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Abstract. This paper explores how numerical methods and parallel computing
can be used to accelerate simulations of cardiac arrhythmia. The simulations
are based on the monodomain cardiac model, governed by a set of partial differ-
ential equations (PDEs). The new software could accurately reproduce various
types of arrhythmia, such as spiral waves and reentry, by solving the PDEs us-
ing an Alternating Direction Implicit (ADI) fractional splitting method. Parallel
programming via OpenMP led to a significant reduction in computation time,
making the simulations feasible for practical applications.

1. Introduction
The American Heart Association has reported that cardiovascular diseases were respon-
sible for 27% of the world’s total deaths in 2019, highlighting the importance of studying
the heart and its mechanisms [Tsao et al. 2022]. Computer and mathematical modeling
have played a significant role in the healthcare, including the study of arrhythmias asso-
ciated with the formation of re-entry waves.

This work couples a cellular ten Tusscher-Noble-Noble-Panfilov model (TNNP)
[Ten Tusscher and Panfilov 2006] with the monodomain model and employs Forward Eu-
ler (FE) [Strikwerda 2004] and an Alternating Direction Implicit approximation (ADI)
[Douglas 1962] with operator-splitting numerical implementations. The results demon-
strate that the new scheme based on operator splitting and ADI is robust and faster
than the traditional FE. Additionally, the new software was parallelized via OpenMP
[OpenMP 2023] and was able to reproduce cardiac arrhythmia, such as spiral wave and
re-entry, making it a valuable tool in the study of cardiac mechanisms.

2. Mathematical Methods

2.1. Monodomain model

When in the form of a reaction-diffusion model, the monodomain equations are given by
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+ Iion = ∇ · (σ∇V ) , Iion = g(V, η, t),
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= f(V, η, t), (1)

where χ is the surface-to-volume ratio of cells (mm−1), Cm is the specific membrane
capacitance per unit area (µF mm−2), V is the membrane voltage (mV), η is a vector of
state variables, Iion is transmembrane current density (µA mm−2), σ is the conductivity
tensor (mS mm−1), and f is a vector-valued function.



2.2. Ten Tusscher-Noble-Noble-Panfilov models
In 2003, was presented a model for human ventricular tissue able to reproduce action po-
tentials of human epicardial, myocardial and endocardial cells. The electrophysiological
behavior of a single cell is described by

dV

dt
= − 1

Cm

(Iion + Is), (2)

where Iion is the sum of all transmembrane ionic currents and Is is the density of an im-
posed stimulus current. The model can be represented by 19 ordinary differential equa-
tions. The ionic equations are described in detail in [Ten Tusscher and Panfilov 2006].

The monodomain reaction-diffusion equations coupled to the TNNP model are
obtained by applying (2) and the ionic equations in (1), which can be written as
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where the diffusion coefficient is D = σ
χ

and Itotal = Iion + Is.

The reaction and diffusion part may be separated employing the operator splitting
method. In this way, each step consists on solving two problems:

• System of ODEs
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• Parabolic PDE
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)
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where δ2zVk = (Vk−1 − 2Vk + Vk+1) /∆z2 represents a second-order derivative
approximation in an arbitrary direction z.

3. Numerical Methods
3.1. Forward Euler
Also known as explicit Euler, FE approximates the first-order derivative by progressive
differences. In FE scheme with operator splitting, ODEs (5) and (6) respectively become
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And, the PDE (7) becomes
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3.2. Alternating Direction Implicit Approximation

The basic idea is to apply a dimension splitting of the Laplacian operator to divide the
problem into easier one-dimensional problems. In this ADI, the system of ODEs contin-
ues to be solved in the same way of the FE, given by (8) and (9). For the PDE, we use an
implicit scheme in each direction. Therefore, the PDE (7) is splitted in two parts:
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This kind of scheme can also be called local one-dimensional or fractional split-
ting [Lapidus and Pinder 1999]; in this work, coupled with backward Euler scheme.
The method inherits the stability and first-order accuracy from backward Euler. When
∆x = ∆y and λ = D∆t/∆x2, Eq. (11) and (12), rearranged, can be rewritten as
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The resulting linear systems are tridiagonal and can be solved efficiently by
Thomas algorithm, so reduced computational cost is an advantage of ADI.

4. Results
Parameters were obtained from benchmark of cardiac tissue electrophysiology simulators
[Niederer et al. 2011]. The numerical solutions were obtained for a two-dimensional tis-
sue of 2× 2 cm, with ∆x = ∆y = 0.01 cm, during an interval of 500 ms. Four different
time steps were used to compare the two methods. The code was implemented in C and
parallelized with OpenMP. Simulations were performed in a computer with processor
AMD Ryzen 7 3700U 2.30 GHz.

Figure 1 shows a situation with a re-entry wave. Ventricular fibrillation is a
dangerous form of arrhythmia caused by breakup of re-entrant waves in cardiac tissue
[Weiss et al. 2002]. For that, a second stimulus is applied after the first wave, which initi-
ates the self-sustaining spiral. Figure 2, plotted at t =500 ms, shows that ADI with larger
∆t is stable and forms a spiral as well as the FE. Both methods can correctly simulate that
arrhythmia. To generate the spiral wave, it was applied a stimulus current of Is = −38
µA at different times and areas. First, at t = 0 ms from x = 0 cm to x = 0.04 cm and
along the entire length of y, producing a planar wave front propagating in one direction.
The other, at t = 300 ms in a square from x = 0 cm to x = 1 cm and from y = 0 cm to
y = 1 cm, producing a second wave front that curls.

4.1. Methods performance

The errors, stability, whether the spiral was formed and the execution times of each
method were analyzed for different ∆t. Once there is no analytical solution, each method
was compared with its own result with ∆t = 0.005 ms. Metrics for error were Root Mean
Square Error (RMSE) and Relative Error - Percentage (REP).



Figure 1. Wave propagation in excitable tissue

Figure 2. Difference between FE with ∆t = 0.04 ms and ADI with ∆t = 0.06 ms

Tables 1 and 2 show the performance of FE and ADI, respectively, when simu-
lating with 4 threads. In Table 1, lines with no results were consequence of the violation
of the Courant–Friedrichs–Lewy (CFL) stability condition [Niederer et al. 2011]. The
results presented in Tables 1 and 2 demonstrate that ADI outperformed FE in terms of
robustness and speed, reproducing the spiral wave in 408 s compared to 609 s for FE.

The mean times spent to solve ODEs and the PDE are presented in Table 3a (FE)
and 3b (ADI), where SV is the standard deviation for three executions. For both methods,
it is possible to notice, as shown in [Sachetto Oliveira et al. 2018], that the non-linear part
of calculating ODEs, the same for both method, was responsible for the largest portion of
the execution time even with the increase of ∆t. This is due to the amount and complexity
of the calculations that must be done in this step.



Table 1. FE performance

∆t (ms) RMSE REP (%) Spiral Stability Exec. Time (s)

0.02 0.66 2.15 Formed Stable 1174.52
0.04 2.31 7.56 Formed Stable 609.40
0.06 - - Didn’t form Unstable -
0.08 - - Didn’t form Unstable -

Table 2. ADI performance

∆t (ms) RMSE REP (%) Spiral Stability Exec. Time (s)

0.02 4.96 16.41 Formed Stable 1189.69
0.04 9.83 32.53 Formed Stable 571.44
0.06 16.19 53.58 Formed Stable 408.17
0.08 80.61 266.83 Didn’t form Stable 312.98

Table 3. Time to solve ODEs and the PDE

(a) FE times (s)

∆t (ms) ODEs ± SV PDE ± SV

0.02 1183.17±16.67 5.86 ±0.12
0.04 591.20 ±10.45 2.92±0.07

(b) ADI times (s)

∆t (ms) ODEs ± SV PDE ± SV

0.02 1199.23±16.85 14.23±0.10
0.04 584.84 ±15.33 7.15±0.15
0.06 402.39±1.06 4.79±0.02
0.08 305.40±2.86 3.61±0.03

The speedups achieved by a parallel algorithm are calculated by dividing the serial
execution time by the parallel one. They were calculated with ∆t = 0.02 ms for both
methods and presented in Table 4. Parallelization of the software with OpenMP achieved
speedups around 2.5, with 4 threads, for both methods.

Table 4. Speed-ups

Number of
threads FE ADI

1 1.00 1.00
2 1.57 1.59
4 2.54 2.48



5. Conclusion
We implemented the monodomain equation with a ten Tusscher-Noble-Noble-Panfilov
model using Forward Euler and an Alternating Direction Implicit method, with serial and
parallel execution. ADI has proven to be powerful for applications in cardiac electrophys-
iology, due to its stability and velocity when compared to FE. The proposed approach can
potentially be applied developing new treatments and therapies for heart diseases. Future
work can focus on adding biological factors to the model to improve efficacy for clinical
applications, while also improving understanding about complexity, sensitivity, and vali-
dation. We also propose implement ADI schemes with minor errors, and use a machine
with more threads in the future. To the best of our knowledge, this is the first work to
apply this ADI fractional splitting method to this type of cardiac behavior and to compare
the results with FE.
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