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Abstract. Breast cancer (BC) is the most common cancer among women world-
wide, approximately 20-25% of BCs are HER-2 positive. Analysis of HER-2 is
fundamental to defining the appropriate therapy for patients with breast cancer.
Inter-pathologist variability in the test results can affect diagnostic accuracy.
The present study intends to propose an automatic scoring HER-2 algorithm.
Based on color features, the technique is fully-automated and avoids segmenta-
tion, showing a concordance higher than 90% with a pathologist in the experi-
ments realized.

1. Introduction
Cancer is a disease with a high mortality rate that has increasingly reached the world’s
population, especially the female population. In Brazil, Breast Cancer (BC) is the most
common tumor among women, affecting almost 60,000 patients in 2014 [INCA 2014].
BC is the second most common tumor worldwide. In US one out of eight women are
affected by BC during their lifetime [DeSantis et al. 2014]. In the last decade, incidence
of cancer has grown 20% in the world. In Brazil, National Institute of Cancer José Alen-
car Gomes da Silva (INCA) estimates 59,700 new BC cases in 2018 [INCA 2018]. Ac-
cording to the International Agency for Research on Cancer (IARC), while cancer mor-
tality rate increased by 8% in 2012, mortality rate of BC was 14% in the same period
[Jacques et al. 2015].

In breast cancer patients, the amplification of the Her2 (Human Epider-
mal growth factor Receptor-type 2) gene is an individual prognosticator and a pre-
dictive marker of response to targeted treatment with trastuzumab and adjuvant
chemotherapy [Slamon et al. 2001]. Approximately 20-25% of BCs are HER-2 positive
[Yaziji et al. 2004].

For HER-2 score determination, immunohistochemical tests (IHC) are performed.
HER-2 test indicates whether this protein is carrying some role in the development of



breast cancer, since with many HER-2 receptors, the cells receive many signals to grow
and split. The amount of HER-2 is scored as 0, 1+, 2+ or 3+. If the score is 0 or 1+, it
is called ”HER-2 negative”; if the score is 2+, then it is called ”limit”; and a 3+ score is
called ”HER-2 positive” [Kumar et al. 2013].

HER-2 scoring still has a visual and manual analysis of histological tissues as a
standard method. Such method is strongly dependent on the expertise and experience of
histopathologists and has the disadvantages of being time-consuming and non-replicable
[Aktan et al. 2016]. Some HER-2 tests may present different results, indicating the exis-
tence of variations within and between specialist observation [Kumar et al. 2013].

In the past few years, several works were developed for HER-2-assisted computer
classification. Most are commercial, depend on specific materials and are financially
costly [Brügmann et al. 2012, Jeung et al. 2012, Dobson et al. 2010, Viale et al. 2016].
Also, methods developed in other works did not show much agreement with pathologists
[Aktan et al. 2016, Tuominen et al. 2012, Skaland et al. 2008, Masmoudi et al. 2009,
Hall et al. 2008, Joshi et al. 2007]. Currently, some HER-2 scoring software are avail-
able on the market. Among then are the Automated Cellular Imaging System III (ACIS
III) (Dako) and the HER2-CONNECT (Visiopharm).

The Automated Cellular Imaging System III (ACIS III) (Dako) was evaluate
about correlation between manual HER-2 scoring and HER-2 image analysis in gas-
troesophageal (GE) adenocarcinomas in [Jeung et al. 2012]. They achieved an overall
correlation of 84%.

HER2-CONNECT presented a 92.3% agreement between the HER2-CONNECT
software and the pathologists according to [Brügmann et al. 2012]. This software exploits
the ability of computer image analysis to quantify the standard HER-2 IHC ”wire mesh”
pattern by measuring the connectivity and size distribution of colored membranes. Their
approach is based on brown segmentation, membrane skeletonization and elimination of
noise. HER-2 score is defined based on the size of the membrane distribution and the area
it occupies.

A comparison of slidePath’s tissue IA system with other commercially available
systems for HER-2-analysis are presented in the study conducted by [Dobson et al. 2010],
which determined HER-2 score as 0/1+, 2+ or 3+ (negative, limit and positive). The
concordance with manual review are: Slidepath: 91%, Aperio: 86%, BioImagene: 81%,
Dako (Chromavision): 75% and Ventana (TriPath Imaging): 86% and 77%.

A limitation of commercial systems is that they require manual intervention, in
the sense that they are trained for a particular biomarker set and need to be manually
optimized. Such adjustments introduce subjective criteria and become sources of inter-
laboratory variability [Masmoudi et al. 2009]. Since the systems have these limitations
and are expensive, alternatives to this problem are still been developed. Also, a segmen-
tation step is generally necessary.

The method described in [Masmoudi et al. 2009] is a multi-stage algorithm, with
an agreement of 81%-83%. The algorithm steps are color pixel classification, nuclei seg-
mentation, and cell membrane modeling, and extracts quantitative, continuous measures
of cell membrane staining intensity and completeness. A minimum cluster distance clas-
sifier merges the features to classify the slides into HER-2 categories.



The study presented in [Hall et al. 2008] used color decomposition based on polar
transform, threshold and gaussian filters, resulting in an AUC (Area Under the Curve) of
87%. A correlation of 84% was obtained in [Joshi et al. 2007] by preprocessing image
and RGB channels segmentation. More recently, a study about deep learning applied on
this topic obtained a concordance of 83% with a pathologist [Vandenberghe et al. 2017].
They used ConvNets for segmentation, feature extraction and classification techniques
for cell/nucleus detection. In [Gaur et al. 2016], a transfer learning mechanism based on
active learning was applied to segment membrane in FISH images.

[Saha and Chakraborty 2018] developed a deep learning framework for detec-
tion, segmentation and classification of cell membranes and nuclei from HER-2 stained
breast cancer images, achieving 98.33% accuracy. The proposed method was as-
sessed based on the HER-2 challenge contest image database of University of Warwick
[Qaiser et al. 2018].

This challenge received 18 submissions, which most applied a supervised patch-
based classification approach to handle the problem. A common pipeline was based on
three main components: 1) preprocessing, including identification of regions of interest,
2) patch classification based on handcrafted or neural network learned features and 3)
techniques to define the HER-2 score at WSI (Whole Slide Image) level. The best result
on this competition built a handcrafted sub-dataset. For this purpose, a set of 68x68
patches was extracted from training. GoogLeNet and a percent-based rule were used for
HER-2 score classification.

Aiming to bring a method without manual intervention and segmentation, we pro-
pose a fully-automated classification based on color features, thus reducing the complex-
ity in this analysis. Section 2 describes the dataset and methods applied in the classifica-
tion. Experimental results are reported in Section 3, then proposing future works and a
conclusion in Section 4.

2. Materials and Methods

2.1. Dataset

The proposed method was developed based on the HER-2 image database of the Depart-
ment of Computer Science, University of Warwick, United Kingdom [Qaiser et al. 2018].
The dataset entailed 172 whole slide images (WSI) extracted from 86 cases of inva-
sive breast carcinomas and included both the H&E (Haematoxylin & Eosin) and HER-2
stained slides. Images stained with H&E are used in routine diagnostic practice of BC to
identify tumour regions. Our approach only uses the HER-2 stained slides, being com-
posed of 52 images for training and 34 for testing.

The histology slides for this contest were scanned on a Hamamatsu NanoZoomer
C9600, enabling the image to be viewed from a ×4 to a ×40 magnification. Each WSI
was cropped in patches, at ×40 magnification, by a OpenSlide [Goode et al. 2013] func-
tion, each one in size of 250x250 pixels. The patches with more tissue information were
automatically selected by analyzing their histogram. Figure 1 illustrates examples of
classes’ patches.

The authors of this dataset only provided ground truth for training images. It is
required to submit the algorithm to evaluate on testing images. Therefore, we present on



Figure 1. Example of classes 0, 1+, 2+, 3+

this paper only evaluation in the training subset. We might report test evaluation in future
works.

2.2. Proposed approach

Our approach is divided into two levels: image and patient. In the first level, we analysis
the classification of individual patches. Then, based on the analysis done in the previous
level, occurrence of each class’ patches is employed to predict HER-2 score. Figure 2
illustrates our algorithm pipeline.

Image level: The purpose of this step is to state the features which best represent
the relevant patches. Assisted by a pathologist, the most representative patches (generally
around 30) were selected out of each WSI. This amount was decided to balance relevant
ones among total patches of each slide. Firstly, color and texture features were extracted.
For color features, histograms in RGB and HSV models, additionally with mean and
standard deviation of each channel, were experiment. For texture, we employed the LBP
(Local Binary Pattern) [Ojala et al. 1996] and PFTAS (Parameter-free Threshold Adja-
cency Statistic) [Coelho et al. 2010] descriptors. Then, SVM (Support Vector Machine)
[Vapnik and Cortes 1995], KNN (K-Nearest Neighbor) [Dasarathy 1991], MLP (Multi-
layer Perceptron) [LeCun et al. 1998] and Decision Tree [Breiman 1984] classifiers’ ac-
curacy were evaluated using leave-one-patient-out validation. In this step, we also trained
classifiers to distinguish noise patches.

Patient level: The best descriptors in the image level were used to classify all
patches in each exam. Although a WSI is scored in only one class, these slides may have
patches from different classes. Therefore, we need to set a rule for HER-2 scoring. A
threshold rule based on the quantity of patches from each class was experimented, but
results were not satisfactory. Then, we used each class occurrence as input for a classifier,
creating a feature vector of occurrences. Classification is then applied to determine the
HER-2 score of the WSI. The same classifiers from the previous step were employed, also
accuracy using leave-one-patient-out validation were implemented.

Since clinical decisions do not differentiate 0 and 1+ classes and only consider
tests as negative (0/1+), limit (2+) and positive (3+) [Tuominen et al. 2012], we have
developed two approaches: with four (0, 1+, 2+, 3+ and noise) and five classes (negative,
limit, positive and noise). Our method evaluates classifiers’ accuracy using leave-one-
patient-out validation and basically consists in:

1. Crop a WSI in patches of size 250x250;
2. Classify each patch using training patches selected by a pathologist (image level);
3. Create a vector with percentage of patches from each class;
4. Test classifiers to define HER-2 score based on these percentages (patient level).



Figure 2. An illustration of our method

2.2.1. Descriptors and Classifiers Parameters

To clarify the experiments, this section presents the parameters used in descriptors and
classifiers algorithms. We extracted LBP features using non-rotation-invariant uniform
patterns variant, radius = 1 and 8 neighbours. PFTAS was implemented using mahotas
function [Coelho 2013]. GridSearch was applied to find the best parameters for SVM. A
exhaustively search for c, gamma and kernel, parameters of the classifier, is performed
for this function. Best values were employed in each experiment. Euclidean Distance
was calculated in KNN. Variations of k, from 1 to 9, were analyzed for KNN, where the
best results were obtained with k = 1. MLP and Decision Trees were implemented with
defaults parameters in scikit-learn library [Pedregosa et al. 2011]. These methods remain
to be more explored.

In the next section, we present the results obtained using the proposed approach.



3. Experimental Results
Firstly, the results in image level are shown. Table 1 presents the accuracy resulted of
leave-one-patient-out validation on training patches (those selected by a pathologist).

Table 1. Accuracy on image level - training patches (in %)
(0/1+), 2+, 3+ and NOISE 0, 1+, 2+, 3+ and NOISE

SVM KNN MLP Tree SVM KNN MLP Tree

HSV 88.44 87.75 90.20 84.09 82.67 80.60 86.51 82.52
HSV MS 88.62 87.80 89.70 85.87 82.77 81.07 85.22 83.14
HSV RGB 88.36 86.16 89.40 85.18 82.55 76.44 85.71 81.76
LBP 58.37 49.83 57.67 49.82 50.80 41.83 49.37 39.87
PFTAS 79.87 68.99 76.03 69.64 69.77 60.27 68.44 59.53

Analyzing our results, the texture descriptors employed did not discriminate the
evaluated patches correctly. We obtained satisfactory results in both approaches, with
four and five classes. Then, only color descriptors were used in patient level classifica-
tion. Color descriptors with SVM, KNN (k = 1), MLP and Decision Tree were used in
image level, to distinguish patches and create probabilities to scoring HER-2. By using
these probabilities to predict HER-2 score, SVM, KNN, MLP and Decision Tree were
experimented in patient level.

Regarding the performance at patient level, Table 2 shows an overall increase
in accuracy when classifying only with three classes, probably related to the similarity
among 0 and 1+ classes. Also, SVM is a promising classifier to scoring HER-2 based on
probabilities created by any color descriptor which classified patches using KNN classi-
fier(HSV+KNN, HSV MS+KNN, HSV RGB+KNN).

Table 2. Accuracy on patient level - HER-2 scoring (in %)
(0/1+), 2+ and 3+ 0, 1+, 2+, 3+

SVM KNN MLP Tree SVM KNN MLP Tree

HSV+SVM 86.27 90.20 84.31 88.24 61.54 65.38 50.00 61.54
HSV+KNN 94.12 86.27 92.16 92.16 86.27 70.59 78.43 72.55
HSV+MLP 86.27 82.35 86.27 76.47 67.31 65.38 51.92 50.00
HSV+Tree 78.43 60.78 70.59 78.43 53.85 30.77 46.16 48.08

HSV MS+SVM 86.27 86.27 86.27 76.47 57.69 59.62 53.85 65.38
HSV MS+KNN 94.12 86.27 92.16 88.24 86.27 70.59 74.51 74.51
HSV MS+MLP 86.27 84.31 88.24 84.31 73.08 51.92 57.69 67.69
HSV MS+Tree 68.63 62.75 72.55 70.59 59.62 59.62 50.00 46.16

HSV RGB+SVM 86.27 80.39 86.27 86.27 55.77 55.77 50.00 57.69
HSV RGB+KNN 94.12 82.35 86.27 84.31 84.31 70.59 74.83 72.55
HSV RGB+MLP 88.24 82.35 86.27 76.47 73.08 55.77 63.46 67.31
HSV RGB+Tree 84.31 66.67 82.35 62.75 61.54 40.38 50.00 46.15

Although SVM and MLP had better results in the image level evaluation, the



feature vector generated from classes’ occurrences by the KNN achieved an overall higher
accuracy. A likely motive is that the two classifiers did not adapt to patches outside the
ones selected by the pathologist, which were more class homogeneous. Since patches can
be heterogeneous, meaning that each patch has certain cells and membrane which can
be classified in different HER-2 scores, it is difficult to correctly represent them. KNN
seems to better classify these peculiarities. Due to this heterogeneity other probability
descriptors created by SVM, MLP and Tree were not discriminative for HER-2 score.

The worst results in patient level were resulted from patches classified by Deci-
sion Tree with any descriptor (HSV+Tree, HSV MS+Tree, HSV RGB+Tree). As it is
observed in Table 1, this classifier did not perform well in image level. Despite the fact
the accuracy percentage is not much lower than others, the results presented in this step
only involve patches analyzed by the pathologist. In a WSI, more difficult patches can be
present, with more heterogeneous classes and thus, this result appears to be a consequence
of the image level classification.

Tables 3 shows a confusion matrix of the best results obtained (three classes clas-
sification). In our approach we consider 0/1+ as negative, 2+ as limit and 3+ as positive.

Table 3. SVM Confusion Matrix
HSV+KNN HSV MS+KNN HSV RGB+KNN

0/1+ 2+ 3+ 0/1+ 2+ 3+ 0/1+ 2+ 3+

0/1+ 24 0 0 23 1 0 23 1 0
2+ 2 11 1 1 12 1 1 12 1
3+ 0 0 13 0 0 13 0 0 13

In CADs (Computer Aided Decision) focused on cancer treatment decision, it is
important to evaluate specificity and sensitivity. The three confusion matrices presented
100% sensitivity and specificity. It means patients that should receive treatment with
trastuzumab will receive it and patients that do not need to be treated with trastuzumab,
will not be. These metrics are about negative(0/1+) and positive classes(3+). Mistakes
between 2+ and other are very common, thus a FISH test is required to confirm HER-2
positivity in 2+ slides. Despite some 2+ confusions, our results are still very promising
and might assist pathologists as a second opinion.

Our method avoids segmentation and do not need manual intervention, different
of several works reviewed. In Table 4 we compared our method with others described
before. HER2NET proposed by [Saha and Chakraborty 2018] had a better accuracy than
ours. Although both works have used the same dataset, partitions for training and test
were different. Also, HER2NET depends on manual intervention for ROI selection and
includes a segmentation step.

4. Conclusion

The purpose of this study is to provide a technique able to scoring HER-2 in histopatho-
logical slides. Our results show that the proposed approach using classical machine learn-
ing techniques and color descriptors is very promising. Since we only used simple fea-
tures and also without combining them, results may be improved by a more broadly study



Table 4. Comparison with related works
Manual Intervention Segmentation Remarks

[Brügmann et al. 2012] Yes Yes 92.3% agreement
[Masmoudi et al. 2009] Yes Yes 83% agreement
[Hall et al. 2008] Yes Yes 87% AUC
[Joshi et al. 2007] Yes Yes 84% correlation
[Vandenberghe et al. 2017] No Yes 83% concordance
[Saha and Chakraborty 2018] Yes Yes 98.33% accuracy
Proposed work No No 94.12% accuracy

of descriptors and combination of them. Also, we have a limitation about the number
of samples. Studies in other datasets and with a greater volume of samples may lead to
improvements and show a more reliable result.

As described in literature review, most classical approaches include segmentation,
which is known to introduce errors in next steps. Their concordance was around 85%,
being increased by using deep learning techniques. Nonetheless, our approach achieved
more than 90% accuracy, avoiding explicit segmentation and extraction of structure prop-
erties such as cell nuclei, membrane, size and shape of these. Besides, it is fully automated
and can easily works in simple desktop computers. Thus, findings presented in this study
support the idea of cheap techniques to help in pathologists routine.

Furthermore, we propose to compare classical machine learning and deep learning
techniques, and also to employ images obtained in different clinical conditions.
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