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Abstract. This study investigates the impact of class balancing and regulariza-
tion on improving diagnostic agreement in histological images. For example,
U-Net models applied to the Prostate Cancer Grade Assessment dataset show
that class balancing, combined with traditional loss functions, increases image
agreement by up to 6 percentage points. Combining balancing with Focal Loss
boosts classification agreement by an average of 13 percentage points compared
to using imbalanced datasets with traditional loss functions. A case study on the
analysis of prostate Gleason patterns 3 and 4 illustrates the importance of this
discussion to clinical decisions and the prognosis of prostate cancer patients.

Resumo. Este estudo investiga o impacto do balanceamento de classes e da
regularização na melhoria da concordância de diagnósticos baseados em ima-
gens histológicas. Modelos U-Net aplicados na análise de biópsias de câncer
de próstata, por exemplo, mostram que o balanceamento de classes, combinado
com funções de perda tradicionais, aumenta a concordância das imagens em até
6 pontos percentuais. A combinação de balanceamento com Focal Loss eleva o
acordo de classificação em média 13 pontos percentuais, em comparação com o
uso de datasets desbalanceados com funções de perda tradicionais. Um estudo
de caso sobre a diferenciação entre os padrões Gleason 3 e 4 ilustra a utilidade
das técnicas em decisões clı́nicas e no prognóstico de pacientes com câncer de
próstata.

1. Introdução
Uma das aplicações mais relevantes da inteligência artificial, em especial do aprendizado
profundo (AP), está relacionada ao auxı́lio para o diagnóstico médico através de ima-
gens [Raciti et al., 2020]. Arquiteturas de redes neurais convolucionais (CNN) como a
U-Net, por exemplo, podem ser aplicadas na segmentação de imagens histológicas obtidas
de biópsias para o diagnóstico de diversos tipos de câncer.

O adenocarcinoma prostático (AcP) é o câncer mais comum entre os homens,
representando 10,2% dos diagnósticos de câncer masculino no Brasil, com 72.000 novos
casos projetados para 2023–2025 [INCA, 2023]. O diagnóstico é baseado na biópsia
prostática e na escala de padrões de Gleason (PG) [Gleason e Mellinger, 1974], que avalia
a diferenciação das células tumorais em uma escala de 1 a 5. No entanto, distinguir
entre os padrões 3 e 4 é desafiador devido a diferenças morfológicas sutis, levando a
discrepâncias diagnósticas de 30–53%, o que impacta as decisões de tratamento [Ozkan
et al., 2016].



Este artigo investiga, por meio de um estudo ablativo [Meyes et al., 2019], o im-
pacto do balanceamento de classes e da regularização em modelos de AP aplicados à
segmentação semântica de imagens histológicas. Como estudo de caso, são utilizadas
imagens de biópsias da próstata, com o objetivo de aumentar a precisão e a concordância
entre os PGs 3 e 4, melhorando assim as chances de cura e eficácia do tratamento. Todo
o trabalho foi realizado exclusivamente pelo primeiro autor, sob orientação do segundo.

De acordo com Bulten et al. [2022], as redes neurais convolucionais (CNNs) su-
peram patologistas em precisão, sensibilidade e especificidade, na análise de biópsias de
câncer de próstata. No estudo de Silva-Rodrı́guez et al. [2020], foi alcançado um ı́ndice
de Kappa Ponderado Quadrático (KPQ) de 77% no diagnóstico de AcP utilizando o con-
junto de dados SICAPv2. Por sua vez, Ikromjanov et al. [2022] obtiveram F1-scores de
78% para PG3 e 67% para PG4 no conjunto PANDA, utilizando patches de 256× 256
pixels sem técnicas adicionais de pré-processamento, sugerindo potencial para melhorias
com abordagens mais avançadas.

A pesquisa de Guerrero et al. [2024] investigou métodos de aumento de dados para
mitigar o desbalanceamento em conjuntos histopatológicos, explorando técnicas tanto no
nı́vel do classificador quanto dos dados. Em um estudo complementar, Falahkheirkhah
et al. [2023] aplicaram redes adversárias generativas para sintetizar imagens histológicas
realistas, contribuindo para análises médicas e para o enriquecimento da diversidade de
dados disponı́veis. Além disso, Hancer et al. [2023] enfrentaram o problema do desba-
lanceamento de classes ao empregarem o modelo U-Net na segmentação de núcleos em
imagens histopatológicas. De forma semelhante, os estudos de Haghofer et al. [2023] e
Chen [2023] destacaram o desempenho superior do U-Net em segmentação de imagens
médicas, abrangendo células e núcleos, evidenciando sua eficácia na análise histológica.

Este estudo se relaciona diretamente com os trabalhos de Guerrero et al. [2024],
que utilizaram Mask R-CNN com aumento de dados baseado na técnica “copy-paste”, e
de Chen [2023], que aplicaram U-Net em imagens prostáticas. No entanto, diferencia-se
ao adotar uma metodologia ablativa para avaliar o impacto do balanceamento de classes e
da regularização, proporcionando uma compreensão mais aprofundada desses fatores na
segmentação de tecidos e na classificação dos PGs 3 e 4.

2. Referencial Teórico
A arquitetura U-Net, proposta por Ronneberger et al. [2015], é amplamente reconhecida
por sua eficiência e robustez em tarefas de segmentação semântica, especialmente no
contexto biomédico. Com uma estrutura em forma de “U”, permite que o modelo rea-
lize segmentações precisas, mesmo quando há uma quantidade limitada de dados, sendo,
portanto, altamente eficaz em aplicações tanto médicas quanto em visão computacional.

A função de perda desempenha um papel crucial na otimização de modelos de
segmentação semântica, pois é responsável por medir a discrepância entre a saı́da do mo-
delo e os rótulos reais. A função de perda mais comumente utilizada é uma combinação
de entropia cruzada (CEL), que avalia a semelhança entre a máscara segmentada prevista
e a verdadeira, com termos adicionais de regularização que visam prevenir o overfitting e
melhorar a generalização do modelo. O Focal Loss (FL), introduzido por Lin et al. [2018],
tem sido explorado como uma alternativa à CEL, especialmente em cenários com dese-
quilı́brio de classes. O FL modifica a CEL ao incorporar um termo modulador, (1− ŷi)

γ ,



onde o parâmetro γ > 0 reduz o impacto das instâncias facilmente classificadas, permi-
tindo ao modelo focar mais em exemplos difı́ceis. Além disso, um fator de balanceamento
opcional, αi, pode ser utilizado para ajustar ainda mais o impacto das classes desbalance-
adas.

O KPQ é uma métrica estatı́stica que avalia a concordância entre avaliadores,
ponderando discrepâncias mais graves com um fator quadrático. Isso o torna útil para
métodos diagnósticos com variáveis ordinais, destacando desacordos importantes e refle-
tindo melhor a concordância geral, especialmente quando a diferença entre categorias é
crucial para o diagnóstico.

3. Materiais e Métodos

O conjunto PANDA contém 10.616 imagens de alta resolução coradas com Hematoxilina
e Eosina (H&E), adquiridas entre 2012 e 2017 com microscopia óptica. As imagens foram
rotuladas em duas categorias: tecido benigno e canceroso, e estroma e PG2 a PG5.

Para analisar o impacto do balanceamento de dados e regularizações no desem-
penho dos modelos, foram treinados 24 modelos U-Net utilizando dados balanceados e
desbalanceados, com diferentes abordagens de normalização de pixels e funções de perda
(Figura 1) e validação cruzada com 10 dobras.

Figura 1. O esquema ablativo proposto neste estudo compreende 24 modelos
distintos, cada um resultante da combinação de três etapas diferentes:
Balanceamento, Normalização e Aplicação de Função de Perda.

Foram selecionadas 5.160 imagens com anotações detalhadas das glândulas
prostáticas, distribuı́das em 330 lâminas digitais para treinamento e 80 para teste,
com amostragem estratificada. Patches de imagem de 224×224 pixels com 10% de
sobreposição foram gerados, descartando-se o canal alfa e os canais azul e verde das
máscaras. No total, 9.442 patches foram gerados para treinamento e 2.174 para teste.
Patches com mais de 10% de fundo foram excluı́dos.

O balanceamento incluiu a seleção de imagens com PG3 e PG4, remoção de pat-
ches com mais de 80% de estroma e aumento artificial de patches das classes minoritárias.
Após o balanceamento, o conjunto de treinamento final contou com 6.700 patches, com
diferença de classe reduzida para menos de 30%. As variações de CEL e FL foram ajus-



tadas com pesos baseados na frequência inversa das classes para mitigar o viés, e todos
os modelos seguiram a arquitetura U-Net proposta por Ronneberger et al. [2015].

4. Resultados e Discussão
O FL apresenta maior estabilidade na validação cruzada em comparação ao CEL, com
redução mais consistente da perda, destacando sua eficácia na regularização e no manejo
de dados desequilibrados, conforme mostram as Figuras 2a e 2b.

Figura 2. Funções de perda resultantes da validação cruzada para um conjunto
de dados desbalanceado usando CEL (a), para o mesmo conjunto com FL
(b) e para um conjunto balanceado utilizando FL (c)

A combinação de FL com balanceamento de dados (Figura 2c) reduz a diferença
entre as perdas de treinamento e validação, melhorando a generalização do modelo e sua
precisão em novos dados, além de diminuir o risco de overfitting.

Tabela 1. Validação cruzada e seus respectivos intervalos de confiança de 95%
para treinamento em dataset desbalanceado.

Normalização Função Padrão Gleason 3 Padrão Gleason 4
Sensibilidade Especificidade F1-Score Sensibilidade Especificidade F1-Score

Não normalizado

CEL 0,66 ± 0,02 0,97 ± 0,03 0,61 ± 0,02 0,37 ± 0,02 0,95 ± 0,01 0,46 ± 0,03
CEL+FIC 0,58 ± 0,06 0,82 ± 0,08 0,57 ± 0,04 0,30 ± 0,07 0,88 ± 0,02 0,35 ± 0,07

FL 0,72 ± 0,02 0,95 ± 0,01 0,66 ± 0,03 0,40 ± 0,01 0,97 ± 0,01 0,52 ± 0,02
FL+ICF 0,64 ± 0,04 0,90 ± 0,04 0,59 ± 0,03 0,34 ± 0,03 0,93 ± 0,03 0,40 ± 0,04

Máximo

CEL 0,73 ± 0,01 0,95 ± 0,02 0,63 ± 0,02 0,39 ± 0,02 0,96 ± 0,03 0,46 ± 0,01
CEL+FIC 0,57 ± 0,04 0,94 ± 0,03 0,52 ± 0,05 0,37 ± 0,02 0,91 ± 0,08 0,39 ± 0,02

FL 0,76 ± 0,03 0,96 ± 0,01 0,68 ± 0,01 0,41 ± 0,03 0,95 ± 0,02 0,50 ± 0,01
FL+ICF 0,65 ± 0,04 0,90 ± 0,02 0,58 ± 0,03 0,37 ± 0,03 0,88 ± 0,03 0,42 ± 0,03

Média/Desv. Padrão

CEL 0,69 ± 0,02 0,95 ± 0,03 0,64 ± 0,02 0,34 ± 0,03 0,97 ± 0,02 0,47 ± 0,02
CEL+FIC 0,59 ± 0,04 0,90 ± 0,05 0,57 ± 0,02 0,40 ± 0,05 0,88 ± 0,09 0,40 ± 0,03

FL 0,78 ± 0,02 0,95 ± 0,03 0,69 ± 0,01 0,43 - 0,01 0,98 ± 0,02 0,53 ± 0,01
FL+ICF 0,63 ± 0,03 0,87 ± 0,02 0,59 ± 0,01 0,35 ± 0,03 0,91 ± 0,01 0,41 ± 0,02

A Tabela 1 mostra que o Focal Loss melhora o equilı́brio entre sensibilidade e
especificidade na classificação de PGs 3 e 4. A Figura 2b destaca sua estabilidade e
leve vantagem no F1-score, embora a sobreposição dos intervalos de confiança impeça
conclusões sobre a melhor normalização.

A Tabela 2 mostra que o balanceamento de dados com Focal Loss melhora o F1-
score, com ganhos médios de 8 pontos percentuais para PG3 e 14 pontos para PG4. No
entanto, a melhor normalização não é conclusiva devido à sobreposição dos intervalos de
confiança.

A análise por KPQ mostra que o FL supera a CEL, com ganhos médios de 7 pontos
em conjuntos desbalanceados e 6 em balanceados, totalizando 13 pontos ao se comparar
CEL em datasets desbalanceados com FL em balanceados, o que está em concordância
com o apresentado por Silva-Rodrı́guez et al. [2020].



Tabela 2. Validação cruzada e seus respectivos intervalos de confiança de 95%
para treinamento em dataset balanceado

Normalização Função Padrão Gleason 3 Padrão Gleason 4
Sensibilidade Especificidade F1-Score Sensibilidade Especificidade F1-Score

Não normalizado

CEL 0,77 ± 0,04 0,94 ± 0,02 0,71 ± 0,04 0,81 ± 0,02 0,95 ± 0,02 0,61 ± 0,04
CEL+FIC 0,65 ± 0,06 0,84 ± 0,3 0,60 ± 0,03 0,60 ± 0,05 0,80 ± 0,04 0,48 ± 0,09

FL 0,80 ± 0,01 0,94 ± 0,04 0,73 ± 0,02 0,80 ± 0,03 0,95 ± 0,04 0,66 ± 0,02
FL+FIC 0,72 ± 0,03 0,96 ± 0,02 0,66 ± 0,03 0,80 ± 0,02 0,90 ± 0,03 0,51 ± 0,06

Maximum

CEL 0,76 ± 0,01 0,95 ± 0,03 0,66 ± 0,03 0,82 ± 0,02 0,92 ± 0,01 0,60 ± 0,01
CEL+FIC 0,69 ± 0,03 0,85 ± 0,02 0,61 ± 0,05 0,60 ± 0,07 0,85 ± 0,02 0,58 ± 0,04

FL 0,78 ± 0,03 0,96 ± 0,02 0,75 ± 0,03 0,82 ± 0,03 0,96 ± 0,02 0,66 ± 0,03
FL+ICF 0,73 ± 0,02 0,93 ± 0,04 0,66 ± 0,04 0,73 ± 0,03 0,97 ± 0,01 0,60 ± 0,03

Média/Desv. Padrão

CEL 0,78 ± 0,02 0,91 ± 0,02 0,73 ± 0,02 0,81 ± 0,04 0,95 ± 0,02 0,59 ± 0,02
CEL+FIC 0,70 ± 0,03 0,86 ± 0,01 0,59 ± 0,04 0,61 ± 0,02 0,84 ± 0,04 0,54 ± 0,05

FL 0,85 ± 0,02 0,97 ± 0,02 0,77 ± 0,01 0,81 ± 0,01 0,97 ± 0,01 0,65 ± 0,02
FL+ICF 0,75 ± 0,04 0,92 ± 0,03 0,66 ± 0,02 0,77 ± 0,01 0,96 ± 0,01 0,59 ± 0,04

Trabalhos vencedores no Kaggle alcançaram cerca de 90% de concordância remo-
vendo rótulos com discrepâncias, mas descartando casos desafiadores, como a distinção
entre PG3 e PG4. Isso influencia os altos ı́ndices obtidos, mantendo os resultados deste
estudo competitivos e destacando a importância do balanceamento e da regularização.

Tabela 3. Validação cruzada e seus respectivos intervalos de confiança de 95%
para a métrica KPQ

CEL CEL+FIC FL FL+FIC

Desbalanceado
Não normalizado 0,57 ± 0,05 0,20 ± 0,14 0,65 ± 0,03 0,34 ± 0,04

Máximo 0,61 ± 0,03 0,23 ± 0,06 0,67 ± 0,02 0,40 ± 0,02
Média/Desv. Padrão 0,55 ± 0,02 0,21 ± 0,03 0,64 ± 0,02 0,51 ± 0,03

Balanceado
Não normalizado 0,66 ± 0,02 0,25 ± 0,09 0,64 ± 0,06 0,60 ± 0,05

Máximo 0,65 ± 0,01 0,27 ± 0,07 0,70 ± 0,02 0,66 ± 0,02
Média/Desv. Padrão 0,62 ± 0,03 0,28 ± 0,02 0,73 ± 0,01 0,64 ± 0,02

A normalização de pixels não melhorou a concordância, evidenciando que seu
impacto é contextual (Tabela 3). Os pesos da FIC dificultaram a convergência, e o uso da
frequência inversa das classes, combinado às funções de perda, piorou a classificação de
PGs 3 e 4, agravando o desequilı́brio e prejudicando a generalização.

5. Conclusão
Este estudo destaca a importância do balanceamento de imagens para a precisão no di-
agnóstico através de imagens histológicas de câncer de próstata e como estratégia de
regularização no treinamento de modelos. Aconselha-se o uso cauteloso de pesos em
funções de perda, pois sua má aplicação pode desestabilizar o modelo. Resultados com-
petitivos foram alcançados com pré-processamento mı́nimo, evidenciando o papel do ba-
lanceamento e da regularização.

Para trabalhos futuros, recomenda-se reduzir ruı́dos nas anotações e abordar
distorções histológicas para melhorar as previsões. O uso de ensembles pode aprimorar a
classificação entre PGs 3 e 4. Além disso, a exploração de novas arquiteturas é essencial
para avançar na análise do adenocarcinoma prostático. Finalmente, a extensão da análise
para diferentes bases de dados e outros tipos de câncer irá corroborar as vantagens do
balanceamento e da regularização em modelos de aprendizado profundo.
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