques, and expand our analysis to semisolid
and groud glass opacity nodules beyond the solid nodules to improve the classification of
small lung nodules.

The authors would like to thank the financial supporting provided by the brazilian
institution Coordination for the Improvement of Higher Education Personnel (CAPES).
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