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Abstract. As biological sequence storage grows, extracting information be-
comes crucial for advances in health. The complexity of these sequences re-
quires sophisticated techniques such as Machine Learning (ML). Nevertheless,
developing strong ML solutions demands specialized knowledge that is often
beyond the reach of many life sciences researchers, further widening dispari-
ties. Considering this, we present BioPrediction, an end-to-end ML framework
that creates models to identify interactions between sequences, such as non-
coding RNA (ncRNA) and protein pairs, without human intervention. The re-
sults highlight its superior performance over expert-crafted models across mul-
tiple datasets. This automation opens novel avenues for unraveling complex
interactions and exploring disease mechanisms.

Resumo. À medida que o armazenamento de sequências biológicas aumenta,
extrair informações torna-se crucial para avanços na saúde. A complex-
idade dessas sequências exige técnicas sofisticadas, como Aprendizado de
Máquina (AM). No entanto, desenvolver soluções fortes de AM demanda con-
hecimento especializado, muitas vezes fora do alcance de muitos pesquisadores
das ciências da vida, ampliando ainda mais as disparidades. Considerando
isso, apresentamos o BioPrediction, um framework de AM ponta a ponta que
cria modelos para identificar interações entre sequências, como pares de RNA
não codificante e proteı́nas, sem intervenção humana. Os resultados destacam
seu desempenho superior sobre modelos criados por especialistas em múltiplos
conjuntos de dados. Essa automação abre novos caminhos para desvendar
interações complexas e explorar mecanismos de doenças.

1. Introduction
The advancement of technologies for exploring the cellular environment of-
fers researchers new methods to study disease pathways, such as in oncology
[Shaath et al. 2022] and infectious diseases [Zhong et al. 2021]. A notable innovation is
Next Generation Sequencing (NGS) for DNA sequencing, which significantly amplifies
the volume of biological data in databases [Jiang et al. 2022]. Consequently, information
about various organisms is now available across numerous datasets [P and M. 2021]. To
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effectively extract and utilize this wealth of data, is essential the development of com-
putational tools capable of analyzing these biological sequences for various applications
[Chicco 2017], e.g., ML techniques.

A sub-problem involving the analysis of biological sequences with ML is the inter-
action between non-coding RNAs (ncRNA) and proteins, commonly referred to as RPIs.
ncRNAs are a class of genetic material that cannot simply be categorized as part of the
non-essential DNA in the genome [Zhang et al. 2023], as they play a complex role with
numerous functions in the organism [Kopp and Mendell 2018]. Different structures are
present in ncRNAs. Among them, are Long Non-Coding RNAs (lncRNAs), which play
a crucial role in regulating genetic expressions and chromatin [Kopp and Mendell 2018].
Furthermore, the expression levels of some lncRNAs are directly related to the initial
regulation pathways of solid cancers, conferring them a significant role as biomarkers
[Cantile et al. 2021]. Exploring these interactions can generate significant benefits in sev-
eral fields, such as (1) cancer research and treatment [Shaath et al. 2022], (2) genetic
disorders [Ferre et al. 2016, Qin et al. 2021], (3) viral infections [Wang et al. 2020], and
(4) human disease [Armaos et al. 2021].

Despite the existence of numerous ML-based approaches for predicting RPIs,
there is substantial scope for enhancing their robustness and generalization capabili-
ties. Furthermore, working with biological sequences presents additional challenges,
including dealing with categorical and non-structured data, which complicates the anal-
ysis [Bonidia et al. 2022]. Specifically, in the context of RNA-protein interactions, uti-
lizing ML approaches requires the extraction of relevant features from both molecules
to develop an effective predictive model. This development step is called feature en-
gineering, typically performed by experts, and the most time-consuming step in ML
[Waring et al. 2020]. Although libraries and environments are widely available, users
often face challenges when beginning their research or developing projects with ML due
to a lack of expertise in the field [Dwivedi et al. 2023].

This challenge has led to an increasing debate in the literature on the democ-
ratization of Artificial Intelligence (AI), focusing on various facets, one of which is the
democratization of the development of ML models [Seger et al. 2023]. In this context, de-
veloping open-source tools and integrating automated pipelines are crucial steps toward
this democratization [Seger et al. 2023, Thirunavukarasu et al. 2023, Vanschoren 2023],
aiming to enable non-experts to leverage the benefits of AI. Considering this, we intro-
duce BioPrediction, an end-to-end framework built to conduct feature engineering and
ML model training autonomously, based on user input, to accurately predict RPIs. This
framework works without the need for direct user intervention.

BioPrediction encompasses the entire ML model development process, includ-
ing feature extraction and selection, optimal model identification, hyperparameter tuning,
and interpretability reports. This framework provides that researchers or other interested
parties who are not AI specialists can develop a model suitable for their data and pre-
dict interactions between biological molecules. Our research is guided by the following
Research Question (RQ):



RQ: Is it possible to develop an autonomous, comprehensive ML framework that op-
erates independently of expert input, aiming to generate classification and detection
models for interactions between sequence pairs, like ncRNA-protein, that perform on
par with those designed by specialists?

To the best of our knowledge, this is the first study to propose an end-to-end
framework to classify interactions between biological sequences, competitive with mod-
els developed by experts. Finally, BioPrediction could be a step in the democratization
of ML for studying interactions between molecular sequences, facilitating progress in
metabolism research, and offering insights into disease-associated pathways. Our frame-
work is available on GitHub1.

2. Workflow: BioPrediction

BioPrediction has an automated workflow for building an end-to-end ML pipeline to
predict interactions, along with a report designed to explore some characteristics of the
model. To initiate the ML model construction, it is essential to input the path to the data,
which consists of three main files: the list of known interactions and dictionaries contain-
ing the sequences for all proteins and RNAs. Afterward, the feature extraction module
starts, where features are obtained to characterize each biological sequence. More specif-
ically, there are two main types of features: structural and topological.

Structural features refer to those extracted directly from the primary sequence of
each molecule, including examples such as amino acid frequencies, Shannon entropy,
and physicochemical properties of each amino acid, such as hydrophobicity (H1). On
the other hand, topological features are derived from the interaction network present ex-
clusively in the training set. These features include the number of interactions and other
graph measures, such as centrality and betweenness. Thus, each RNA and protein has a
set of numerical columns that characterize their various properties.

Next, datasets are constructed for the modeling stage by concatenating the features
of proteins and RNAs with the interaction table, creating a table where each row contains
the features of the sequences and the label associated with that pair. In total, 5 subsets
of features were created, four exclusively with structural features and one exclusive for
topological features. The subsequent step involves training partial models for each fea-
ture set, aiming to reduce the dimensionality of the problem and, consequently, improve
efficiency in the final execution. After constructing these partial models, the probability
of belonging to the interaction class is used as the new compressed feature.

This procedure is repeated for all feature sets, resulting in the creation of a final
dataset with all compressed features, which will be trained again to combine partial de-
cisions into a final one. Finally, using the training sets, the model is constructed to make
the definitive decision on which class each interaction pair will be classified into. Both
the partial model and the final model are based on decision trees, such as Random For-
est, Catboost, and XGBoost. Once the model is ready, an interpretability report based
on the SHAP Values library is generated to elucidate the decision-making process, and a
usability report is created to clarify the metrics and properties of the model to the user.

1https://github.com/0nurB/BioPredictionRPI-1.0



2.1. Validation
To assess our framework’s efficacy, we benchmarked it against other tools designed for
RPI prediction across five distinct datasets (RPI369, RPI488, RPI1087, RPI2241, and
NPInter), all referenced in the RPITER article [Peng et al. 2019]. Our goal was to com-
pare the performance of BioPrediction with that of the RPITER model and additional
tools cited in the original publication. The dimensions of each dataset are detailed in Ta-
ble 1. In all experiments, the mean and standard deviation will result from 20 executions
of BioPrediction. It’s important to clarify that our goal is not to surpass all studies in
the literature. Instead, we aim to create a framework that does not require specialized
knowledge for execution, offering performance similar to models developed by experts.

Table 1. Summary of datasets in the experiment.

Dataset Interaction pairs Non-interaction pairs RNAs Proteins
RPI369 369 369 332 338
RPI488 243 245 25 247

RPI1807 1807 1436 1078 3131
RPI2241 2241 2241 841 2042
NPInter 10412 10412 4636 449

3. Summary of Results, Discussions and Main Contributions
In this section, we provide a synthesis of experimental results, highlighting how Bio-
Prediction compares with studies from the existing literature. This assessment includes
RPI369, RPI488, RPI1807, RPI2241, and NPInter, as detailed in Table 2. Overall, Bio-
Prediction demonstrated competitive performance across these datasets when measured
against the studies cited, as verified by the Mann-Whitney U one-sided test with a signif-
icance level (alpha) of 0.05.

In essence, although certain metrics may show higher values in isolation, there
is no statistically significant difference in the overall effectiveness of the models. Fur-
thermore, in our comprehensive analysis across four studies and five datasets, we metic-
ulously examined a total of 120 metrics. Impressively, only 29% of these metrics showed
performance exceeding that of BioPrediction by more than 1%. This finding serves as
preliminary evidence of BioPrediction’s capability to match, and in some cases, rival the
performance of models developed by domain experts.

Our comprehensive validation across various datasets underscores BioPrediction’s
robustness, establishing it as a flexible framework that enables non-experts to construct
robust predictive models. This level of accessibility diminishes the need for advanced ML
expertise and promotes a cooperative atmosphere. Despite areas for improvement, com-
prehensive evidence suggests that BioPrediction not only competes but also challenges
the dominance of expert-developed models, affirming its position as a viable alternative
for biological interaction prediction tasks.

Finally, BioPrediction was selected to participate in Prototypes for Humanity
20232, during COP28-Dubai, chosen from among 3000 entries, from more than 100 coun-
tries, standing out among the 100 best in the world. This study is also part of a compre-
hensive set of solutions that prioritize positive outcomes with a significant impact on

2https://www.prototypesforhumanity.com/project/bioprediction-framework/



Table 2. Performance measuring accuracy (ACC), precision (Pre), recall (Rec),
specificity (Spec), Matthews correlation coefficient (MCC), and Area Under
the Curve (AUC).

Dataset Study ACC Pre Rec Spec MCC AUC
RPI369 RPITER 72.8 70.1 79.7 65.9 46.1 82.1

IPMiner 70.0 84.0 78.4 56.0 42.8 70.0
RPISeq-RF 71.3 72.4 71.6 70.2 42.6 71.3
lncPro 50.2 51.2 23.7 77.1 00.9 46.8
BioPrediction 79.1 ± 2.0 75.8± 3.0 88.7 ± 3.1 69.2± 6.0 60.4 ± 4.1 89.5 ± 1.9

RPI488 RPITER 89.3 94.3 83.9 94.7 79.3 91.1
IPMiner 89.3 95.1 94.6 83.5 79.3 89.3
RPISeq-RF 88.3 93.5 92.8 83.1 77.1 88.3
lncPro 85.6 94.0 77.0 94.7 72.5 92.9
BioPrediction 88.7± 1.4 92.2± 2.3 84.8± 0.8 92.5± 2.7 78.0± 2.6 90.1± 1.5

RPI1807 RPITER 96.8 95.9 98.6 94.6 93.6 99.0
IPMiner 96.8 95.5 96.5 97.8 93.5 96.6
RPISeq-RF 97.0 96.2 97.0 97.6 93.9 96.9
lncPro 47.2 53.2 44.5 50.6 -4.9 50.6
BioPrediction 95.3± 0.2 96.3 ± 0.5 95.3± 0.4 95.3± 0.7 90.5± 0.4 98.3± 0.3

RPI2241 RPITER 89.0 87.1 91.7 86.3 78.1 95.7
IPMiner 86.1 88.2 87.7 84.1 72.4 86.1
RPISeq-RF 85.1 86.3 86.1 83.8 70.2 85.1
lncPro 60.6 63.2 51.8 69.5 21.6 64.4
BioPrediction 84.8± 0.3 86.3± 1.0 82.9± 0.8 86.7 ± 1.3 69.8± 0.7 92.4± 0.2

NPInter RPITER 95.5 93.9 97.3 93.7 91.0 98.5
IPMiner 95.7 95.6 95.6 95.8 91.4 95.7
RPISeq-RF 94.3 93.6 93.7 94.9 88.5 94.3
lncPro 50.8 50.5 73.9 27.6 1.7 51.7
BioPrediction 95.3± 0.1 94.8± 0.1 95.8± 0.1 94.7± 0.1 90.5± 0.1 98.5 ± 0.1

society, linked to AutoAI-Pandemics3, which was selected as one of the most promising
proposals (out of 221 entries) in a global competition, held by the Global South Artificial
Intelligence for Pandemic and Epidemic Preparedness and Response Network (AI4PEP)4.
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