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Abstract. Deep learning has become the standard proce-
dure to deal with Music Information Retrieval problems.
This category of machine learning algorithms has achieved
state-of-the-art results in several tasks, such as classi-
fication and auto-tagging. However, obtaining a good-
performing model requires a significant amount of data.
At the same time, most of the music datasets available lack
cultural diversity. Therefore, the performance of the cur-
rently most used pre-trained models on underrepresented
music genres is unknown. If music models follow the same
direction that language models in Natural Language Pro-
cessing, they should have poorer performance on music
styles that are not present in the data used to train them. To
verify this assumption, we use a well-known music model
designed for auto-tagging in the task of genre recogni-
tion. We trained this model from scratch using a large
general-domain dataset and two subsets specifying differ-
ent domains. We empirically show that models trained on
specific-domain data perform better than generalist mod-
els to classify music in the same domain, even trained with
a smaller dataset. This outcome is distinctly observed in
the subset that mainly contains Brazilian music, including
several usually underrepresented genres.

1. Introduction
Music classification is one of the most investigated sub-
tasks of Music Information Retrieval (MIR) [1]. Like
other domains that rely on complex data, such as Computer
Vision (CV) and Natural Language Processing (NLP),
content-based Music classification has achieved significant
improvements through deep neural networks [2].

A limitation of deep learning techniques is that
they usually need a large volume of training data to ob-
tain a good-performing model. Therefore, applying deep
learning requires a significant effort of labeling the data or,
at least, crowdsourcing the labeling responsibility. Both
cases lead to a more severe difficulty for training models
for underrepresented music genres in music classification.

A possible solution to circumvent this problem
is the use of pre-trained models [3, 4]. In this scenario,
we use a model trained in a large dataset and fine-tune its
weights using the dataset we have at hand. This procedure,
called transfer learning [5], is increasingly becoming stan-
dard in CV, NLP, and MIR applications. Besides, it is pos-
sible to use the pre-trained model in some scenarios with

no fine-tuning. This procedure is called zero-shot learn-
ing [6]. Finally, recent advancements in self-supervised
learning have led researchers to create models where other
researchers or practitioners may use the model as a feature
extractor and apply the learned representation in different
downstream tasks.

However, several efforts on CV and NLP have
shown that the transference of knowledge is limited,
mainly when we use a pre-trained model in a completely
different application domain [7, 8]. Usually, fine-tuning
from a domain-specific model (similar to the one it will be
applied) leads to better results than generalist models.

Although pre-trained models and their ability to
transfer knowledge are well-studied on CV and NLP appli-
cations, these techniques are less explored in MIR applica-
tions. A few works have used CV-based models, like VGG,
to classify music data. More recent papers achieved state-
of-the-art music classification using musically motivated
models, creating evidence that supports domain-specific
models for music data [9]. However, there is no effort to
assess the capabilities of domain-specific or general music
classification models on low-represented music genres.

This work presents a study of the impact of
domain-specific training of music models for Multi-label
Music Genre Classification. Notably, we investigate how a
widely-used deep architecture behaves on different West-
ern music genres when trained using songs in other groups.
For example, we assume that songs composed in English
usually have significant differences from songs written in
Portuguese, so we apply different language-based filters to
train general and specific models.

More importantly, the portion of our dataset com-
posed in Portuguese includes Brazilian genres usually low-
represented in music datasets, such as samba, sertanejo,
and axé. Moreover, we also understand that songs in the
same genre, such as rock and reggae, may present different
characteristics if written in English or Portuguese, and the
domain-specific models should capture these differences.

2. Background and Related Work

In the last few decades, we have witnessed a significant in-
crease in Machine Learning applications in Computer Mu-
sic and Music Information Retrieval tasks [10, 11, 1]. The
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most common approach in this context is using a super-
vised learning algorithm. This category of techniques may
be applied in a plethora of tasks, such as genre classifica-
tion [12, 13], auto-tagging [14, 4], instrument identifica-
tion [15], mood [16] and emotion classification [17], chord
recognition [18], and popularity estimation [19].

Early systems usually applied a feature extraction
step to obtain a structured dataset before submitting it to
“traditional” Machine Learning algorithms [20]. For in-
stance, different features like signal or spectrum param-
eters, mel-frequency cepstrum coefficients (MFCC), and
psychoacoustic characteristics [21] may be extracted us-
ing different windowing and aggregation strategies from
the raw audio in genre classification [22, 23, 12]. How-
ever, aggregating the windows and the influence of distinct
features and their combinations make music classification
difficult.

For this reason, the community has moved to deep
learning algorithms [3, 2]. As a result, most of the lit-
erature that defines the state-of-the-art of music classifi-
cation is based on learning a deep neural network-based
model [3, 24, 25, 26, 27, 4, 28, 13]. The main advantage
of using these models is the ability to learn the best repre-
sentation to solve the problem at hand.

Several recent works have used neural models
trained in a dataset to deal with another dataset, espe-
cially with only a few labeled examples. For example, we
may rely on transfer learning [5, 29, 30] or zero-shot [6]
learning strategies to use these models. Moreover, we
may leverage on different supervision levels, such as su-
pervised [31] or self-supervised learning [32, 33] to learn
these models.

Considering the resemblance of these strategies
to how researchers and practitioners have used language
models to approach NLP problems, we refer to these mod-
els for MIR tasks as music models. Among the vari-
ous music models found in the literature, we highlight
musicnn [4], which has received considerable attention.

musicnn1 is a set of pre-trained musically mo-
tivated convolutional neural networks designed for music
auto-tagging. A researcher interested in using this music
model may train it from scratch, fine-tune its weights, or
use it as a feature extractor. Its default output consists of a
taggram consisting of each pre-defined tag’s strength (pre-
diction score) in each time window of the input recording.
Alternatively, the user may extract the penultimate layers
of the model and use them as low-level features.

One limitation of these music models, includ-
ing musicnn, is that they are majorly trained using
American-like music, such as pop, hip-hop, and blues
songs. As a result, when a song from a different culture
is presented to the model, it may fail in extracting suitable
features to describe it. For instance, Brazilian music is rich
in influences worldwide. Consequently, Brazilian musi-
cians have created several regional genres, such as forró,

1https://github.com/jordipons/musicnn

axé, samba, funk carioca, bossa nova, and sertanejo. Un-
fortunately, the musicnn models have no tags regarding
these genres and the instruments used to record most of the
songs in them.

A few papers noticed the lack of Brazilian mu-
sic in the MIR literature. For instance, Conceição et al.
[34] studied the most used music classification datasets and
stated a lack of cultural diversity in them. So, the authors
created a database containing 613 Brazilian songs from
6 genres. Using low-level feature extraction and tradi-
tional Machine Learning algorithms, the authors achieved
slightly better results using only the Brazilian songs in-
stead of merging them with a public dataset.

It was not the first time authors approached the
lack of cultural diversity on music datasets, especially con-
sidering Brazilian or Latin music. For instance, the Latin
Music Database (LMD) [35] was proposed to fill this lack.
The LMD contains features extracted from 3160 songs in
10 Latin genres, such as salsa and samba. Later, de Sousa,
Pereira, and Veloso [36] proposed the Brazilian Music
Dataset, containing 120 songs labeled in 7 musical gen-
res. Other datasets of Brazilian genres were presented for
different tasks, such as the Brazil Northeast data [37], the
Brazilian Popular Music [38], the SambaSet [39], and the
Forró em Vinil Dataset [40].

Recently, the 4MuLA dataset was proposed: A
Multitask, Multimodal, and Multilingual Dataset of Mu-
sic Lyrics and Audio Features [41] which has richer musi-
cal information than the datasets aforementioned. 4MuLA
makes available 96,458 Brazilian and international songs
that belong to 15,310 artists and are organized into 76 gen-
res in its full version. The collected songs were from the
Brazilian portal Vagalume. All pieces have a set of pre-
processed metadata, lyrics, and acoustic features to repre-
sent them in different scenarios.

3. Domain-Specific Models

This work is based on the widely spread idea that domain-
specific deep models usually perform better than generalist
ones. This idea is remarkably studied on Natural Language
Processing (NLP) tasks. The current state-of-the-art NLP
algorithms are based on pre-trained language models, such
as Bidirectional Encoder Representations from Transform-
ers (BERT) [42].

However, BERT (and other language models)
present several flaws identified in the literature. For in-
stance, multilingual models have deficiencies in model-
ing underrepresented languages [8]. Usually, replacing the
multilingual model with a specialized monolingual version
improves the performance on different NLP tasks [43].

Besides, training the language model on texts of a
specific domain also leads to better results. For this reason,
the literature presents a vast diversity of domain-specific
BERT. Some examples of knowledge domains used to train
domain-specific language models are biomedicine [44], fi-
nance [45], and scientific writing [46].
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This work hypothesizes that music models behave
like language models for domain-specific data. To eval-
uate this hypothesis, we use a dataset containing several
songs of Brazilian music. We also use a similar dataset
containing other songs concentrated on American music,
but not limited to. For this, we separate songs from the
4MuLA dataset [41] composed in Portuguese and English.
The complete dataset, which contains these and other lan-
guages, is used to train a generalist model.

These datasets are used to train musicnn [4],
a musically motivated convolutional neural network de-
signed for auto-tagging. Using the different datasets, we
will evaluate how musicnn behaves on various combina-
tions of general and specific-domain training and test.

Figure 1 describes the musicnn’s architecture.
The input of the deep network is a log-scaled mel-
spectrogram. First, it is submitted to musically motivated
convolutional layers [47], creating the first representation
that may be used, named by the authors as front-end fea-
tures. Next, these features are passed through layers of
fully connected (dense) unities, transforming the front-end
into mid-end features. Finally, after pooling and dense lay-
ers, the network output a taggram.

The taggram represents the predicted score of
each of the 50 tags comprised in the training dataset in
short time windows. In this work, we are interested in
the genres of the assessed songs. So, we substitute the
last layer to adapt it to the number of genres comprised by
each subset (general or domain-specific). Then, we used
the mean value, across all the windows, for each genre as
the final scores.

4. Experimental Setup

We used the 4MuLA dataset in our experiments due to the
completeness of its information. We chose to use the small
version, which concentrates songs from artists in the top
100 ranking positions according to the source of data Va-
galume website2. In this version, each audio has 30 sec-
onds and is represented by a melspectrogram. The 4MuLA
small version has 9661 songs that belong to 419 artists and
is organized in 50 different genres.

To obtain the domain-specific models, we first
needed to define the rule to specify each domain. For this,
we explore the main characteristics of the dataset. Table 1
show a summary of small 4MuLA. We note that each song
in the dataset contains a top genre and (possibly) a list of
other/secondary genres.

While we could use specific genres, we opted
to use the language the lyrics were composed as a fil-
ter. We understand that it brings sufficient information
to define the domains to verify the quality of the stud-
ied model on Brazilian music. Besides, considering En-
glish and Portuguese as the filters, we create two specific-
domain datasets with a similar number of instances.

2https://www.vagalume.com.br/

Table 1: Overview of 4MuLA small

Feature Amount
Number of songs/instances 9661
Number of songs (EN) 4722
Number of songs (PT) 4654
Number of songs (others) 285
Unique artists 491
Unique genres 50
Max instances in a single “top” genre 1169
Min instances in a single “top” genre 11
Avg instances in a single “top” genre 189.43
Std instances in a single “top” genre 260.86

On the other hand, we recognize that we may find
Bossa Nova and other Brazilian genres written in English.
However, filtering by language also has the impact of sep-
arating songs of the same genre with different influences.
For instance, Brazilian rock music may reflect a signifi-
cant influence from local music. So, American or British
rock music, for example, may sound considerably different
from Brazilian songs in the same genre.

Therefore, we created three sub-datasets. The
first one uses the whole 4MuLA small, comprising songs
from all the languages and, consequently, varied cultures.
We refer to this dataset and the models created from it us-
ing the tag All. From this dataset, we created random
training and test partitions, named as All-train and
All-test, respectively.

In a second stage, we used All-train and
All-test to create the domain-specific data. By filter-
ing the data regarding songs written in Portuguese, we ob-
tained the datasets PT-train and PT-test. Similarly,
we applied the filter for English and obtained the datasets
EN-train and EN-test. Figure 2 illustrates this proce-
dure.

Finally, we recall we use musicnn as the base
model of our evaluation. While the currently available
musicnn may be used as a pre-trained model, we opted
for initially training it from scratch. This option relies on
avoiding possible intersections of the songs in our dataset
and the datasets used to train musicnn, as well as the
possibility of the pre-trained model already reflects some
characteristics of our domain-specific data. Moreover, we
consider the number of examples in 4MuLA small as suf-
ficient for training a suitable model.

Therefore, we used All-train to create our
pre-trained model, which we refer to as musicnn-All.
For the sake of comparison, we also trained specific-
domain models from scratch. Using the datasets
PT-train and EN-train, we trained the models
musicnn-PT and musicnn-EN, respectively.

Finally, we noticed that we repeated the exper-
iments ten times to present results robust to variations
caused by randomness.
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Figure 1: General architecture of musicnn, the model we used as based in our experiments
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Figure 2: We split our dataset in train and test par-
titions and apply filter on these subsets
to obtain domain-specific data

5. Results and Discussion
Using the described experimental setup, we assessed the
area under the Receiver Operating Characteristic Curve
(ROC-AUC) and the Precision-Recall (PR-AUC) curves
obtained by each model on each test set. Table 2 presents
the average results.

Table 2: Detailed results

Model Test set ROC-AUC PR-AUC

musicnn-All
All-test 0.68 0.43
EN-test 0.65 0.45
PT-test 0.64 0.34

musicnn-EN
All-test 0.60 0.36
EN-test 0.65 0.44
PT-test 0.53 0.27

musicnn-PT
All-test 0.63 0.39
EN-test 0.56 0.37
PT-test 0.69 0.39

We plot these results differently aggregated in
separate charts for visualization and, consequently, better
interpretation of the results. Figure 3a presents the ROC-
AUC performances aggregated by model so that we can
compare their performances for each language filter. Fig-
ure 3b aggregates the results by language filter.

When observing the ROC-AUC, we note that the
best performance of each model occurs on the test set ob-
tained by the same filter used in the training set. This be-

havior is expected for musicnn-EN and musicnn-PT
for several reasons. We can interpret this result as antici-
pated evidence that zero-shot learning does not work when
the pre-trained models are domain-specific, especially if
applied on another domain-specific dataset. For instance,
PT-test comprises several songs from genres not in-
cluded in EN-train. Even the genres included in both
datasets may present differences on the separate data, as
previously discussed. So, these songs appear on both gen-
eralist and specific (for the other language) test sets. Once
these songs represent a fraction of All-test, the perfor-
mance decrease is lower on this data.

On the other hand, the model trained using all
data brings more interesting results. While we could
expect better results on PT-test and EN-test, the
best performance of musicnn-All was achieved on
the All-test dataset. It means that, for some reason,
musicnn-All performed well on songs that are neither
in PT-train nor in EN-train.

Regarding each test dataset, using a model trained
on a domain generally leads to better ROC-AUC rates
for the same domain. This fact is clearly observed for
All-test and PT-test. For instance, musicnn-PT
is five percentage points better than musicnn-All for
PT-test. However, the results obtained by the generalist
and specific models are similar on EN-test.

Besides, musicnn-PT performs better than
musicnn-EN on All-test. Since the subsets are not
unbalanced, we can conclude that the songs comprised by
PT-train lead to a better model (for general music) than
the songs on EN-train. It possibly happens because the
Portuguese songs, at least for this dataset, are more diverse.

When we observe the PR-AUC results, we ob-
tain similar conclusions. However, there is a slight inver-
sion in the results obtained on EN-test. The best PR
rate on EN-test was obtained by musicnn-All (Fig-
ure 4b). At the same time, the highest PR-AUC obtained
by musicnn-All was on EN-test (Figure 4a), not on
All-test like for the ROC-AUC.

A general observation made on the results is that
all the ROC-AUC are significantly higher than the PR-
AUC. Won et al. [9] shown the same phenomenon when
comparing diverse deep learning models for music auto-
tagging. Moreover, they observed some inversions of re-
sult interpretations, like those we discussed for EN-test.
However, the authors did not propose any solution for a
better evaluation.

We added all the confusion matrices obtained in
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Figure 3: ROC-AUC obtained in our experimental evaluation, aggregated by model (a) and dataset (b)
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Figure 4: PR-AUC obtained in our experimental evaluation, aggregated by model (a) and dataset (b)

our experimental evaluation in the appendix to a better and
detailed interpretation of the results. Carefully analyzing
these matrices helps us interpret some outcomes that are
not evident in the bar plots and tables. For instance, we
can observe that our models obtain a significant number
of false negatives and only a few false positives, causing
low recall rates. It explains why the PR-AUC values are
notably lower than the ROC-AUC.

6. Final Remarks
We presented an experiment on how a known music model
behaves in general and specific domains. Notably, we fil-
tered songs by the language of their lyrics as a heuristic
to create a dataset containing several recordings of Brazil-
ian music and another one more similar to well-known
datasets, where the songs were composed in English.

Our results show that specific-domain models, in
general, are more suitable to classify domain-specific data.
Training a model from scratch using only the Portuguese
portion of the data drove us to build better models for the
same type of songs than training the same model using the
same data and, additionally, data from other languages. At
the same time, it is not clear for songs composed in En-
glish, which leads us to think that Brazilian music’s com-
plexity played a significant role in the model training.

Although the evaluated model performs similarly

to other deep learning models for music classification [9],
we intend to perform similar experiments using other ar-
chitectures. Moreover, establishing and evaluating differ-
ent strategies to define the specific domains is also left to
future work.

Furthermore, we aim to understand the studied
phenomena better through model explanations, examining
the differences between general and specific domain mod-
els. Then, we may evaluate the feasibility of funding these
models. Finally, we will include other modalities, like the
songs’ lyrics, and perform similar studies.
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Appendix
Here, we present all the confusion matrices obtained in our
experiments. We note that the values on these matrices
were standardized, so all cells’ sum equals one.
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Figure 5: Confusion matrix of musicnn-All on All-
test
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Figure 6: Confusion matrix of musicnn-All on EN-
test
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Figure 7: Confusion matrix of musicnn-All on PT-
test
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Figure 8: Confusion matrix of musicnn-EN on All-
test
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Figure 9: Confusion matrix of musicnn-EN on EN-
test
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Figure 10: Confusion matrix of musicnn-EN on
Test PT-test
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Figure 11: Confusion matrix of musicnn-PT on
All-test
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Figure 12: Confusion matrix of musicnn-PT on
EN-test
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Figure 13: Confusion matrix of musicnn-PT - PT-
test
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