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Abstract. This study investigates the impact of class balancing and regulariza-
tion on improving diagnostic agreement in histological images. For example,
U-Net models applied to the Prostate Cancer Grade Assessment dataset show
that class balancing, combined with traditional loss functions, increases image
agreement by up to 6 percentage points. Combining balancing with Focal Loss
boosts classification agreement by an average of 13 percentage points compared
to using imbalanced datasets with traditional loss functions. A case study on the
analysis of prostate Gleason patterns 3 and 4 illustrates the importance of this
discussion to clinical decisions and the prognosis of prostate cancer patients.

Resumo. Este estudo investiga o impacto do balanceamento de classes e da
regularizacdo na melhoria da concorddncia de diagnosticos baseados em ima-
gens histologicas. Modelos U-Net aplicados na andlise de biopsias de cancer
de prostata, por exemplo, mostram que o balanceamento de classes, combinado
com fungoes de perda tradicionais, aumenta a concorddncia das imagens em até
6 pontos percentuais. A combina¢do de balanceamento com Focal Loss eleva o
acordo de classificacao em média 13 pontos percentuais, em comparacdo com o
uso de datasets desbalanceados com fungées de perda tradicionais. Um estudo
de caso sobre a diferenciacdo entre os padroes Gleason 3 e 4 ilustra a utilidade
das técnicas em decisées clinicas e no progndstico de pacientes com cdncer de
prostata.

1. Introducao

Uma das aplica¢des mais relevantes da inteligéncia artificial, em especial do aprendizado
profundo (AP), estd relacionada ao auxilio para o diagndstico médico através de ima-
gens [Raciti et al., 2020]. Arquiteturas de redes neurais convolucionais (CNN) como a
U-Net, por exemplo, podem ser aplicadas na segmentacdo de imagens histoldgicas obtidas
de bidpsias para o diagnéstico de diversos tipos de cancer.

O adenocarcinoma prostitico (AcP) € o cancer mais comum entre os homens,
representando 10,2% dos diagndsticos de cancer masculino no Brasil, com 72.000 novos
casos projetados para 2023-2025 [INCA, 2023]. O diagndstico é baseado na bidpsia
prostética e na escala de padrdes de Gleason (PG) [Gleason e Mellinger, 1974], que avalia
a diferenciagdo das células tumorais em uma escala de 1 a 5. No entanto, distinguir
entre os padrdes 3 e 4 € desafiador devido a diferencas morfoldgicas sutis, levando a
discrepancias diagndsticas de 30-53%, o que impacta as decisdes de tratamento [Ozkan
et al., 2016].



Este artigo investiga, por meio de um estudo ablativo [Meyes et al., 2019], o im-
pacto do balanceamento de classes e da regularizagdo em modelos de AP aplicados a
segmentacdo semantica de imagens histoldgicas. Como estudo de caso, sdo utilizadas
imagens de bidpsias da prdstata, com o objetivo de aumentar a precisdo e a concordancia
entre os PGs 3 e 4, melhorando assim as chances de cura e eficacia do tratamento. Todo
o trabalho foi realizado exclusivamente pelo primeiro autor, sob orientacdo do segundo.

De acordo com Bulten et al. [2022], as redes neurais convolucionais (CNNs) su-
peram patologistas em precisao, sensibilidade e especificidade, na anélise de bidpsias de
cancer de prostata. No estudo de Silva-Rodriguez et al. [2020], foi alcangado um indice
de Kappa Ponderado Quadratico (KPQ) de 77% no diagnéstico de AcP utilizando o con-
junto de dados SICAPv2. Por sua vez, Ikromjanov et al. [2022] obtiveram F1-scores de
78% para PG3 e 67% para PG4 no conjunto PANDA, utilizando patches de 256 x 256
pixels sem técnicas adicionais de pré-processamento, sugerindo potencial para melhorias
com abordagens mais avangadas.

A pesquisa de Guerrero et al. [2024] investigou métodos de aumento de dados para
mitigar o desbalanceamento em conjuntos histopatoldgicos, explorando técnicas tanto no
nivel do classificador quanto dos dados. Em um estudo complementar, Falahkheirkhah
et al. [2023] aplicaram redes adversdrias generativas para sintetizar imagens histolégicas
realistas, contribuindo para andlises médicas e para o enriquecimento da diversidade de
dados disponiveis. Além disso, Hancer et al. [2023] enfrentaram o problema do desba-
lanceamento de classes ao empregarem o modelo U-Net na segmentacio de nicleos em
imagens histopatoldgicas. De forma semelhante, os estudos de Haghofer et al. [2023] e
Chen [2023] destacaram o desempenho superior do U-Net em segmentagcdo de imagens
médicas, abrangendo células e nucleos, evidenciando sua eficicia na anélise histoldgica.

Este estudo se relaciona diretamente com os trabalhos de Guerrero et al. [2024],
que utilizaram Mask R-CNN com aumento de dados baseado na técnica “copy-paste”, e
de Chen [2023], que aplicaram U-Net em imagens prostdticas. No entanto, diferencia-se
ao adotar uma metodologia ablativa para avaliar o impacto do balanceamento de classes e
da regularizacio, proporcionando uma compreensao mais aprofundada desses fatores na
segmentacdo de tecidos e na classificacdo dos PGs 3 e 4.

2. Referencial Teorico

A arquitetura U-Net, proposta por Ronneberger et al. [2015], é amplamente reconhecida
por sua eficiéncia e robustez em tarefas de segmentacdo semantica, especialmente no
contexto biomédico. Com uma estrutura em forma de “U”, permite que o modelo rea-
lize segmentacdes precisas, mesmo quando hd uma quantidade limitada de dados, sendo,
portanto, altamente eficaz em aplica¢des tanto médicas quanto em visdo computacional.

A funcdo de perda desempenha um papel crucial na otimizacdo de modelos de
segmenta¢do semantica, pois € responsavel por medir a discrepancia entre a saida do mo-
delo e os rétulos reais. A funcdo de perda mais comumente utilizada € uma combinagdo
de entropia cruzada (CEL), que avalia a semelhanca entre a mascara segmentada prevista
e a verdadeira, com termos adicionais de regularizagdo que visam prevenir o overfitting e
melhorar a generalizacao do modelo. O Focal Loss (FL), introduzido por Lin et al. [2018],
tem sido explorado como uma alternativa a CEL, especialmente em cenarios com dese-
quilibrio de classes. O FL modifica a CEL ao incorporar um termo modulador, (1 — g;)?,



onde o parametro v > 0 reduz o impacto das instancias facilmente classificadas, permi-
tindo ao modelo focar mais em exemplos dificeis. Além disso, um fator de balanceamento
opcional, «;, pode ser utilizado para ajustar ainda mais o impacto das classes desbalance-
adas.

O KPQ ¢é uma métrica estatistica que avalia a concordancia entre avaliadores,
ponderando discrepancias mais graves com um fator quadratico. Isso o torna til para
métodos diagndsticos com varidveis ordinais, destacando desacordos importantes e refle-
tindo melhor a concordancia geral, especialmente quando a diferenca entre categorias é
crucial para o diagndstico.

3. Materiais e Métodos

O conjunto PANDA contém 10.616 imagens de alta resolugao coradas com Hematoxilina
e Eosina (H&E), adquiridas entre 2012 e 2017 com microscopia Optica. As imagens foram
rotuladas em duas categorias: tecido benigno e canceroso, e estroma e PG2 a PGS.

Para analisar o impacto do balanceamento de dados e regularizacdes no desem-
penho dos modelos, foram treinados 24 modelos U-Net utilizando dados balanceados e
desbalanceados, com diferentes abordagens de normalizacao de pixels e fungdes de perda
(Figura 1) e validacdo cruzada com 10 dobras.
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Figura 1. O esquema ablativo proposto neste estudo compreende 24 modelos
distintos, cada um resultante da combinacao de trés etapas diferentes:
Balanceamento, Normaliza¢ao e Aplicacao de Func¢ao de Perda.

Foram selecionadas 5.160 imagens com anotagdes detalhadas das glandulas
prostaticas, distribuidas em 330 laminas digitais para treinamento e 80 para teste,
com amostragem estratificada. Patches de imagem de 224 x224 pixels com 10% de
sobreposicdo foram gerados, descartando-se o canal alfa e os canais azul e verde das
mascaras. No total, 9.442 patches foram gerados para treinamento e 2.174 para teste.
Patches com mais de 10% de fundo foram excluidos.

O balanceamento incluiu a selecdo de imagens com PG3 e PG4, remocao de pat-
ches com mais de 80% de estroma e aumento artificial de patches das classes minoritérias.
Apos o balanceamento, o conjunto de treinamento final contou com 6.700 patches, com
diferenca de classe reduzida para menos de 30%. As variagdes de CEL e FL foram ajus-



tadas com pesos baseados na frequéncia inversa das classes para mitigar o viés, e todos
os modelos seguiram a arquitetura U-Net proposta por Ronneberger et al. [2015].

4. Resultados e Discussao

O FL apresenta maior estabilidade na validacdo cruzada em comparacdo ao CEL, com
redu¢do mais consistente da perda, destacando sua eficdcia na regularizagdo e no manejo
de dados desequilibrados, conforme mostram as Figuras 2a e 2b.
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Figura 2. Funcoes de perda resultantes da validacao cruzada para um conjunto
de dados desbalanceado usando CEL (a), para o mesmo conjunto com FL
(b) e para um conjunto balanceado utilizando FL (c)

A combinac¢ado de FLL com balanceamento de dados (Figura 2¢) reduz a diferenca
entre as perdas de treinamento e validacdo, melhorando a generalizacdo do modelo e sua
precisd@o em novos dados, além de diminuir o risco de overfitting.

Tabela 1. Validacao cruzada e seus respectivos intervalos de confianca de 95%
para treinamento em dataset desbalanceado.

Normalizagio Funio Padrao Gleason 3 Padrio Gleason 4
Sensibilidade  Especificidade F1-Score Sensibilidade  Especificidade F1-Score
CEL 0,66 + 0,02 0,97 £ 0,03 0,61 40,02 0,37 + 0,02 0,95+ 0,01 0,46 £ 0,03
Nio normalizado CEL+FIC 0,58 &+ 0,06 0,82 + 0,08 0,57 £ 0,04 0,30 + 0,07 0,88 + 0,02 0,35 £ 0,07
FL 0,72 + 0,02 0,95 + 0,01 0,66 + 0,03 0,40 + 0,01 0,97 + 0,01 0,52 £ 0,02
FL+ICF 0,64 + 0,04 0,90 + 0,04 0,59 + 0,03 0,34 + 0,03 0,93 + 0,03 0,40 £ 0,04
CEL 0,73 + 0,01 0,95 + 0,02 0,63 £+ 0,02 0,39 + 0,02 0,96 + 0,03 0,46 £+ 0,01
Miéiximo CEL+FIC 0,57 + 0,04 0,94 + 0,03 0,52+ 0,05 0,37 + 0,02 0,91 + 0,08 0,39 £+ 0,02
FL 0,76 + 0,03 0,96 £ 0,01 0,68 £ 0,01 0,41 £+ 0,03 0,95 £ 0,02 0,50 £ 0,01
FL+ICF 0,65 + 0,04 0,90 + 0,02 0,58 + 0,03 0,37 + 0,03 0,88 + 0,03 0,42 4+ 0,03
CEL 0,69 £ 0,02 0,95 £+ 0,03 0,64 £ 0,02 0,34 £ 0,03 0,97 £+ 0,02 0,47 £ 0,02
Média/Desv. Padrio CEL+FIC 0,59 + 0,04 0,90 + 0,05 0,57 £ 0,02 0,40 + 0,05 0,88 + 0,09 0,40 £+ 0,03
FL 0,78 + 0,02 0,95 £+ 0,03 0,69 + 0,01 0,43 - 0,01 0,98 + 0,02 0,53 £ 0,01

FL+ICF 0,63 & 0,03 0,87 & 0,02 0,59 £ 0,01 0,35 £ 0,03 0,91 £ 0,01 0,41 £ 0,02

A Tabela 1 mostra que o Focal Loss melhora o equilibrio entre sensibilidade e
especificidade na classificacdo de PGs 3 e 4. A Figura 2b destaca sua estabilidade e
leve vantagem no Fl-score, embora a sobreposi¢do dos intervalos de confianca impeca
conclusoes sobre a melhor normalizagao.

A Tabela 2 mostra que o balanceamento de dados com Focal Loss melhora o F1-
score, com ganhos médios de 8 pontos percentuais para PG3 e 14 pontos para PG4. No
entanto, a melhor normaliza¢do ndo € conclusiva devido a sobreposi¢ao dos intervalos de
confianca.

A anélise por KPQ mostra que o FL supera a CEL, com ganhos médios de 7 pontos
em conjuntos desbalanceados e 6 em balanceados, totalizando 13 pontos ao se comparar
CEL em datasets desbalanceados com FL em balanceados, o que estd em concordancia
com o apresentado por Silva-Rodriguez et al. [2020].



Tabela 2. Validacao cruzada e seus respectivos intervalos de confianca de 95%
para treinamento em dataset balanceado

Normalizagio Funio Padrao Gleason 3 Padrio Gleason 4
Sensibilidade  Especificidade F1-Score Sensibilidade  Especificidade F1-Score
CEL 0,77 + 0,04 0,94 + 0,02 0,71 £ 0,04 0,81 +0,02 0,95 + 0,02 0,61 0,04
Nio normalizado CEL+FIC 0,65 £+ 0,06 0,84 +£0,3 0,60 £ 0,03 0,60 & 0,05 0,80 + 0,04 0,48 £ 0,09
FL 0,80 + 0,01 0,94 £ 0,04 0,73 £ 0,02 0,80 + 0,03 0,95 + 0,04 0,66 £ 0,02
FL+FIC 0,72 + 0,03 0,96 + 0,02 0,66 &+ 0,03 0,80 + 0,02 0,90 + 0,03 0,51 £+ 0,06
CEL 0,76 + 0,01 0,95 + 0,03 0,66 0,03 0,82 + 0,02 0,92 + 0,01 0,60 £ 0,01
Maximum CEL+FIC 0,69 + 0,03 0,85 + 0,02 0,61 £ 0,05 0,60 + 0,07 0,85 + 0,02 0,58 0,04
FL 0,78 £+ 0,03 0,96 £ 0,02 0,75 £+ 0,03 0,82 + 0,03 0,96 + 0,02 0,66 £ 0,03
FL+ICF 0,73 + 0,02 0,93 + 0,04 0,66 + 0,04 0,73 + 0,03 0,97 + 0,01 0,60 £ 0,03
CEL 0,78 £+ 0,02 0,91 £+ 0,02 0,73 £ 0,02 0,81 0,04 0,95 + 0,02 0,59 40,02
Média/Desv. Padrio CEL+FIC 0,70 + 0,03 0,86 + 0,01 0,59 4+ 0,04 0,61 + 0,02 0,84 + 0,04 0,54 £+ 0,05
FL 0,85 + 0,02 0,97 + 0,02 0,77 £+ 0,01 0,81 + 0,01 0,97 + 0,01 0,65 £ 0,02

FL+ICF 0,75 £ 0,04 0,92 & 0,03 0,66 &= 0,02 0,77 £ 0,01 0,96 & 0,01 0,59 £ 0,04

Trabalhos vencedores no Kaggle alcancaram cerca de 90% de concordancia remo-
vendo rétulos com discrepancias, mas descartando casos desafiadores, como a distin¢ao
entre PG3 e PG4. Isso influencia os altos indices obtidos, mantendo os resultados deste
estudo competitivos e destacando a importancia do balanceamento e da regularizacao.

Tabela 3. Validacao cruzada e seus respectivos intervalos de confianca de 95%
para a métrica KPQ

CEL CEL+FIC FL FL+FIC
Nio normalizado 0,57+0,05 020+£0,14 0,65+0,03 0,34 +0,04
Desbalanceado Maximo 0,61 +0,03 023+0,06 0,67+0,02 0,40+ 0,02

Média/Desv. Padrao 0,55 +£0,02 0,21 +£0,03 0,64 £0,02 0,51 +0,03

Nio normalizado 0,66 £0,02 025+0,09 0,64+0,06 0,60+ 0,05

Balanceado Maximo 0,65+0,01 027+0,07 0,70+0,02 0,66+ 0,02
Média/Desv. Padrao 0,62 £0,03 0,28+0,02 0,73+0,01 0,64 £ 0,02

A normalizac¢do de pixels ndo melhorou a concordancia, evidenciando que seu
impacto € contextual (Tabela 3). Os pesos da FIC dificultaram a convergéncia, e o uso da
frequéncia inversa das classes, combinado as fun¢des de perda, piorou a classificacdo de
PGs 3 e 4, agravando o desequilibrio e prejudicando a generalizacgao.

5. Conclusao

Este estudo destaca a importancia do balanceamento de imagens para a precisao no di-
agnostico através de imagens histologicas de cincer de prostata e como estratégia de
regularizagdo no treinamento de modelos. Aconselha-se o uso cauteloso de pesos em
funcdes de perda, pois sua ma aplicacdo pode desestabilizar o modelo. Resultados com-
petitivos foram alcancados com pré-processamento minimo, evidenciando o papel do ba-
lanceamento e da regularizagdo.

Para trabalhos futuros, recomenda-se reduzir ruidos nas anotacdes e abordar
distor¢des histoldgicas para melhorar as previsdes. O uso de ensembles pode aprimorar a
classificacdo entre PGs 3 e 4. Além disso, a exploracdo de novas arquiteturas € essencial
para avangar na anélise do adenocarcinoma prostético. Finalmente, a extensao da andlise
para diferentes bases de dados e outros tipos de cancer ird corroborar as vantagens do
balanceamento e da regularizacdo em modelos de aprendizado profundo.
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