Towards Real-time Score Analysis in PWGL

Mika Kuuskankare!

Independent grant researcher

mkuuskan@yahoo.com

Abstract. In this paper, we introduce an original ap-
proach to computerized music analysis within the graph-
ical computer-assisted composition environment called
PWGL. Our aim is to facilitate real-time analysis of in-
teractive scores written in common Western music nota-
tion. To this end, we have developed a novel library that
allows us to analyze scores realized with the help of ENP
(the graphical music notation module of PWGL), and to
visualize the results of the analysis in real-time. ENP is
extended to support the display of supplementary informa-
tion that can be drawn on top of the score as an overlay.
The analysis backend is realized with the help of our built-
in musical scripting language based on pattern matching.
The analysis results are presented directly as a part of the
original score leveraging the extensible and interactive vi-
sualization capabilities of ENP.

In this paper we describe the current state of the library
and present, as a case study, a fully functional applica-
tion, which allows for the real-time analysis and display
of voice leading errors according to the counterpoint rules
developed mainly in the Renaissance and Baroque eras.

1. Introduction

Typically, computational musicology employs non-real-
time algorithms to analyze music encoded in textual form.
Within the computer music community, real-time music
analysis has become somewhat synonymous to real-time
audio analysis and visualization. In this paper, we focus on
analysis of interactive scores written in common Western
music notation, an approach still underrepresented within
the community mainly because of the complex nature of
computerized music notation.

It is customary to divide real-time systems into
two main categories: hard real-time and soft real-time.
Systems falling under the first category usually present ei-
ther safety or mission critical constraints and, in general,
missing a deadline is considered disastrous. Systems in the
second category work “’fast enough” and missed deadlines
affect only the quality of service. This article won’t debate
the fine points of real-time computing. Instead, for the pur-
poses of this paper, we consider the latter category, specif-
ically in the sense of fast—or fast enough—computation.

Encapsulating the notational and analytical prac-
tices of the western art music in a real-time context, re-
quires versatile and interactive representations of music,
flexible visualization devices, and musical knowledge en-
coded into the system. Let us consider the representa-
tion of music in state-of-the-art real-time and non-real-
time musical environments. Real-time environments, such
as Pure Data[1], concentrate on producing and manipu-
lating sound, video, and graphics, rarely providing robust

interactive representations of musical notation because of
the computational complexity associated with these opera-
tions. Non-real-time environments, such as OpenMusic[2]
for computer-assisted composition or LilyPond[3] for mu-
sic notation, allow for robust musical representations at the
expense of interactivity.

Rich music analytical representations and real-
time interactivity need not to be mutually exclusive, in-
stead, the two should complement each other. Text editors,
for example, allow people to develop documents in real-
time while retaining a rich view of these documents. The
same is true of photo editing, where users can apply sophis-
ticated filters to their photos and instantly see the results.

PWGL[4] can already be used to analyze musi-
cal scores realized with the help ENP[5] using a variety of
methods[6, 7, 8, 9]. However, the existing methods have
not yet been adapted for real-time analysis. In this paper,
we present a novel PWGL library, that aims to make it pos-
sible to analyze ENP scores and to visualize the results of
the analysis in real-time. The analysis backend is realized
using ENP-Script[10].

PWGL is a visual music programming language
written in Lisp and OpenGL. Its primary focus is on
computer-assisted composition in an integrated environ-
ment with music notation and software synthesis. ENP,
in turn, is PWGL’s built-in music notation program de-
veloped primarily for applications concerning computer-
assisted composition and virtual instrument control. It is
designed to produce automatic, reasonable quality musi-
cal typesetting. Finally, ENP-Script is the native scripting
language of ENP. It allows us to access complex musical
patterns with the help of a pattern-matching syntax devel-
oped for our constraint-based compositional system.

The rest of the paper is organized as follows.
First, we introduce the two key software components of
the library: ENP and ENP-Script. Next, we discuss im-
plementation details and present an application prototype
that allows for real-time analysis and display of common
voice leading errors. The paper ends with some concluding
remarks and ideas for future work.

2. ENP

ENP is a full-featured music notation program with a
graphical user-interface and an extensive set of graphical
devices for enriching notational output. ENP can produce
relatively complex, automatically typeset and interactive
music notation (see Figure 3).

At the center of the expressive power of ENP
are interactive and user-definable graphical devices, called

18th Brazilian Symposium on Computer Music - SBCM 2021

45

expressions. In ENP, the term expression is used in a
broader sense than as a traditional expression marking.
ENP-Expressions are multipurpose visualization devices
that can be used to represent complex dynamic Lisp-based
objects as a part of a musical texture (see Figure 4). In ad-
dition to their traditional use, they can be used in a wide
range of applications, such as providing control informa-
tion for virtual instrument synthesis. One of the unique
features of ENP-Expressions is that they can be attached to
a discontinuous group of objects spanning across multiple
parts. This is especially beneficial in musical analysis ap-
plications that typically deal with the relationships between
independent melodic lines and simultaneously sounding
harmonies.

3. ENP-Script

ENP-Script is the scripting language of ENP. It
uses the syntax of the pattern-matching language of
PWConstraints[11]. PWConstraints, in turn, is a compo-
sitional system that uses the Backtracking algorithm to ob-
tain a solution to musical constraint satisfaction problems.
ENP-Script, while sharing most of its behavior with PW-
Constraints (e.g., language syntax, score access), does not
use backtracking. The scripts consist of one or more script-
ing rules. The scripting rule, in turn, consists of a pattern-
matching part and a Lisp-code part. The pattern-matching
part contains a set of pattern-matching variables each rep-
resenting an object in the score. Pattern-matching variables
hold information about the pitch of the associated notes,
rhythm, current harmony, etc. Once the pattern-matching
part of a rule has accessed the desired objects (i.e., notes,
chords, measures, harmonic formations), these variables
can be used in the Lisp-code part. To access information
from the variables, the m’ method is typically used (m’
standing for multi-accessor). Normally, the m method re-
turns either a single note for non-compound objects or a list
of notes for compound objects (e.g., chords, beats, mea-
sures, harmonic formations). It also accepts a list of key-
word arguments that allow more precise specification of
the type of data that will be returned. Finally, the script-
ing engine loops through the score’s notational objects and
applies the scripting rules, usually to produce some effect,
such as attaching an expression. For more detailed discus-
sion of ENP-Script, refer to reference [10].

4. The Library

The present library contains two modules: (1) the visual-
ization module, and (2) the analysis module. The analyze-
visualize cycle is triggered every time a property of the
score is changed. This typically happens when the user,
for example, transposes a note.

4.1. The Visualization Module

The results of the analysis are visualized directly on the
source score. For the purposes of the present library, a new
category of ENP-Expressions—called overlay-expression—
was developed. Overlay-expressions differ from standard
ones in a few specific ways: (1) they are not part of the

Figure 1: The voice-leading expression indicating
the notes involved as well as the name
of the error ('P5’ indicates a parallel).

object structure of the score, i.e., they are not saved with
the associated score, and (2) they are temporary, i.e., the
lifetime of the overlay objects ends before the next batch
of objects begins to be initialized. Instead, as the name
suggests, they are drawn as an overlay on top of existing
score objects. Most expressions, such as dynamics or ar-
ticulations, are usually attached to objects in one single
part, therefore relying on the local coordinate system of
that part. However, an overlay-expression refers to the
global positions of the objects it is associated with and,
therefore, can easily extend itself across different parts (as
can be seen in Figure 1).

The library implements two expressions that ex-
tend the overlay-expression. These are called the voice-
leading expression and the voicing expression. Figure 1
shows the voice-leading expression. It holds a reference to
a pair of notes in two different parts. Visually, it connects
the notes in each part with a line that has a hollow circle on
each end. A vertical line connects the note pairs involved
in the offending voice leading case and displays an error
code (e.g., 'P5’ for parallel fifths) around the midpoint of
the line segment. The voicing-expression, in turn, marks
cases in the score where there is either a voice crossing, or
an open spacing. The voicing-expression holds a reference
to the corresponding notes that-by definition—have to be in
two different parts. The two notes are encircled and con-
nected vertically with a dotted line. The name of the error
is again indicated around the midpoint of the line segment.

4.2. The Analysis Module

The analysis module is implemented in two parts: (1) asa
real-time analysis engine, and (2) as a set of analysis rules.

The real-time analysis engine implements a
slightly modified version of our scripting engine. One of
the major differences is that the additional structures (see
Figure 2) prepared in advance to assist in accessing the
multitude of different score objects (notes, harmonies, etc.)
are cached instead of being regenerated every time a script
is run. One of the most complex of these structures is the
harmonic structure shown in Figure 2. As a further opti-
mization, the scripts are also only applied to the part of the
score that is visible to the user.

The complete set of rules implemented by the
library currently contains more than 10 rules. For the
purposes of this paper, we consider only the following

46

18th Brazilian Symposium on Computer Music - SBCM 2021

| ARN)
§
+H

Pess A N|

= #L

Figure 2: To assist and optimize the search pro-
cess, several auxiliary structures are
generated for both our constraints and
scripting engines. The simultaneity (i.e,
harmonic) structure is shown here. The
polygons enclose the three possible si-
multaneities in this particular score.

rules: (1) parallel fifths and octaves, (2) voice crossing,
and (3) open spacing. Parallel fifths and octaves are pro-
gressions in which the interval of a perfect fifth or an oc-
tave is followed by the same interval between the same two
parts. Voice crossing is the intersection of melodic lines,
e.g., a lower voice crosses above a higher one. Spacing,
refers to the simultaneous vertical placement of notes in
relation to each other. Open spacing typically occurs when
the interval between consecutive voices exceeds an octave.
Note, that the details about the interpretation of different
rules typically varies from period to period.

Next, we will examine in detail the code for de-
tecting parallel fifths progressions shown in Listing 1. Line
1 of Listing 1, defines the pattern and type of score objects
(indicated by the keyword :harmony) to which the rule is
applied. The pattern consists of a star (" =”) which matches
zero or more score objects and a variable name (C?1’).
This particular pattern extracts all the harmonic forma-
tions (groups of simultaneously sounding notes) from the
score and binds them one by one to the variable named
’21’. In line 3, we call the m-method with the keyword
“:vl-matrix’ asan argument to return an object of type
vl-matrix (voice leading matrix). The vl-matrix object en-
capsulates the relevant notes that participate in all the pos-
sible voice leading cases between consecutive simultane-
ities. In four part texture this results in at most six different
cases: voice 1 against voices 2, 3, and 4; voice 2 against
voices 3 and 4; and voice 3 against voice 4. The presence
of a rest in any of the voices naturally reduces the num-
ber of combinations. In line 5, we access the vl-matrix
object to retrieve a list of notes belonging to the top-most
voice. Next, we check that the voice actually moves up or
down, otherwise this voice will not contribute to any par-
allel movement. Next, we access the pitch properties of
the two notes and check if they are equal (line 6). In case
the pitches are not equal, we need to loop through all the
remaining voices to check for parallel fifths (line 7). For
each voice, we again make sure that it is moving either up
or down (line 9). If so, we proceed with the remaining
checks. Lines 10-11 check that intervals between the two
voices are both perfect fifths, while lines 12-13, in turn,
check that both voices also move in the same direction.

If all the aforementioned conditions are satisfied,

the two voices move in parallel fifths. To indicate this in
the score, we instantiate an overlay-expression that is sub-
sequently attached to the formation of the four notes (two
notes in each of the involved parts). This is done in lines
14-17. The overlay-expressions have many user-definable
properties, one of which is color. Here, we chose to dis-
play the overlay in red (see line 17) to denote a high level
of urgency. The actual drawing of the overlays is delayed
until all the voice leading rules have been checked.

5. The Application

As a proof of concept, we have built a fully functional ap-
plication that allows for the analysis and display of com-
mon voice-leading errors. The application is shown in Fig-
ure 5. The current set of available rules is displayed on the
right as checkboxes. These GUI components can be used
to activate or de-activate rules. Only errors selected by the
user are checked. The related visualizations are updated
in real-time as the user works on the score. In addition
to pitch, the user can manipulate any other score property,
including rhythm.

6. Performance Measures

We collected some preliminary performance measures
with the help of our application prototype. The tests were
performed on a 2012 Apple MacBook Pro with an Intel
Core i7 processor running at 2.7 GHz. The results are pre-
sented in Table 1. The ’total’ time includes the initial lay-
out calculation and drawing of the score (= 10 ms), the
analysis phase (= 15 ms) and the drawing of any over-
lay objects (= 2 ms). The response time of slightly under
30 ms seems to be in the realm of real-time and the GUI
response confirms this. Thus, our experiment aligns well
with our initial objectives.

Step Time (ms)
layout/draw 10
analyze 15!
visualize 2
total 27

Table 1: The approximate timings of the steps
involved in the analysis process.
1~ 35 ms without caching

7. Acknowledgements

This work has been supported by the Jenny and Antti Wi-
huri Foundation.

8. Conclusions

In this paper we presented a novel PWGL library that al-
lows for the real-time analysis of musical scores written
in the ENP score format. The potential application fields
range from elementary music pedagogy to advanced coun-
terpoint exercises, as well as computer-assisted composi-
tion. Our work could be applied, for example, in computer-
based training, making it possible to develop interactive

18th Brazilian Symposium on Computer Music - SBCM 2021

47

Listing 1: Code for detecting parallel fifth progressions in an ENP score

1 (x 2?1 :harmony

2 (?1f

3 (let ((mat (matrix—-access (m ?1 :vl-matrix 2 :object t) :h)))

4 (when mat

5 (destructuring-bind (upper-1 upper-2) (first mat)

6 (unless (= (m upper-1) (m upper-2))

7 (loop for mel2 in (rest mat) do

8 (destructuring-bind (lower-1 lower-2) mel2

9 (unless (/= (m lower—-1) (m lower-2))

10 (when (and (= (modl2 (abs (- (m upper-1) (m lower-1)))) 7)

11 (= (modl2 (abs (= (m upper-2) (m lower-2)))) 7)

12 (= (signum (- (m upper-2) (m upper-1)))

13 (signum (- (m lower-2) (m lower-1)))))

14 (add-overlay upper—-1 upper-2 lower—-1 lower-2

15 :kind :voice-leading

16 :id :parallel-fifth

17 :color :red)))))))))))
music theory applications. One possible application could References
be an advanced counterpoint tutor with built-in knowledge) .
of common voice-leading and harmony rules. It would dis- [1] Mﬂler Puckette. .Us1ng Pd as a score lz.mguage. In Proceed-

. . . . ings of International Computer Music Conference, pages

play the assignments in music notation, and correct and 184-187. 2002
instruct students in real-time using a combination of text, ; ’ . .

. . [2] Jean Bresson and Carlos Agon. Visual programming and
colors, and commonly accepted music theoretical mark- music score generation with openmusic. In IEEE Sympo-
ings. Being able to see the analysis in real-time can be sium on Visual Languages and Human-Centric Computing,
an effective way to gain understanding of how different el- 2011.
ements of the composition (e.g., harmony, melody) work [3] Han-Wen Nienhuys and Jan Nieuwenhuizen. LilyPond,
together. Furthermore, our tool could be used not only a system for automated music engraving. In XIV Collo-
as a music analysis tool, but also as a compositional tool. quium on Musical Informatics (XIV CIM 2003), Firenze,
Different kinds of rules, such as those keeping track of Italy, 2003.
harmonic or melodic pitch class sets, could be used as [4] Mikael Laurson, Mika Kuuskankare, and Vesa Norilo. An
visual reminders. Additionally, more sophisticated rules Overview of PWGL, a Visual Programming Environment
(e.g., checking the correctness of Harp pedaling) could be for Music. Computer Music Journal, 33(1):19-31, 2009.

.. . [5] Mika Kuuskankare and Mikael Laurson. Expressive No-
used to assist in the compositional process to allow the . .
. tation Package. Computer Music Journal, 30(4):67-79,
composer to focus on other tasks. Finally, the user could 2006.
also 1n\{ent their own expressions, based on the overlay- (6] Mikael Laurson, Mika Kuuskankare, and Kimmo
expression, to fit their particular needs. Kuitunen. Introduction to computer-assited music analysis
Currently, the library is under active develop- in PWGL' In Sound "”fi Music Computing 05, 2005;
ment. There will undoubtably be ample opportunities (7] M1¥<ael Laurson,. leka' Kuuskankare, aqd Klmrgo
for performance ontimizations. such as precompiling and Kuitunen. The Visualisation of Computer-assisted Music
p. p ’ P piing Analysis Information in PWGL. Journal of New Music
caching the analysis rules themselves. We are also work- Research, 37(1):61-76. 2008.
ing on additional analysis backen.ds, one of which will [8] Mika Kuuskankare. Schenkerian analysis tools in ENP.
be based on the Humdrum Toolkit[12]. The Humdrum In Proceedings International Computer Music Conference,
Toolkit is a widely-used open-source software package for 2013.
musicological research developed at CCARH at Stanford [9] Mika Kuuskankare and Craig Sapp. Visual Humdrum-
University. It would allow us to access the rich and readily library for PWGL. In Proceedings of ISMIR, 2013.
available music analysis features of Humdrum and a vast [10] Mika Kuuskankare and Mikael Laurson. Intelligent Script-
number of freely available pieces encoded in the kern data ing in ENP using PWConstraints. In Proceedings of In-
format. The different backends would not be mutually ex- ternational Computer Music Conference, pages 684-687,
clusive; instead, they would complement each other. Miami, USA, 2004.
[11] Mikael Laurson. PWConstraints. In G. Haus and 1. Pighi,
editors, X Colloguio di Informatica Musicale, pages 332—
335, Milano, 1993. Associazione di Informatica Musicale
Italiana.
[12] David Huron. Music information processing using the
Humdrum Toolkit: Concepts, examples, and lessons. Com-
puter Music Journal, 26(2):15-30, 2002.
48 18th Brazilian Symposium on Computer Music - SBCM 2021

A] |
A" A T T T T I T
o—= i - =t |)
oJ — « 1o
—_ ——_——o
N P
=60 S e 4o = =
A i5id B A =0) N I
@' T " i f z t — ; o ; T —s T
: s : = te . e . e e
D) 14 T w%(, — i
¥ z P
, group

NS

Figure 3: A relatively complex score notated with the help of ENP. Besides standard notational devices, such as
articulations and dynamics, the score showcases several types of graphical control information as well as
different simultaneous tempi and time signatures.

sul ponticello set-class 3-1
0 - - -
. . BL % : - -
Violin @ 3 l’—:L —=
o
pizz arco 9 sul ponticello
fH - -
AH % — = -
Violin [% " (\/m =
M1 M1 prolongation
B ——f ——— 66—
Viola % fr—— o o T L
% e o s e e L
o & > - &
i
. % w T ,\Jﬂ j
Violoncello | =% e I — =
~ v |
—_— ——————090

Figure 4: An example of different kinds of analytical markings. Here, we use a combination of text and colored areas
to highlight motives as well as commonly accepted music theoretical markings, such as set class names to
display the total harmonic content of selected simultaneities.

B Parallel fifths (p5)

| g
| AN
| EEE
[1IN
\IE

B Parallel octaves (p8)

p> v
B Voice crossing (V) N : . I i |
—————— St
[Open spacing (O) J e
p> pS

Figure 5: The application displaying common voice-leading errors.

18th Brazilian Symposium on Computer Music - SBCM 2021

