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Abstract. Identifying significant mutations in cancer is a key point in Cancer
Genomics, and it is one of the biggest challenges in the area. Computational
methods for identifying significant mutations have been developed in recent
years. In this work, we present a proposal of a flexible computational method
with an extensive biological base for ranking significant set of related genes in
cancer. Our method considers data about mutations, type of mutations, gene
interaction networks and mutual exclusivity pattern.

1. Introduction
Cancer is known to be caused by the accumulation of genetic alterations during the indi-
vidual’s life, from small changes in nucleotides to more considerable variations in genetic
material. These changes are called genetic mutations, which have been studied for sev-
eral period of years, by the DNA/RNA sequencing. Next-Generation Sequencing (NGS),
promote fast and cost-effective genomic sequencing. It enables the generation of large
volume of cancer data in a short time. Due to the abundance of genomic data, there is
a challenge to process NGS data for useful clinical information. In this sense, clinical
bioinformatics develops and uses computational methods for the interpretation of data.

One of the categories of computational methods includes those that intend to iden-
tify significant mutations (or driver mutations) for cancer. A cancer cell may have two
types of mutations: 1) passenger mutations, which are mutations that do not change the
cell behavior; and 2) driver mutations, which are mutations that cause harmful behavior
in the cell and are responsible for cancer, i.e., they give the cells a selective advantage in
comparison to the other cells, increasing their survival and reproduction [Stratton 2009].

The identification of driver mutations is crucial in cancer genomics and it is one
of the most significant challenges in the field [Hou and Ma 2013, Raphael et al. 2014,
Cheng et al. 2015]. The research of computational methods and their algorithms for the
identification of significant mutations in cancer has developed a lot in recent years. Each
method presents specific computational and biological characteristics. These methods
have found new associated cancer genes, from a single gene to a set of them.

In this context, the objective of this work is to propose a computational method
for ranking set of related genes significantly mutated in cancer. We merged computational



and biological perspectives in order to create a method that can achieve significant results
for the study of cancer genomics. The main advantage of our method is the use and manip-
ulation of more biological data, and the flexibility in considering this in the analysis. The
proposed method presented here is part of a work in progress. The method was defined in
a theoretical way with professionals of the Computer Science and Cancer Genomics. The
implementation, test, and evaluation of the results are still in development.

2. Related work

Computational methods for identifying significant mutations in cancer have been pro-
posed since the emerging amount of sequencing data. Most of the methods have been
proposed since the beginning of the decade. Some methods are related to each other,
having some similarities and differences among them. In this section, we briefly describe
some methods, showing their main characteristics.

The HotNet method [Vandin et al. 2011] finds multiple sets of genes that are mu-
tated in a relatively high number of patients. The algorithm creates a gene graph and
uses the network diffusion algorithm to separate nodes (genes) and find relevant sub-
sets. As a criterion to find these subsets, it is defined how hot is a gene (how is your
interaction in the network) and his coverage (how many times it was mutated in the pa-
tients). The HotNet2 method [Leiserson et al. 2015] extends the HotNet method. The dif-
fusion process used in this method better encodes the network topology, and the method
uses a directed graph to find significant subnetworks. The Hierarchical HotNet method
[Reyna et al. 2018] uses gene network and gene scores to construct a hierarchy topologi-
cally close and high-scoring subnetworks [Reyna et al. 2018].

The Dendrix method [Vandin et al. 2012] works with the hypothesis that pathways
contain a set of genes that the mutation has a high coverage (most patients have at least
one mutation in the set) and exhibits a high pattern of high exclusivity (most patients
have only one mutation in the set). Dendrix method measures how much a set of genes
has these characteristics defining a weight function to get this measure. Based on the
measure, Dendrix method uses two approaches to select one set of genes that get the
best measure. The Multi-Dendrix method [Leiserson et al. 2013] uses the same weight
function than Dendrix method and it is also capable to find multiple driver pathways.

The MEMo method [Ciriello et al. 2012] performs statistical analysis and tests to
identify characteristics in gene network modules based on three criteria. The objective
of the MEMo method is to identify the set of related genes (modules) that are frequently
altered, belonging to the same biological process with pattern of mutual exclusivity.

3. Biological concepts

In genomics, there are complex interactions around genes and their produced proteins,
which are called gene interaction networks. In this kind of networks, genes are the nodes,
and the edges connect the genes that are physically interacting or functionally related.
Gene networks are largely used in Cancer Genomics, and there are many databases with
gene interaction information, for example the ReactomeFI [Fabregat et al. 2018].

Mutations in cancer occur in different scales, from a simple variation of a single
nucleotide to a huge alteration in a significant part of the chromosome or even in the whole



chromosome. SNVs (Single Nucleotide Variants) happens when a single nucleotide is
substituted by the other. SNVs, can be missense or nonsense. Missense mutation results
in the substitution of one amino acid for another. A nonsense mutation creates a signal
to the cell stop building the protein, resulting in a shortened protein. InDels (Insert and
Deletions) happens when a single or small sequence of nucleotides can be inserted or
deleted of part of the DNA sequence. InDels cause frameshift mutations, which leads
for errors in the reading sequence to produce the protein. Splice mutations are important
mutations that occur in the regions where the splicing phase happens, in the creation of
messenger RNA. Some databases provide important data about known relevant cancer
genes and mutations, for example the MSigDB [Subramanian et al. 2005].

The mutual exclusivity pattern is related to a group of two or more genes, where
the genes into this group are rarely mutated in the same patient, i.e., simultaneous muta-
tions of these genes in the same patient are less frequent than they are expected by chance
[Kim et al. 2017]. On the other hand, different genes of the group can be mutated in
different patients.

4. Method
In order to find a group of related genes significantly mutated in a cohort of patients, we
propose a network-based method to rank a set of genes with size k. Our method has six
steps and uses somatic mutation data, gene interaction network and mutual exclusivity
pattern. With these data, we define a function to find and rank a set of related genes that
are mutated in most patients with a high score and present a pattern of mutual exclusivity.
In Figure 1 we present an overview of the method.

Figure 1. An overview of the proposed method.

Step 1: Data pre-processing In this first step, we pre-process genomic data in order to
keep the most relevant genes in the analysis. For this, we keep genes mutated in at least
2% of the patients. Furthermore, we also assign a score for each pair patient-gene, based
on its type of mutation, and if the gene is known to be relevant for cancer, extracted from
the MSigDB database. For each mutation in the gene, the score is summed by 0.5 if the
mutation was nonsense or frameshift. If the mutation is missense, splice or in-frame, it
is summed 0.2. After that, the final sum is divided by the number of mutations of the
gene. Finally, if the gene is known to be relevant in MSigDB, we sum 0.5 in the score. In
summary, all pairs of a mutated gene gj in a patient pi has a score s(pi, gj) that represents
how important that mutation can be in that patient.



Step 2: Building the mutation matrices In this step, we build two matrices: 1) Weighted
Mutation Matrix (WMM), and 2) Binary Mutation Matrix (BMM). In these matrices, the
rows are patients and columns are genes. In a WMM matrix wm, the entry wmij has the
value s(pi, gj) obtained in Step 1, i.e., the wm matrix is a real value matrix. After that, we
can derive a BMM matrix bm, where the entry bmij has value 1 if wmij is greater than
zero, and 0 otherwise.

Step 3: Building a related gene network In this step, we build a Related Gene Net-
work (RGN), that represents genes which are functionally related. Our method uses a
gene interaction network from known databases, as ReactomeFI. From the ReactomeFI
network, we build the RGN. We define a threshold γ, and for each gene pair {gi, gj},
we derive a measure using the Jaccard coefficient. For this measure, two genes gi and gj
are considered proximal if they share a large number of common neighbors. Considering
the set of neighbors of gi and gj as N(gi) and N(gj), respectively, we have the Jaccard
coefficient calculated as follows: J(gi, gj) =

|N(gi)∩N(gj)|
|N(gi)∪N(gj)| . If the measure is greater than

γ, then we placed an edge between gi and gj , with the measure as its weight. This process
is similar to the approach presented by [Ciriello et al. 2012], where the authors use the
Jaccard coefficient as the measure, and γ = 0.02.

Step 4: Building the graph In this step, we build a graph G, where the right side of
the graph are the genes, and the left side are the patients. To build G, we use the wm and
bm matrices obtained in Step 2, and the gene network RGN obtained in Step 3. In the
bm, when a mutation is observed in a gene gj in a specific patient pi, an edge is included
in G linking the patient pi with the gene gj in RGN. It is defined a weight in this created
edge, where the weight is the corresponding entry wmij . In Figure 2, we present a small
graphical example of the graph.

Figure 2. An example of the graph.

Step 5: Finding connected components After the Step 4, we have a graph G with
important information contained in itself. Now, in the Step 5, we find a set cc of connected
components of size k in the gene nodes of the graph. A k−size connected component in
a graph is a subgraph of size k, where there is at minimum one path between all the pair
of the k nodes, i.e., all nodes of the subgraph are connected to each other by their paths.
For example, in the Figure 2, considering k = 3, the component c1 = {g1, g2, g3} is
connected, but c2 = {g1, g3, g5} is not.

Step 6: Ranking the connected components First, in Step 6, we rank the components
found in the later step. The ranking is based on three aspects, considering the set of the
genes in one component c of the set cc. For this, we use three aspect functions I(c),
R(c), and W (c). For the next examples, it is considered the graph of the Figure 2 and the
component c = {g1, g2, g3}:



• The relevance of the mutation in the pair gene-patient: for this aspect, we define
the function I(c), that is the sum of the edge weights that link genes and patients.
For the running example we have that I(c) = 0.8 + 0.7 + 0.3 + 0.2 = 2.0.
• How related are the genes: in this aspect, we define the function R(c), that is the

sum of the weights of the edges of c, considering only the gene nodes of the graph
and their edges. For the running example we have that R(c) = 0.6 + 0.3 = 0.9.
• Mutual exclusivity pattern: to evaluate and quantify the mutual exclusivity among

the genes in the component, we use the weight functionW (G) defined in the Den-
drix method [Vandin et al. 2012]. The function considers the trade-off between
the coverage and exclusivity of a set of genes, looking for mutual exclusivity in
the BMM. The weight function is defined by W (G) = 2|Γ(G)| −

∑
g∈G |Γ(g)|,

where Γ(g) are the patients where g is mutated and Γ(G) are the patients where at
least one gene in G is mutated. For the running example we have that W (c) = 2.

We apply the aspect functions for all components of cc, then we normalized all
results in a scale between 0 and 1. Next, we define a rank function F (c) which considers
all the aspects presented, i.e., the rank function combines the result of these three normal-
ized aspect functions. For each aspect function, we have to choose a parameter, in order
to define the weights of each aspect. In this way, the rank function F (c) is defined as
F (c) = αI(c) + βR(c) + δW (c). With this, we can define the parameters α, β, and δ
according to the interest of the investigation. For example, if we are more interested in
considering the mutual exclusivity pattern, it is expected to define the δ parameter greater
than others. This makes the method flexible. Finally, for each component c in the set of
components cc, the rank function F (c) is applied. Then, according to the result of the
function, the set of the genes is sorted in decreasing order.

Experimental evaluation To evaluate our method, we will use real and artificial ge-
nomic data. The real data is necessary for biological evaluation, i.e., to know if the method
outputs results that make sense from a biological perspective. Artificial genomic data may
be used to analyze the statistical significance of the results, and assert if the method can
find the expected outcomes. We propose the experimental evaluation in three ways: 1)
Evaluation via real data: analyze how good is the method to identify known and new sig-
nificant genes for cancer, using known benchmarks and the expert analysis; 2) Evaluation
via statistical analysis: perform the statistical analyses used in the HotNet family meth-
ods; and 3) Comparison to other methods: compare to existing computational methods,
both from biological and computational perspectives.

5. Conclusion
This paper describes a proposal of a computational method for ranking significant set of
related genes in cancer. The method takes advantage of many kinds of data, as the type of
mutation for a gene in a patient, the interaction among genes, and the pattern of mutual
exclusivity. The method have parameters that can be adjusted according to the goal of the
analysis. Our main contribution is to put these data together and consider all of them in
the identification of possible significant set of genes in cancer using a graph. In compar-
ison with other methods, our method could better fit in the same category of MEMo and
MEMCover, although the method uses ideas from Dendrix and HotNet. We expect that
our method could have good results, because it uses some important strategies performed
by other classical and relevant methods, making an ensemble of these strategies.



The next steps are the implementation of the method and, eventually, make some
modifications in the presented steps. As possible improvements, we can cite add new pa-
rameters to create the WMM in Step 1, in order to define the scores, like mutational signa-
tures and information about cancer hotspots. Another improvement is to try new strategies
to build the RGN. We could define statistical analysis to better defines the thresholds and
the parameters of the rank function.
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