WIM - 16° Workshop de Informdtica Médica

Relational Databases versus Search Engines: A Performance
Comparison for Storing and Querying DICOM Metadata

Alexandre Savaris', Gabriela Bussolo Colonetti'?>,
Rodrigo Rodrigues Pires de Mello'%, Aldo von Wangenheim'+

! Telemedicine Laboratory
Brazilian Institute for Digital Convergence — INCoD
Florian6polis, Santa Catarina, Brazil

2Graduate Program in Information Systems — SIN
Federal University of Santa Catarina — UFSC
Floriandpolis, Santa Catarina, Brazil

3Graduate Program in Computer Science — CCO
Federal University of Santa Catarina — UFSC
Floriano6polis, Santa Catarina, Brazil

{savaris, gabriela, rmello}@telemedicina.ufsc.br, aldo.vwQufsc.br

Abstract. The Digital Imaging and Communications in Medicine (DICOM)
standard adopts files as individual, self-contained repositories for the storage
of a mixed of alphanumerical and binary content regarding radiological ima-
ges. Usually, groups of DICOM files are hierarchically organized in studies
and series, physically disposed into filesystem directory trees. Despite its sim-
plicity in storing content, ordinary filesystems do not provide index capabilities
allowing searches by content — restricting access by directory names and file
names. To surpass such limitation, Picture Archiving and Communication Sys-
tems (PACSs) often adopt Relational Database Management Systems (RDBMS's)
as metadata repositories, benefiting from its general-purposed index structures.
An alternative approach, not quite explored, considers the adoption of search
engines as metadata catalogs, aiming to minimize the search time by exploring
the engine’s index optimizations. In order to evaluate the performance on ma-
naging DICOM metadata, this work compares relational database instances to
a search engine in terms of storage space, storage time, and query time. Results
show that, in the best case, the search engine is slightly slower in storing con-
tent; however, it requires 69% less disk space for the same dataset. For queries,
in turn, the search engine performs up to 8.3 times faster in retrieving groups of
tags.

1. Introduction

Picture Archiving and Communication Systems (PACSs) have been developed over three
decades [Huang 2011, Lemke 2011], incorporating new technologies and evolving into
a complete integrated system far beyond radiology [Faggioni et al. 2011]. Nevertheless,
the management of digital images continue to be its most appealing characteristic — resul-
ting in improvements on productivity and efficiency, and in attending new or combined
examination modalities [Mansoori et al. 2012, Singh et al. 2011].

2557

XXXVI Congresso da Sociedade Brasileira de Computag@o

Digital images stored and managed by PACSs are structured according to the
precepts of the Digital Imaging and Communications in Medicine (DICOM) standard
[Pianykh 2012]. Each image is stored as a file, being persisted in ordinary or specialized
filesystems (according to the PACS implementation); usually, metadata extracted from
images are persisted as well — aiming to provide search capabilities without involving the
original files. Relational Database Management Systems (RDBMSs) are commonly adop-
ted as repositories for DICOM metadata. It is possible to define database schemas lined up
with the structure of DICOM tags, and the provided index structures contribute on redu-
cing query execution time [Savaris et al. 2014]. Alternatives to RDBMSs have been used,
exploring NoSQL implementations as a replacement for relational database instances
[Rascovsky et al. 2012, Bastiao Silva et al. 2014]; these alternatives provide schemaless
storage capabilities, aligned with native scalability and data partitioning.

This work investigates the behavior of search engines — tools not quite explored
in managing DICOM metadata — acting as a replacement for RDBMSs in indexing and
responding to queries. Experiments are performed in order to evaluate the performance
on storing partial- and full-content metadata extracted from DICOM images, as well as
in querying the stored content using different filter options and returning different sets of
tags.

The remainder of this work is organized as follows: Section 2 presents background
information about the DICOM standard, RDBMSs, RDB (Relational Database) instances,
and search engines; Section 3 describes the experimental environment and experiments
performed to measure performance on indexing DICOM metadata; Section 4 presents the
obtained results, discussed in Section 5; Section 6 concludes the work, including future
directions.

2. Background

2.1. The DICOM standard

Originally developed by the National Electrical Manufacturers Association (NEMA)
in a partnership with the American College of Radiology (ACR), the DICOM stan-
dard covers a set of non-proprietary specifications including structure, format, and ex-
change protocols for digital-based medical images. Since the release of its first ver-
sion in 1985 as ACR/NEMA 300, the standard evolves according to deliberations of
academies, medical device manufacturers, and scientific societies organized as work-
groups [Mildenberger et al. 2002, Bidgood Jr et al. 1997].

According to the standard a DICOM image is stored as a self-contained file,
grouping basic data elements (tags). Each tag is characterized by a Value Representa-
tion (VR) and a Value Multiplicity (VM), specifying the content supported by the tag,
formatting rules applicable to the content, and the number of allowed occurrences for the
content inside the tag [National Electrical Manufacturers Association 2015b]. Tags with
numerical and textual data types are candidates to be included in search and retrieval
operations, being used as filters or as returning values for query expressions.

2.2. Relational Database Management Systems and Relational Database Instances

A Database Management System (DBMS) is a collection of interrelated and persistent
data, together with a set of programs responsible for accessing that data and by guaran-

2558

WIM - 16° Workshop de Informdtica Médica

teeing availability, integrity, security, and independence [Sumathi and Esakkirajan 2007].
DBMSs implementing the relational model defined in [Codd 1970] are specified as
RDBMSs. RDB instances, in turn, can be defined as a set of physical structures organized
according to the relational model, responsible for the effective data storage and managed
by RDBMSs.

The physical structure of an RDB instance follows a well-defined database
schema, which describes and specifies its component objects (e.g. tables, fields, indexes,
integrity constraints) [Elmasri and Navathe 2010]. To be inserted into an RDB instance,
data must respect the underlying schema restrictions, which establishes a set of bounda-
ries. Changes in data storage requirements for an RDB instance demand adjustments in
its database schema definition.

2.3. Search engines

A search engine can be characterized as a practical application of Information Retrieval
(IR) techniques, delivering performance, scalability and adaptability to scenarios deman-
ding ranking, evaluation, and information storage, search and retrieval [Croft et al. 2009].
Commonly organized for storage and management of documents, it has loose restrictions
when compared to RDB instances in terms of data schemas.

In performing transformations to the original stored content, including tokeniza-
tion, stopping, and stemming [Baeza-Yates and Ribeiro-Neto 2011], search engines build
high-performance indexes capable of answering to heterogeneous queries, with expres-
sive results when compared to b-tree and hash indexes available on RDBMSs.

3. Materials and Methods

In order to evaluate the behavior of RDB instances and the search engine in managing
DICOM content, this work adapts a series of experiments from [Savaris et al. 2014] for
measuring storage space, storage time, and query time.

3.1. Experimental environment

The setup adopted for the experiments is based on the client-server model, with two nodes
communicating to each other at a time through a 1Gbps LAN as depicted in Fig. 1. Server
configuration: Intel® Xeon® X7460 2.66GHz, 1IGB DDR3 RAM, 536.9GB SATA-HD,
Debian 7.9 wheezy. Client configuration: Intel® Core' i7-3610QM 2.30GHz, 8GB
DDR3 RAM, 500GB SATA-HD, Linux Mint 17.2 rafaela.

For storage experiments, the client side is similar for both RDB instances and the
search engine. Using dcm4che! v.2.0.28 (an open source implementation of the DICOM
standard), a dataset composed by radiological images is read from an ordinary filesys-
tem and sent to the server according to the DICOM network protocol via C-STORE
[National Electrical Manufacturers Association 2015a]. The server side, in turn, has par-
ticularities for each evaluated implementation. RDB instances (Fig. 1, top) receive the
radiological images through dcm4chee? v.2.18.1 (an open source DICOM clinical data
management system, acting as a DICOM archive). For each received image, alphanu-
merical tags are extracted and inserted into a relational database instance managed by
PostgreSQL? v.9.1.18 (an open source ORDBMS — Object-Relational Database Manage-
ment System); next, the content from the image file is archived into a filesystem directory

2559

XXXVI Congresso da Sociedade Brasileira de Computag@o

tree. The search engine (Fig. 1, bottom), implemented using Elasticsearch* v.2.1.1, re-
ceives the radiological images through Mirth® Connect’ v.3.3.1.7856.b91 (an open source
interconnection engine). For each received image, its DICOM content is converted to an
XML (eXtensible Markup Language) representation followed by the extraction of its al-
phanumerical tags, which compose a JSON (JavaScript Object Notation) document whose
key-value pairs are fully indexed.

For queries, both client and server sides differ. RDB instances (Fig. 1, top)
respond do C-FIND [National Electrical Manufacturers Association 2015a] operations
fired from the client using dcm4che. Once received by dcmdchee on the server, the
search request is converted to a single or multiple SQL instructions used to access the
underlying relational database instance. Tag values who satisfy the search criteria com-
pose a resultset, sent from the ORDBMS to dcm4chee; the archive, then, converts the
resultset to a proper format according to the DICOM network protocol, returning it to
the requester. The search engine (Fig. 1, bottom) is accessed through HTTP (Hyper-
text Transfer Protocol) GET requests sent from the client using cURL® v.7.35.0, an open
source multi-protocol library and command line tool. Each request (received as a JSON
document) is processed by Elasticsearch, who returns another JSON document including
the found resultset.

'"https://dcmiche.atlassian.net/wiki/display/lib/
https://dcmdche.atlassian.net/wiki/display/ee2/
3http://www.postgresgl.org/
“nttps://www.elastic.co/products/elasticsearch
Shttps://www.mirth.com/Products-and-Services/Mirth-Connect
Shttps://curl.haxx.se/

Storage Query
3 “Client P “Server / Client N /Server
2 | demdche | | C-STORE [.
(dcmsnd) | C-FIND

s || I | ";’“““"" ; dcmachee
[7}] Fiatvets Filesystem interface (demaqr) |
|E interface .\\ — '/' “
m ; - sQL
Q dem /

—— et
Q / Client “ Server
g‘l | demache | | C-STORE | Mitth Connect .
c (demsnd) —T ™= mcoM T P — P
o | T li"’“’“‘” il““"" /Client \ ([Server \
S | T v | HTTP :
[cer | I
(1] | cURL . . Elasticsearch
8 .dem Elasticsearch ‘ . . |

Figure 1. Experimental environment for storage and query measurements using
RDB instances and the search engine.

2560

WIM - 16° Workshop de Informdtica Médica

3.2. Experiments

Both storage and query experiments are performed using computed tomo-
graphy (CT) images from the public available LIDC-IDRI DICOM dataset
[The Cancer Imaging Archive Team 2015], an integrating part of The Cancer Ima-
ging Archive (TCIA) [Clark et al. 2013]. The adopted dataset includes 243,954 images
with a resolution of 512x512, distributed in 1,010 series and in 1,010 studies belonging
to 1,010 patients, occupying 128.4GB of disk space.

Experiments performed for storage measurements send the whole dataset to both
RDB instances and to the search engine. Particularly to the relational database instances,
two configurations made in dcm4chee are evaluated: the original configuration and the
extended configuration. In the original configuration (depicted in the result charts as OC),
only tags that physically exist on the database schema as fields are persisted; remainder
tags are ignored. In the extended configuration (depicted in the result charts as EC), tags
that physically exist are stored into its respective fields; remainder tags are concatenated
into BLOB (Binary Large Object) fields, and become available for filtering and retrieval.

Query experiments are performed on a hierarchical-level basis; for each level
defined in the DICOM standard (patient, study, series, and image) a set of tags is re-
trieved (if available) from the stored dataset. Tags are retrieved individually or as groups
of 5, 10, 15, 20, 25, and 30 tags, and are filtered by the unique identifiers of each level
(patientid, studyinstanceuid, seriesinstanceuid, and sopinstanceuid) up to the top of the
hierarchy. All queries are executed 10 times each, using filter values randomly selected
from the dataset.

4. Results

The results acquired through experiments described in Section 3 depict the behavior of
RDB instances and the search engine in terms of the storage space needed to persist the
DICOM dataset, the time spent for the complete persistence, and the time needed to search
and retrieve single or multiple tags at once.

4.1. Storage space

The storage space needed for the persistence of the complete DICOM dataset is divided
into three volumes: data, indexes, and others. Data comprehend alphanumerical tag va-
lues, being stored according to the specificities of each implementation. Indexes are built
and updated based on data values; its organization, i.e., storage structure and order, is
implementation-dependent. Other structures store complementary data (e.g., data dictio-
naries, lock control files) used by RDBMSs and search engines for its initial configuration
and runtime management. Fig. 2 (left) shows the required space for each volume, for each
evaluated implementation.

In observing Fig. 2, it is possible to perceive the lack of the data volume for the
search engine. In this work, the search engine indexes JSON documents, each document
including the complete metadata set extracted from a DICOM image; therefore, it is as-
sumed that the index volume includes the data volume. RDB instances, in turn, adopt
separate physical structures for data and indexes, using the former as tag repositories and
the latter as structures for reducing query time. By indexing entire documents, the search

2561

XXXVI Congresso da Sociedade Brasileira de Computag@o

engine requires approximately 51% and 69% less disk space when compared, respecti-
vely, to the originally and extended configured RDB instances; when compared alone, the
index volume generated by the search engine is approximately 29% and 34% smaller than
its counterparts.

The storage space needed for the data volume increases considerably when an
extended configuration is adopted for RDB instances: selecting all alphanumerical tags
for persistence, the volume grows up approximately three times. Index volumes, in turn,
present a slight increasing of 7.73% on size. This behavior indicates that the underlying
database schema supports the insertion of new, heterogeneous sets of tags; however, it
does not indicate that such tags are indexed.

Despite its importance in regulating RDBMSs and search engine runtimes, the
storage space needed by the “others” volume is negligible: it corresponds to only 0.24%
of the total space required by all evaluated implementations.

4.2. Storage time

The time spent to persist the whole DICOM dataset is divided into the following ope-
rations: C-STORE, which includes the transmission of all DICOM images from a client
to the server hosting the evaluated implementations respecting the DICOM network pro-
tocol; conversions from DICOM to XML, performed automatically by the interconnection
engine at the reception of each DICOM image; conversions from XML to JSON, per-
formed by the interconnection engine to provide content supported by the search engine;
and requests and responses via HTTP POSTs, performed by the interconnection engine
to send data to the search engine for indexing. Individual times for each operation can be
seen in Fig. 2 (right).

Common to all evaluated implementations, the C-STORE is also the most time-
consuming operation. According to the chart in Fig. 2, storing and indexing all metadata
tags contribute to increase the storage time in approximately 5.9 and 5.5 times when com-
paring the originally configured RDB instance to, respectively, the extended configured
RDB instance and the search engine. When comparing similar configurations, i.e., those
who store the full set of tags, the search engine performs 7% faster.

1200 35

1000

g

Storage space (MB)
PO
g B
Storage time (hours)
&

g

il RO8 instance [OC) RDE instance (EC) Search engine
RDB instance (OC) RDB instance [EC| Search engine @ HTTP POST 1.57
[@0thers 2 2 1 XML 1o 50N 0.57
: 465 504 313 @ DICOM to XML 0.95
ilb;m 177 567 WC-STORE 573 33.70 31.32

Figure 2. Left: Storage space, in MB, used to persist the whole DICOM dataset.
For both RDB instances and the search engine, the stored content is divided into
data, indexes, and other structures. Right: Storage time, in hours, used to persist
the whole DICOM dataset. For the search engine, the cumulative time includes
conversions between data formats and HTTP POST operations.

2562

WIM - 16° Workshop de Informdtica Médica

For both RDB instances, the C-STORE operation encompass the transmission of
DICOM content from client to server, the parsing and extraction of alphanumerical tags,
and the insertion of the extracted tags into the underlying database. For the search engine,
in turn, the C-STORE operation performs only the transmission of DICOM content from
client to server — parsing, extraction, and indexing are performed by conversion operati-
ons and HTTP POST operations. In numbers, converting from XML to JSON correspond
to 1.65% of the total storage time, followed by the conversion from DICOM to XML
(2.76%) and HTTP POST executions (4.55%). Together with the C-STORE operation,
conversions and HTTP POSTs contribute to classify the search engine as the worst op-
tion for storage, being six times slower than the originally configured RDB instance and
approximately 2% slower than the extended configured RDB instance.

4.3. Query time

The time spent on searching and retrieving single or multiple tags at once is a sum of
individual times for the following steps: a query, sent from a client to the server specifying
filtering parameters and tags to be retrieved; the processing, including the access to the
underlying databases and/or indexes to effectively perform the search; and the response,
sent from the server to the client with the resulting dataset. These steps are equivalent to
a DICOM C-FIND operation [National Electrical Manufacturers Association 2015a].

Fig. 3 depicts the behavior of the evaluated implementations in searching for tags
related to the four hierarchical levels defined by the DICOM standard (patient, study,
series, and image). According to the chart, the greater the number of tags per level, the
greater the time needed to search and retrieve such tags. This behavior is consistent in
both RDB instances, not considering some exceptions (e.g., individual tags, extended
RDB instance). Being approximately 10% slower than the originally configured RDB
instance, the extended configuration is penalized by the overhead on managing tag values
stored into BLOB fields. Despite its flexibility in storing heterogeneous sets of tags, this
approach compromises the search performance due to the parsing step needed to identify
and extract tags that are not persisted as individual, schema-defined fields.

When compared to both RDB instances, the search engine performs better; it is
approximately 4.1 times faster than the original configuration and 4.5 times faster than the
extended configuration, summarizing all results. Executing a level-by-level comparison,
performance gains on adopting the search engine vary from 2.3 times (related to the ori-
ginally RDB instance, querying tags for the patient level) to 6.1 times (querying tags for
the study level, in both RDB instances). The search engine surpasses both RDB instances,
also, in comparing results for queries searching for individual tags or groups of tags: re-
ductions in time vary from 2.3 times (querying groups of 10 tags, in both RDB instances)
to 8.3 times (querying groups of 15 tags, in the originally configured RDB instance).

5. Discussion

When dealing with DICOM indexing, it is paramount to observe the final objectives to
be accomplished. An uncontextualized analysis of the chart presented in Fig. 2 (right)
indicates a clear advantage in adopting the originally configured RDB instance, due to
the reduced time spent on storing content. For scenarios with limited query possibilities,
restricted to the available physical structures, this assumption is valid; however, the re-
ferred instance does not provide a direct solution for search and retrieval of tags that are

2563

XXXVI Congresso da Sociedade Brasileira de Computag@o

)

E

L]

£

£

&

S

=}

RDB instance (OC) RDB instance (EC) Search engine

@ Patient (16 tags) (5302 (2324|1159 (1163 | 590 9355|2332)11170|1162| 595 1495|1395(1450| 163 | B2
@Study (27 tags) |7725|3471(1747 (1167|1163 |1166| 597 |7700|3498 1755|1162 1165|1178 | 595 |1450| 501 | 271 | 94 | 177 | 188 | 93
@ Series (4 tags) (1257 591 1304 591 436 | 94
B Image (25 tags) |7675|2974|1763 (1183|1168 | 590 8021129411768 |1174|1167 | 585 1913| 420 | 333 | 168 | 169 | 80

Figure 3. Query time, in milliseconds, used to search and retrieve tags. Queries
were executed for each DICOM hierarchical level, retrieving individual tags and
groups of tags.

not stored as individual database fields. The economy in storage space and in storage time
may be insufficient to justify the lack of query flexibility.

Built over the same underlying database schema than the originally configured
RDB instance, the extended configured RDB instance uses the available BLOB fields as a
workaround for the physical limitations on storing DICOM tags. It is effective in the sense
of guaranteeing full-content storage; however, the approach does not reduce search and
retrieval times due to the lack in indexing (as can be seen in Fig. 2 - left, when comparing
the size of the index volumes between RDB instances). Assuming that the storage of a tag
is performed once, and the search and retrieval of this same tag is performed whenever
necessary, performance boosts for queries are at least desirable.

The adoption of schema-free or schema-flexible solutions is an alternative to the
limitations of both RDB instances. Using an approach based on JSON documents, the
search engine provides flexibility for both storage and query operations. Metadata ac-
quired from radiological images are persisted and indexed in full, requiring a fraction of
the space for storage and reducing significantly the time needed for content search. Ano-
ther characteristic of such solutions, not explored in this work, is its native scalability;
in scenarios like federated PACSs, high-demanding by nature, the adoption of extensible
infrastructures — malleable enough to be reconfigured and to grow as needed — is diffe-
rential. Here, the replacement of RDBMSs by less-constrained search engines turns out
to be a strong option.

6. Conclusion

This work compares a search engine to relational database instances in the context of
DICOM metadata management, observing its behavior in terms of storage space, storage
time, and query time. RDB instances are configured to store partial- and full-content
metadata extracted from a DICOM dataset; the search engine, in turn, indexes the same
full-content metadata as JSON documents. The storage and query operations are executed
similarly to DICOM C-STORE and C-FIND.

2564

WIM - 16° Workshop de Informdtica Médica

The acquired results attest the viability in adopting search engines as alternatives
to relational databases in support for PACSs. Requiring less storage space and deman-
ding a similar amount of time to store all alphanumerical tags when compared to an RDB
instance, the evaluated search engine performed better in searching and retrieving indi-
vidual tags and groups of tags for all DICOM hierarchical levels. Demanding 69% less
storage space to a gain of 8.3 times in query response times, in the best case, the search
engine outperforms the RDB instances in the majority of the experiments.

As future work, it is suggested to extend queries aiming to verify the index respon-
ses, both in relational database instances and in the search engine, to predicates involving
intervals, lists of values, and patterns. It is suggested, also, the evaluation of the search
engine deployed in a cluster, measuring the impact of distribution in storing and querying
DICOM tags.

Acknowledgment

This work was supported by Santa Catarina’s State Health Department (SES/SC),
CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnoldgico), and FAPESC
(Fundagdo de Amparo a Pesquisa e Inovagdo do Estado de Santa Catarina).

References
Baeza-Yates, R. and Ribeiro-Neto, B. (2011). Modern Information Retrieval - the con-
cepts and technology behind search. Pearson.

Bastiao Silva, L. A., Beroud, L., Costa, C., and Oliveira, J. L. (2014). Medical imaging
archiving: A comparison between several nosql solutions. In Biomedical and Health
Informatics (BHI), 2014 IEEE-EMBS International Conference on, pages 65—68.

Bidgood Jr, W. D., Horii, S. C., Prior, F. W., and Van Syckle, D. E. (1997). Understanding
and using dicom, the data interchange standard for biomedical imaging. Journal of the
American Medical Informatics Association, 4(3):199-212.

Clark, K. et al. (2013). The cancer imaging archive (tcia): Maintaining and operating a
public information repository. Journal of Digital Imaging, 26:1045-1057.

Codd, E. F. (1970). A relational model of data for large shared data banks. Communica-
tions of the ACM, 13(6):377-387.

Croft, B., Metzler, D., and Strohman, T. (2009). Search Engines: Information Retrieval
in Practice. Pearson.

Elmasri, R. and Navathe, S. B. (2010). Fundamentals of Database Systems. Pearson.

Faggioni, L., Neri, E., Castellana, C., Caramella, D., and Bartolozzi, C. (2011). The
future of pacs in healthcare enterprises. European Journal of Radiology, 78:253-258.

Huang, H. K. (2011). Short history of pacs. part i: Usa. European Journal of Radiology,
78:163-176.

Lemke, H. U. (2011). Short history of pacs. part ii: Europe. European Journal of Radi-
ology, 78:177-183.

Mansoori, B., Erhard, K. K., and Sunshine, J. L. (2012). Picture archiving and communi-
cation system (pacs) - implementation, integration and benefits in an integrated health
system. Academic Radiology, 19(2):229-235.

2565

XXXVI Congresso da Sociedade Brasileira de Computag@o

Mildenberger, P., Eichelberg, M., and Martin, E. (2002). Introduction to the dicom stan-
dard. European Radiology, 12(4):920-927.

National Electrical Manufacturers Association (2015a). Dicom ps3.4 2015c - service
class specifications. Date last accessed 2016-01-31.

National Electrical Manufacturers Association (2015b). Dicom ps3.5 2015¢ - data struc-
tures and encoding. Date last accessed 2016-02-03.

Pianykh, O. S. (2012). Digital Imaging and Communications in Medicine (DICOM) — A
Practical Introduction and Survival Guide. Springer.

Rascovsky, S. J., Delgado, J. A., Sanz, A., Calvo, V. D., and Castrillén, G. (2012). In-
formatics in radiology: Use of couchdb for document-based storage of dicom objects.
RadioGraphics, 32(3):913-927.

Savaris, A., Hirder, T., and Wangenheim, A. v. (2014). Dcmdsm: a dicom decomposed
storage model. Journal of the American Medical Informatics Association, 21(5):917—
924.

Singh, R., Chubb, L., Pantanowitz, L., and Parwani, A. (2011). Standardization in digital
pathology: Supplement 145 of the dicom standards. Journal of Pathology Informatics,
2(1):23.

Sumathi, S. and Esakkirajan, S. (2007). Fundamentals of Relational Database Manage-
ment Systems. Springer.

The Cancer Imaging Archive Team (2015). Lidc-idri. Date last accessed 2016-02-02.

2566

