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Abstract

The  conceptualization  of  the  musical  timbre,
which  allows  its  quantitative  evaluation  in  an  audio
record, is still an open-ended issue. This paper presents a
set  of  dimensionless  descriptors  to  assess  the  musical
timbre  of  woodwind  instruments  in  recordings  of  the
fourth  octave  of  the  tempered  musical  scale.  These
descriptors  are  calculated  from  the  Fast  Fourier
Transform (FFT) spectra using the  Python Programming
Language,  specifically  the  SciPy  library.  The
characteristic spectral signature of the clarinet, bassoon,
transverse  flute,  and  oboe  are  obtained  in  the  fourth
musical  octave, observing the presence of degeneration
for  some  musical  sounds,  that  is,  two  given  different
aerophones  may  present  the  same  harmonics.  It  is
concluded that the proposed descriptors are sufficient to
differentiate  the  aerophones  studied,  allowing  their
recognition, even in the case that there present the same
set of harmonic frequencies.

1. Introduction

To  characterize  sound  in  general,  and  musical
sound in particular, it is necessary to know the attributes
of pitch,  intensity,  duration, and timbre.  The first  three
characteristics  of  sound  correspond  respectively  to  the
acoustic magnitudes of frequency, intensity and time, and
they are direct, measurable magnitudes. Timbre, however,
is a multi-dimensional and briefly defined attribute that
makes it possible to distinguish between different sounds
even when they have  the same intensity,  duration,  and
pitch. It allows discriminating sounds of different musical
instruments even when it is the same musical note, with
the same duration and intensity.

The problem of  the  univocal  characterization of
musical  timbre  raises  the  need  to  develop  descriptors
(derived  magnitudes,  coefficients  or  functional)  that
evaluate  timbre  from  digital  audio  records  [1].  Since
musical timbre is a phenomenon of auditory perception,
many of the investigations are developed in the line of
psychoacoustics to evaluate verbal descriptors that reveal
measurable attributes of musical timbre [2,3].

Although  the  psychoacoustic  perception  of
musical timbre cannot be ignored, it must be recognized

that  the  main  timbral  characteristics  must  be,  in  some
way, inscribed within its spectral content [4]. Assume that
an FFT calculated from a musical audio record does not
contain  some significant  timbral  characteristics.  In  that
case, the deconvolved audio (reverse convolution) could
not  be  distinguished  timbrically.  However,   as  we  can
differentiate  between  musical  instruments  after  the
deconvolution, the initial assumption is not valid.

 Therefore, the FFT contains all the essential tonal
characteristics. Other research focuses on the presentation
of an exhaustive collection of acoustic descriptors in the
form  of  coefficients  or  functional  (Timbre  ToolBox,
Librosa) that can be computationally extracted from the
statistical  analysis  in  the  digitization  of  the  spectrum
(FFT) and the digital  signal  itself  (spectrogram).  These
coefficients  usually  refer  to  the  statistical  and
mathematical characterization of the maxima in the FFT
and  the  spectrograms,  such  as  the  mean  value  in
frequency (centroid)  and amplitude,  standard  deviation,
kurtosis,  roots  or  poles  of  the  distribution,  arithmetic
sequences and geometric in frequency, mean and mean
square values of the amplitudes among others [5-9].

 There is no consensus on which and how many are
the  acoustic  descriptors’ for  musical  timbre.  However,
many of them are derivatives or combinations of others
and thus highly correlated [5]. It is worth asking which is
the minimum set of timbre descriptors that differentiate
the musical instruments in a given audio recording.

Despite  recent  advances  in  verbal  descriptors
(psychoacoustic)  such  as  statistical  or  mathematical
descriptors  (Timbre  Toolbox  [5],  Librosa  [9,10])  of
musical timbre, it is still far from being characterized, and
it constitutes a challenge for the automated identification
of musical instruments.

An alternative approach is to construct the timbral
descriptors  from  that  of  musical  acoustics,  using  an
analogy to the analysis and digital processing of spectra
in other areas of knowledge. The FFT represents the two-
dimensional  plane  of  the  frequencies  and  intensities
(alternatively energy-frequency) present in a signal.

This paper aims to propose a set  of acoustically
motivated timbral descriptors (mathematical functional or
oversized  coefficients)  that  allow  the  computational
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extraction  of  timbral  information,  for  the  automated
identification of woodwind musical instruments. For this,
a  preliminary  study  of  the  timbral  characteristics  in
digital musical sounds is presented; using the FFT in the
4th tempered musical Octave of a sample of woodwind
instruments:  Clarinet,  Bassoon,  Transverse  Flute  and
Oboe.

In  Section 2,  the  methodology for  obtaining the
spectrum and their quantification of the Audio records are
presented. In Section 3, the coefficients or descriptors and
their valuation for the selected aerophones are shown. In
Section 4,  the  chromatogram for  the 4th octave of  the
tempered  musical  scale  is  evaluated,  and  the  spectral
signature  (“fingerprint”)  that  characterizes  each  studied
aerophone is obtained. Finally, the conclusions and future
work are presented in the last section.

2. Methodology

The  audio  records  of  the  aerophones  were
obtained  from  the  TinySOL open-source  sound  library
[11],  which  contains  recordings  of  individual  sounds,
played in an ordinary way,  at a level of dynamic/intensity
mezzo  forte  in  a  WAV  audio  format  that  minimizes
information losses, sampled at 44.1 kHz in single-channel
(mono)  at  16-bit  depth.  From  this  library,  we  have
restricted our analysis  to only some instruments  of  the
woodwind family of a typical western symphonic music
orchestra: Clarinet, Bassoon, Transverse Flute and Oboe.

On these  audios,  the  module  for  calculating the
FFT available  in  the  SciPy library in  Python [12]  was
used  to  obtain  the  frequency  spectrum;  then  for  the
identification   of  the  local  maxima,  the  find_peaks
function in Scipy.signal was used.

 Next,  the  tables  of  the  maximum  frequencies,
expressed  in  Hz,  with  relative  amplitudes,  normalized
considering  the  maximum amplitude  value  achieved  in
each  spectrum  of  the  FFT,  were  obtained  in  order  to
compare the various audio spectra with different power
levels (Watt) or relative power (dB).

The calculation of the coefficients was performed
on the  frequency spectrum of  the  fourth  octave  of  the
tempered  musical  scale  (~261  Hz  to  ~493  Hz)
corresponding to  musical  sounds between C4 to B4 in
musical notation. This octave was initially considered as
it  is  the  lowest  common octave  in  the  tessitura  of  the
selected aerophones;  therefore,  it  is  the one that  would
present  the  most  significant  amount  of  harmonics  for
each instrument and musical sound.

3. Timbral Coefficients

Musical  frequencies  make  up  a  set  of  only  12
different values in the 4th musical octave. Therefore, in a
first approximation, musical timbre can be characterized
by  a  limited  set  of  dimensionless  quantities  related  to
frequencies  and  amplitudes  in  the  spectrum.  They  are
related to the fundamental frequency and the partials that

arise from the FFT. In the timbre analysis, the centroid is
usually used; its use does not allow a specific acoustic
interpretation since the frequency does not correspond to
any of the parcials frequencies of the sounds studied. The
centroid is defined as the average frequency. Where f i is
the harmonic frequencies for each spectrum.

f̄ =
∑

1

N

ai f i

∑
1

N

ai

               (1)

In Figure 1, the FFT spectra of the musical sound
E4 are shown (329.6 Hz). Note that the centroids do not
correspond to any audible signal or related to the musical
note E4.

Figure 1: FFT spectra of the musical sound E4
for the studied aerophones, nominal frequency

329.6 Hz.

For all aerophones studied, Figure 2 shows that, in
general, the centroid presents variations of less than 15%
with respect  to its  mean value of the 4th octave.  Also,
Figure 2 shows that, in some sounds, the centroid values
are similar for several  instruments.  This similarity does
not  allow  their  differentiation  w.r.t.  the  type  of
instrument.

Figure 2: Centroid in 4th Octave of the musical
scale
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The  fundamental  frequency  f 0 would  only

coincide with the Centroid f̄  if there are no other partial
frequencies.  This  fact  is  impossible  in  real  musical
instruments due to the harmonics, the superposition and
the beats  inside the resonator  tubes of  the  aerophones.
The separation between the fundamental  frequency and
the mean value of the frequencies would be important in
musical acoustics. The Affinity coefficient describes how
far the spectrum is from the ideal case, that is, how far the
maximum  Principal f 0 is  from  the  mean  value  in

frequency or Centroid ( f̄ )

A ≡
f̄
f 0

               (2)

The  affinity  coefficient  allows  discriminating
different sounds with the same Centroid (figure 3). Figure
4 shows the values of A for the 4th octave.

Figure 3: Fourier spectrum with different
coefficients. Top: Examples with very similar

centroids. Botton: Examples with Equal  musical
sounds.

It can be observed in Figure 1, that different
musical  instruments  have  different  amplitudes  in  their
fundamental  frequency.  This  motivates  another
descriptor: the Sharpness coefficient (S).

S≡
a0

∑
1

N

ai

                (3)

Ideally,  S=1 in a “pure” sound that would have a
single  maximum  without  secondary  frequencies.  By
construction,  S ≤  1.  Figure 5 exemplifies  Sharpness  in
different musical  instruments and for  the same musical
instrument with different sounds.

Figure 4: The values of affinity (A) for the 4th
octave

Figure 5: Timbral coefficient S. Above: The FFTs
of the Clarinet in C# (277.2 Hz) and of the

Transverse Flute in G#  (415.3 Hz) both with S =
0.55. Bottom: Bassoon FFT in B4 and E4, S =

0.98 and S = 0.11 respectively

Figure 6. Sharpness (S) in the 4th octave.

Figure 6 shows the variation of the Sharpness of
the aerophones in the 4th Octave. It is observed that, in
general  (except for  F#),  the clarinet  is  sharper than the
transverse flute, and is sharper than the bassoon. In any
case, the Oboe is the least shaper of all. In other words,
musical sounds have better sharpness on the clarinet and
worse sharpness on the Oboe.

4. Spectral Signature

In  general,  the  identification  of  musical
instruments and of the wave emitting source can be made
through  the  analysis  of  their  spectrum.  In  the  case  of
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electromagnetic  radiation,  the  specific  profile  of
intensities  versus  wavelength  (absorption  or  emission)
allows  the  identification  of  the  emitter  (is  it  a  gas,  a
reflective surface or an absorbing medium) and is called
Spectral  Signature.  By  analogy,  we  understand  as
"Spectral  signature  of  a  musical  instrument",  the
distribution  of  frequencies  in  the  Fourier  Transform
Spectrum of musical sounds (tempered scale) that allow
their identification. 

Suppose we restrict  ourselves  to  the  aerophones
studied,  which are only a small  sample of  all  common
musical  instruments.  In  that  case,  a  discriminatory
identification between them can be made from the spectra
of the presented FFT spectra for the 4th octave records.
(Figure 7).

Figure 7. Spectral Signatures in the 4th Octave
for Aerophones: Top: Oboe and Clarinet.
Bottom: Bassoon and Transverse Flute.

If all the harmonics of a certain musical sound are
present,  this  would  allow,   to  discriminate  the  sounds
between  each  instrument  (Table  1).  The  harmonic
frequencies  () are related to the fundamental  frequency
through the integer multiplicity (n = 2,3, 4,…):

f n=nf 0        (4)

This  discrimination,  regarding  which  harmonics
are  present  or  absent,  is  not  univocal.  It  presents
degeneration, in the sense that for some musical sounds,
two  different  aerophones  present  the  same  harmonics
(highlighted with the symbol * in table 1). 

Musical
sound  and
frequency
(Hz)

Characteristic Harmonic Frequencies
Clarinet Bassoon Flute Oboe

C4  : 261,6 {3,…,8} {2,…,8} {2,…,5,} {2, …,9}
C4#: 277,2 {3,…,7} {2,…,6} {2,…,8} {2, …,9}
D4  : 293,7 {2,…,7,9} {2,…,7}* {2,…,7}* {2,…,8, 

10,…,15}
D4#: 311,1 {2,…,10} {2,…,7}* {2,…,7}* {2, …,12}
E4  : 329,6 {2,…,9} {2,…,6}* {2,…,6}* {2, …,13}
F4  : 329,67 {2,…,5} {2,…,6}* {2,…,6}* {2, …,13}
F4#: 370 {3,…,7} {2,…,4} {2,…,5} {2,…,12} 
G4 : 494 {2,…,5} {2,…,5,8} {2,…,6} {2,…,12}
G4#: 415,3 {2,…,8} {2,…,6} {3,…,6} {2,…,13}
A4 :  440 {2,…,5} {2,…,7} {2,…,6} {2,…,11}
A4#: 466,2 {2,…,8} {2,…,6} {2,…,5} {2,…,9}
B4  : 494 {2,…,6}* {2,…,5} {2,…,6}* {2,…,9}

Table 1: Harmonic set as a function the sound
and musical instrument of the fourth octave.

(*) Denotes degeneracy: two different instruments with 
the same set of harmonics.

However, as the FFTs are not the same between
any  two  musical  instruments,  the  different  relative
intensities,  through  the  Affinity  and  Sharpness
coefficients,  would  allow  completing  of   the  spectral
signature and the univocal identification of the instrument
(Figure 8).

Figure 8. Timbral Affinity and Sharpness 

The  variation  of  these  coefficients  for  musical
sounds in the 4th octave, allows the spectral signature to
be uniquely identified without degeneration.

On the other hand, in a given spectrum, there are
always partial or secondary frequencies to f 0, that can be
counted.  However,  it  can also happen that  a  secondary
frequency  is  not  strictly  an  integer  multiple  of  the
fundamental frequency but whose frequency is very close
to an integer multiple of  f 0. 

In a way, the sound would be more “harmonic”
than if its frequency value were very different from the
multiplicity  of  the  fundamental  frequency.  We  have
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defined the coefficients from acoustics’ perspective where
an non-oscillating oscillator in harmonic motion is known
as an anharmonic oscillator. The difference is more than
mere semantics.

This  was  made  by  design  as  Inharmonicic
coefficient  defined  by  Peters  [14]  quantifies  only  the
frequencies that are multiples of the fundamental (integer
k values). However, in our definition of the Harmonicity
coefficient,  all  frequencies  of  the Fourier  spectrum are
quantified.   To  describe  this  property,  the  timbral
coefficient  of Harmonicity (H) is proposed and defined
as:

H ≡∑
1

N

(
f j

f 0

−[ f j

f 0
])              (5)

Where the [ ] denotes the integer part.

This  timbral  coefficient  evaluates  how harmonic
the partial or secondary frequencies (f1,f2,  f3...  fj  ) in the
FFT spectrum. The idea  is  that  any  frequency  f   is  a

harmonic of f j if the quotient between them is an integer.
Figure 9 shows this variation in examples of FFT spectra
with different harmonicity.

Our  definition  is  very  different  from  the
inharmonicity descriptors [14,15]. First of all, we do not
weigh the amplitudes, for the purposes of multiplicity in
frequency.  Secondly,  note  that  if  f k is  not  an  integer

multiple of  f 0, it will not appear in the summation nor
will it be considered in Bullock's expression [15], but it
will influence the harmony of the set and, therefore, the
expression shown in Equation (5).

Figure 9. Comparison of partial or secondary
frequencies in the sounds C, between the
Transverse Flute (H= 0),  Oboe (H = 16.9),
Clarinet (H= 2.00) and Bassoon (H= 7.48).

Figure  9  shows  a  comparison  of  secondary
frequencies in the sound C4 for the instruments we are
analysing. Analysing the figure, we observe that the oboe
is  more  inharmonic  than  the  flute,  with  harmonicity
coefficients  of  H =  0  and  H =  16.9,  respectively.
Comparing  it  with  the  coefficient  proposed  by  Peters
[14],  the  same  value  is  obtained  for  both  instruments
(Zero)  and,  as  a  consequence,  it  does  not  describe  the
harmonicity that we define.

The C4 sound of the Flute is much more harmonic
than  the  Oboe,  even  though the  latter  has  many more
secondary frequencies, some of which can be harmonics
of  f 0,  as  is  the  case  of  the  second,  third  and  fourth
maximum. Furthermore, if the secondary frequencies are
all harmonics of f 0 then H=0. Every time there is one or

more frequencies that are not harmonics of  f 0,  the j-th
term, in the sum, will be non-zero, and H increases. The
maximums of  the spectrum distribution of  the Flute in
Figure 9 are all integer multiples of the fundamental and
therefore it is highly harmonic (H = 0).

For  the  fourth  octave,  the  results  of  the
harmonicity  assessment  are  shown  in  figure  10.  The
Transverse  Flute  has  the  highest  harmonicity  (H near
zero), that is, its secondary frequencies are usually integer
multiples of the corresponding fundamental sound, while
the Oboe is the most anharmonic (large H). We note that
the quality of harmonicity varies with the musical  note
and  instrument,  so  for  the  characteristic  sound  of
reference  A=  440  Hz  the  Bassoon  and  Clarinet  are
completely  harmonic,  and  the  Transverse  Flute  is
completely hamonic also for C, D, E, and A#.

The Harmonicity coefficient  (H)  allows, through
the FFT, to quantify the number of harmonics present for
a  given  fundamental  frequency.  Therefore,  in  a  first
approximation, we can affirm that it is related to "color"
or "sonority" of these instruments [13].

Figure 10. Harmonicity (H) in the 4th Octave.

6. Conclusions

The Fast Fourier Transform (FFT) allows analyzing
digital  audio  records  on  the  tempered  musical  scale,
generating a unique spectrum that characterizes it. As a
finite,  bounded  and  countable  collection  of  discrete
frequencies  with  different  amplitudes,  this  spectrum
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provides two-dimensional arrangements of frequency and
amplitudes  for  the  musical  sounds  of  aerophones.
Moreover,  they  can  be  analyzed  using  the  usual
automated  signal  analysis  techniques.  Therefore,  the
characteristics of the audio records, including the timbre,
are  susceptible  to  being  automated  by  artificial
intelligence techniques.

It  is  possible  to  calculate  oversized  coefficients
that  reflect  timbral  characteristics  of  the  fundamental
frequency  and  harmonic  distribution  in  the  FFTs  of
simple  4th-octave  monophonic  music  registers  for
woodwind  instruments.  Thus,  the  proposed  timbral
descriptors, Affinity and Sharpness, allow distinguishing
the  timbre  of  Clarinet,  Bassoon,  Transverse  Flute,  and
Oboe.

The Spectral Signature of the wooden aerophones,
which allows the univocal identification of them, can be
obtained  through  the  FFT  by  the  distribution  of
harmonics present outside the loudness range of the 4th
octave.  The  number  of  harmonics  present  and  their
succession  does  not  always  characterize  the  timbre
between different aerophones. There may be degeneration
(two  or  more  instruments  with  equal  harmonics).
However,  the  proposed  coefficients  allow  a  unique
timbral identification in each musical sound studied.

We conclude that the proposed descriptors allow
describing  timbral  characteristics  of  the  instruments
studied, in addition to differentiating them, allowing their
recognition from the FFTs.

Future  work  will  implement  the  FFT
techniques  and  the  described  timbric  coefficients  until
completing the tessitura of the selected aerophones. Later
the study will  be extended to incorporate  the temporal
variations  of  the  timbre  coefficients  in  the  case  of
melodic fragments that are important for quantising the
timbre in the harmony and the musical composition.
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