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Abstract. Although computational models for note onset
detection have improved drastically in the last decade,
mainly due to the advances brought by the field of Deep
Learning, such models have not been perfected yet. When
dealing with specific data, like clarinet recordings, those
models still produce a significant number of false positives
and negatives. In this paper, we evaluate pre-trained onset
detection models from the library madmom on a dataset
composed of solo clarinet recordings, in particular, to in-
vestigate their performance on this kind of data. Moreover,
we use the clarinet dataset to train the same neural net-
work (CNN) employed in one of those models, to investigate
whether training the model on this specific data leads to an
improvement when dealing with clarinet recordings. The
results obtained from the model trained strictly on clarinet
data are considerably better than those from models trained
on generic data.

1. Introduction

Note onset detection consists in finding, in audio signals,
the instants at which musical notes start. The automatic
detection of note onsets is a difficult task. Although some
of the onset detection methods/models currently available
produce excellent results in recordings of instruments with
prominent note attack, their performance can drop signifi-
cantly when dealing with notes with very soft attack, like
woodwind instruments, for example. Clarinet recordings
seem to be particularly difficult, compared to other instru-
ments.

Many studies on automatic onset detection have
been published since the beginning of the 2000s. In the
beginning, the onset detection methods were mostly based
on DSP techniques [1, 2, 3, 4, 5]. Recently, the majority
of the studies have been employing machine learning, pro-
ducing models that achieve better results on the task. How-
ever, most of these models are trained on mixed datasets,
frequently containing recordings of several different instru-
ments and musical genres. Since machine learning algo-
rithms learn to perform tasks based on patterns that are
extracted from input data, the quality of the training dataset
has a pivotal impact on the quality of the final model. Hav-
ing a good dataset that captures the characteristics of “real
world” data is key to obtaining a model with good per-
formance. Although it is important to avoid biases in the
dataset that may negatively impact the model’s generaliza-
tion capacity, in some circumstances, a model might benefit
from specialized data that is biased towards the expected
final purpose of the model.

This led us to question whether training a ma-
chine learning model on a dataset that contains only clarinet
recordings would produce a model that performed better on
clarinet onsets. In this paper we test and evaluate three onset
detection models from the library madmom [6] on clarinet
recordings, specifically. Two of those models are based
on neural networks, a convolutional neural network (CNN)
and a recurrent neural network (RNN), and were previously
trained by the author of the library on a generic dataset. The
other method uses strictly DSP techniques and is based on
spectral flux. We also test and evaluate a model trained by
ourselves using a clarinet dataset, specifically. This model
uses the same CNN architecture from madmom’s model.
Thus, we can check whether this specific training data leads
to a better note onset detection model for the instrument.

2. Methodology
To obtain robust segmentation models using machine learn-
ing, it is necessary to provide a dataset with labeled target
values. A labeled dataset also allows us to evaluate the
models and compare the results they produce. Therefore,
in this section we first introduce the two datasets used in
our experiments. Then we detail the onset detection models
employed in our experiments, followed by an explanation
of the evaluation criteria we adopted.

2.1. Datasets

We created two different datasets for this experiment, both
containing strictly solo clarinet recordings. To annotate the
note onsets, we used a specialized web application for audio
annotation developed by ourselves, called Audio Segment
Annotator1. This tool seeks to provide a fine temporal
resolution of 2 miliseconds, in a user interface with a steep
learning curve and straightforward controls. It provides
visualizations of the audio waveform and its spectrogram,
synchronized with respect to the time axis.

2.1.1. Clari-onsets-50

Most datasets available made available by researchers for
training note onset detection models do not focus on mono-
phonic recordings or do not contain a significant amount
of clarinet onsets. Therefore, we decided to create a large
dataset composed exclusively of clarinet recordings. This
enables us to train, validate and test a specialized onset
detection model for clarinet. We refer to this dataset as

1This tool was developed for internal use in our laboratory, and has not
been published yet.
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absolute count percentage cumulative
error (ms) percentage

0 to 4 ms 541 85.9 85.9
4 to 8 ms 67 10.6 96.5
8 to 12 ms 16 2.5 99.0
12 to 16 ms 4 0.6 99.7
16 to 20 ms 1 0.2 99.8
> 20 ms 1 0.2 100.0

Table 1: Absolute error for the manual anno-
tations obtained for the dataset clari-
onsets-3.

clari-onsets-50. It is composed by 50 excerpts of solo clar-
inet recordings, totaling 23 minutes and 6 seconds of audio,
with a mean duration of 27.7 seconds. Half of those record-
ings were made in our laboratories, while the other half was
obtained from comercial recordings from several different
albums and clarinetists. They comprised a few different
musical genres, including classical, jazz, and contemporary
pieces. The recordings are very diverse with respect to level
of reverberation, distance of the microphone, background
noise, etc. This was intentional, since a diverse dataset, with
respect to those characteristics, tend to lead to a model that
is able to generalize better when the characteristics of the
audio change. The excerpts were all annotated by a single
person, without repetition, over several weeks. A total of
3551 note onsets were obtained for the 50 excepts.

2.1.2. Clari-onsets-3

The dataset clari-onsets-3 contains only three recordings,
with a total of 126 note onsets. The recordings were all
made in the laboratory, in a room with very little rever-
beration. The excerpts were chosen seeking to achieve a
diversity of musical material, with notes in different regis-
ters of the instrument, melodies containing both short and
long intervals, notes with soft and sharp attacks, and differ-
ent dynamics. For this particular dataset, we repeated the
onset annotations five times (all by the same person), seek-
ing to obtain: (1) a reliable estimation of the note onset time,
based on multiple measurements; and (2) an estimation of
the measurement error for the task. The annotation errors
were estimated by calculating the time difference betweeh
each annotated onset (from the different sessions) and the
median, and are shown in table 1. This dataset is rather
small, and was not used for training any neural network, but
we used it as a test dataset in our experiments.

2.2. Onset Detection Models

2.2.1. CNN

This method was proposed by Schlüter and Böck, and is
based on a convolutional neural network applied to mel-
scaled spectrograms [7]. The advantage of this representa-
tion is that it uses a logarithmic scale for the frequency bins
instead of a linear one. This logarithmic scale models better
the human perception of pitch, allowing the spectrogram to
have a better perceptual pitch resolution using a relatively

small number of bins, thus reducing the model’s memory
demand.

The input of the model consists of three stacked
80-band mel spectrograms with logarithmically scaled mag-
nitudes, each calculated using a different window length:
1024 (23 ms), 2048 (46 ms), and 4096 (93 ms) samples.
They are calculated using a hop length of 441 samples,
which corresponds to a frame resolution of 10 ms. The
input of the network consists of a group of 15 contiguous
spectral frames centered on the frame to be classified. So
each example processed by the network corresponds to a
context of 150 ms. The onset annotations (which consist
of time points) are converted to target values, which are
defined for each input example, using the criteria described
below.

• If there is an onset annotation within the 10 ms
time window corresponding to the central frame
for a given input, the target value is assigned to 1
(onset).

• Since the annotation error might be a bit larger
than this window, each frame immediately before
or after a frame that was set to 1 in the step above
is also set to 1, giving a margin for the network to
learn from annotations that are not precise (fuzzi-
ness). These samples are also weighted with a
factor of 0.25 during training.

• The targets for any other frames are defined to 0
(no onset).

Basically, the architecture of the network consists
of two convolutional layers (2D convolutions) followed by
an intermediary fully-connected layer, and the output layer,
which is also fully-connected. The network architecture is
composed by the following layers:

• input: 15 frames x 80 bands;
• 2D convolutional layer: filters of 7 frames x 3

bands, computing 10 feature maps;
• max-pooling over 3 bands with no overlap;
• 2D convolutional layer: filters of 3 x 3, computing

20 feature maps;
• max-pooling over 3 bands with no overlap;
• fully connected layer with 256 units;
• fully connected layer with a single unit (output).

All the layers use rectified linear unit activation
functions. Dropout is applied to the inputs of the fully con-
nected layers for regularization. The network is optimized
using gradient descent, minimizing binary cross-entropy
loss. It is trained for 100 epochs, using a starting learning
rate of 1.0, which is multiplyed by 0.995 at the end of each
epoch. The initial momentum is 0.45, and it is linearly in-
creased to 0.9, between epochs 10 and 20. The mini-batches
used for each training step consist in 256 examples.

The network produces output values between 0
and 1, representing the frame-wise probability of onset
along the audio signal. To obtain the onset points, first,
this time series is convoluted with a Hamming window of
5 frames, which smooths it a bit. Then a peak-picking
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method is used to extract the local peaks higher than a given
threshold value. This threshold is chosen by varying its
value and picking the one that produces the highest F-score.
The instants of the peaks correspond to the onsets detected
by the model.

2.2.2. RNN
The model proposed by Eyben et al. [8] uses as input a
stacked array of features consisting in: (1) a mel spectro-
gram calculated using a window length of 1024 samples (23
ms); a mel spectrogram computed using a window length
of 2048 samples (46 ms); (3) the positive first-order dif-
ference between two successive mel spectrogram frames
at the 1024 samples window length; (4) the positive first-
order difference at the 2048 samples window length. The
positive first-order difference is calculated by applying a
half-wave rectifier function H(x) = x+|x|

2 to the difference
between two consecutive mel spectrogram bands. A total of
40 mel bands are used in this model, achieving 160 stacked
input features for each time step. The input features are
calculated using a sliding window with a hop length of
441 samples (10 ms). Each hop performed by the sliding
window corresponds to one time step in the model.

The model consists of a bidirectional long short-
term memory network (LSTM) applied to the described
input features. Bidirectional recurrent networks incorporate
future context into a network by adding an extra layer for
each hidden layer, which will process the input sequence
backward, while the other layer processes it forwards. It
produces a non-causal model that outputs values that de-
pend on both the past and future time steps. The network
contains 6 hidden layers, 3 of them for processing the input
forwardly and 3 backwardly. Each hidden layer contains
20 LSTM units, and the output layer has two units, which
are normalized to sum up to 1.0, using the softmax func-
tion. The outputs represent the probabilities of onset and no
onset. The authors reported that they used this two-output
approach because the results using a single output were
not as successful. To obtain the final onset times, a peak
picking method is used to detect the local maxima just for
the output corresponding to the onset class.

2.2.3. SuperFlux
One of the most popular DSP-based methods for note onset
detection is based on calculating the spectral flux, based on
the idea that note onsets are accompanied by rapid spectral
changes in the audio signal. The SuperFlux method, pro-
posed by Böck and Widmer [9], consists in adding some
improvements to the spectral flux method. Instead of calcu-
lating the bin-wise difference between consecutive spectral
frames, it adds a trajectory-tracking stage to the method
to avoid high values in the ODF. It also combines phase
information, using a technique called local group delay,
to reduce the impact of amplitude variations that occur in
steady tones in the output of the method. These changes
seek to reduce false positives caused by vibrato and tremolo.

2.2.4. Clarinet-specific model
To obtain a specialized note onset detector for clarinet
recordings, we implemented the CNN architecture de-

scribed in section 2.2.1 and trained this network on a clar-
inet dataset. In the original paper, by Schlüter and Böck [7],
their model had been trained on a dataset containing both
monophonic and polyphonic recordings played on various
instruments and covering multiple musical genres. We an-
ticipated that that model would not perform as well as it
could on clarinet recordings due to the specific character-
istics of the sound produced by the instrument, which are
underrepresented in the training data.

We adjusted a few hyperparameters in our model.
The learning rate was set to 0.1, and the weights of the
frames that precede and succeed the annotated onset were
set to 0.4 (fuzziness). These hyperparameters were adjusted
by testing different values and evaluating the result on a
validation set.

2.3. Evaluation Criteria

To evaluate a note onset detection model, we need to define
criteria to decide whether each onset prediction is correct or
not. Thus, the predictions must be compared and matched
to the onset annotations (ground truth). For this purpose, we
specified an argument ω, which is a tolerance window (de-
fined in milliseconds) centered on each annotated value. To
be considered valid, a prediction must fall within the defined
tolerance window around the onset annotation. When two
onset predictions fall within the tolerance window around a
single annotation, only the closest one is accounted as a true
positive, while the other is considered a false positive. With
those values, we can calculate the metrics precision, recall,
and F-score, to evaluate the results of an onset detection
method. All the results presented in this paper show the
evaluation metrics calculated using two different values for
the tolerance window ω: 20 ms and 50 ms. Since these
tolerance windows are centered on the target onset point,
an onset detection that is within their limits will correspond
to a maximum distance of 10 ms and 25 ms, respectively.

3. Results
The following names are used to refer to the models we
evaluated in our experiments:

• CNN-Böck
• RNN-Böck
• SuperFlux
• CNN-Clari

The models CNN-Böck and RNN-Böck were pre-
trained on a generic dataset, known as Böck dataset, con-
taining 102 minutes of audio and 25,927 onsets composed
by multiple instruments and musical genres, with both poly-
phonic and monophonic recordings. The model Superflux
is based on DSP techniques. CNN-Clari was trained by
ourselves using the dataset clari-onsets-50.

Table 2 shows the results obtained using each of
the models on the dataset clari-onsets-50. To train and
evaluate the model CNN-Clari using the same dataset, we
employed 10-fold cross-validation, using 8 folds for train-
ing, 1 for validation, and 1 for testing. The model CNN-
Clari generated the best results among the four models,
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ω = 50 ms ω = 20 ms
method f-score recall precision f-score recall precision

CNN-Böck 0.861 0.851 0.872 0.605 0.597 0.614
RNN-Böck 0.781 0.779 0.784 0.459 0.456 0.461
SuperFlux 0.718 0.669 0.775 0.379 0.353 0.410
CNN-Clari 0.954 0.946 0.962 0.720 0.712 0.728

Table 2: Results obtained for the dataset clari-onsets-50. The model CNN-Clari was trained and evaluated using 10-
fold cross-validation, using 8 folds for training, 1 for validation, and 1 for testing.

ω = 50 ms ω = 20 ms
method f-score recall precision f-score recall precision

CNN-Böck 0.948 0.944 0.952 0.709 0.706 0.712
RNN-Böck 0.887 0.905 0.870 0.685 0.698 0.672
SuperFlux 0.862 0.889 0.836 0.469 0.484 0.455
CNN-Clari 0.988 0.984 0.992 0.908 0.905 0.912

Table 3: Results obtained for the dataset clari-onsets-3. This time, the model CNN-Clari was trained on the entire
dataset clari-onsets-50, and the resulting model was employed on the recordings from clari-onsets-3.

for tolerance windows of both 50 ms and 20 ms, with re-
spect to all the three metrics: F-score, recall, and precision.
The F-score obtained for the 50 ms tolerance window was
0.954, more than nine percentual points higher than the
second best F-score. Among the models from the library
madmom, CNN-Böck was the best, reaching an F-score of
0.861 against 0.781 from RNN-Böck and 0.718 from Su-
perFlux. This result corroborates with the results obtained
in [7] when comparing these three models, in which the
CNN had performed better that the other two models, on a
generic dataset. Nonetheless, the results

The results obtained for the dataset clari-onsets-3
are shown in table 3. For this particular experiment, we
trained the model CNN-Clari using the entire dataset clari-
onsets-50.

Again, the model CNN-Clari produced the best
results, with an F-score of 0.988 for the 50 ms tolerance
window, followed by CNN-Böck (0.948), RNN-Böck (0.887)
and SuperFlux (0.862). The results obtained for this smaller
dataset were considerably better than for clari-onsets-50.

4. Discussion
Training a CNN model on a clarinet dataset, specifically,
we were able to achieve results that are significantly better,
for this particular domain, than those produced by models
trained on generic data or by a model that uses strictly DSP
techniques. If we order the results from the models based
on the resulting F-score, we obtain the sequence CNN-Clari,
CNN-Böck, RNN-Böck and SuperFlux. This sequence is
consistent among the results from both experiments and
both tolerance windows.

Regarding the dataset clari-onsets-3, for which we
obtained results that are considerably better when compared
to clari-onsets-50, it is worth emphasizing that it is a small
dataset, having a total duration that corresponds to only
3.4% percent of the latter, and there is certainly a bias

related to the fact that its recordings were all made in a
laboratory, under controlled conditions, in a room with
very low reverberation, by only two clarinetists. The low
reverberation is probably a factor that makes it a lot easier
for any method to detect the onsets since it minimizes the
superposition of energy of consecutive notes.

By listening to the note onsets detected by the
clarinet-specific model, we observed that it tended to miss
some onset for notes with extremely long attack times (very
soft notes), producing false negatives. During the dataset
annotation we had already noticed that it was quite hard
to determine the exact position of the onset for such notes.
Thus, we suspect that those false negatives might have some
relation to the annotated data’s imprecision for soft notes.
Also, on a few situations where there were two consecutive
notes with the same pitch, the model tended to miss the
second note’s onset.

In the clarinet recordings we used, there is a sig-
nificant amount of breathing sounds, background noises,
crackling sounds from the chair, and sometimes even whis-
per sounds. It is interesting to notice that the network was
able to learn to ignore those sounds completely, which is an
excellent result, since they would not correspond to note on-
sets in the vast majority of the clarinet repertoire (although
they might, in contemporary compositions).

It is worth mentioning that we did some prelimi-
nary experiments training the clarinet onset detection model
using additional semi-synthetic data, but so far, the results
have not been promising. That data was created using a
MIDI keyboard controller to record monophonic melodies
using the sound from a commercial clarinet sampler soft-
ware. The note on events of the MIDI protocol were used
to generate the onset annotations, and those were used in
our training experiments. We attempted to use this semi-
synthetic data in the CNN model using two different strate-
gies: (1) employing them on a pre-training phase and (2)
mixing them in the training data. None of these approaches
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improved the results of the model. As a matter of fact, they
produced slightly worse results than the models trained
without them. Yet, these results are preliminary and still
require further investigation. We also did some experiments
applying data augmentation techniques to the train data
(such as pitch-shifting, time-stretching, gain adjustment,
and addition of noise). Again, in our preliminary experi-
ments using these techniques, the results of the model got
slightly worse. One thing that might be worth further in-
vestigation are the false negatives produced by the model
CNN-Clari, specially on notes with soft attack. As shown
in tables 2 and 3, the recall for the model CNN-Clari is
slightly lower than its precision, so if we figure out a way
to reduce those false negatives, we may get a significant
improvement in the results produced by the model.
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