
Electric guitar distortion effects unit using a Raspberry Pi
Renato Santos Pereira1 , Rodrigo Varejão Andreão2

1Centro de Pós-Graduação – Centro Universitário Espı́rito-Santense (FAESA)
Av. Vitória, 2220 – 29053-360 Vitória, ES

2Departamento de Engenharia Elétrica – Instituto Federal do Espı́rito Santo
Av. Vitória, 1729 – 29040-780 Vitória, ES

renato stosp@gmail.com, rodrigova@ifes.edu.br

Abstract. With the advance of electronics, techniques and
algorithms for digital signal processing, digital equipment
has been gaining more and more space in the music scene.
Micro-processed tools now generate several effects such
as modulation, echo, and distortion of sounds generated
by musical instruments, previously obtained only by ana-
log units. In this context, this study aimed to develop a
prototype of distortion effects unit using a Raspberry Pi
(a low-cost small single-board computer) and affordable
electronic components. Therefore, five nonlinear functions
were used, four of which are present in the literature and
one of them was originally developed by the authors. These
functions model the behavior of an active element (such
as transistors, valves, and operational amplifiers), which
when they exceed their amplification thresholds produce
distortions in the audio signals. Throughout this article,
all the steps in the development of the analog circuits for
signal acquisition and output will be presented, as well as
the simulation and implementation of the functions in the
microcontroller. At the end, with the finished prototype, the
frequency response analysis is performed and the sound
results achieved by the algorithms is compared with each
other and with other distortion units.

1. Introduction
Until the emergence of modern science, musical instru-
ments and theaters were built based only on empirical
knowledge [1]. Scientific studies in this area, over time,
directly influenced musical production. And from the in-
tersection between science and music, the guitar emerged.

The electric guitar had its origin in the 1930s.
The first solid-body guitar model, known as “Frying
Pan”, was developed by Adolph Rickenbacker and George
Beauchamp, the latter being the inventor of the magnetic
pickup [2]. Distortion, one of the most used effects by
guitarists, originated with tube amplifiers. When they
became popular, amplifiers for electric instruments used
thermionic valves in their circuits.

When tube amplifiers operate beyond their max-
imum amplification capacity (nonlinear operation) they
promote signal distortion. The characteristic distortion of
this equipment became attractive to musicians in the 1960s
and 1970s because it reinforced the harmonic content of
chords and notes in a peculiar way [3]. With the emergence
of new musical styles from the late 1960s on, additional
distortion became a necessity for guitarists. Thus, distor-
tion pedals were developed - electronic equipment used to

add more distortion to the electric guitar signal [3]. With
the advancement of digital signal processing techniques,
starting in the 1990s, techniques for simulating amplifiers
and distortion units were used.

2. Nonlinear Distortions
Physical systems can be mathematically modeled as linear
or nonlinear systems [3]. Linear systems are those that
satisfy the Superposition Principle [4]. In addition, they do
not change the frequency response characteristics of their
inputs, in other words, they do not add harmonics to the
original signal.

The distortion effect is a widely used effect in the
musical world, which is an example of a nonlinear system.
Although its most common use is in guitar effects, it is also
commonly applied in electric bass guitars, keyboards and
even vocals [5]. One way to obtain the distortion effect
is by increasing the gain of the input signal, which causes
the saturation of the amplifier element. Such a process is
called clipping [5]. Another possibility to generate the dis-
tortion effect of an audio signal can be modeled mathemat-
ically, as a time series generated by some nonlinear func-
tion [3], which adds odd or even harmonic components,
depending on the type of distortion. This form is known as
waveshaping [5].

Waveshaping functions are usually static and al-
though it does not exactly match the physical characteris-
tics of real circuits, this approach can be considered sat-
isfactory and is used in commercial amplifier simulators.
The use of static nonlinear functions has the purpose of
reducing computational effort and, consequently, making
real-time simulation feasible [3].

We can classify distortion effects, in relation to
the symmetry of the output waveform, as symmetric or
asymmetric. Symmetric distortion occurs when the posi-
tive and negative parts of the audio signal are limited at the
same amplitude, while asymmetric distortion occurs when
the positive and negative parts are limited at different am-
plitudes. This determines whether the generated harmon-
ics will be only odd (symmetric clipping) or odd and even
(asymmetric clipping) [6]. According to the clipping, the
effect can be classified as soft clipping or hard clipping. In
soft clipping, the output signal starts to be soft clipped as
it approaches an amplification threshold. In hard clipping,
the output signal is clipped just after it exceeds a certain
threshold [7]. This determines whether most of the result-
ing harmonics are high-order or low-order harmonics [6].

18th Brazilian Symposium on Computer Music - SBCM 2021 121

2.1. Distortion Functions

There is a wide variety of distortion function formats, sym-
metric and asymmetric, smooth and discontinuous func-
tions [1], of which five were chosen for study, simulation
and implementation in the microcontroller. The first dis-
tortion function, presented in Equation 1 is a soft clipper
based on the hyperbolic tangent [8]:

f(x) = tanhx (1)

A second distortion function is a soft clipper
based on the arc-tangent as shown in Equation 2 [1]. In
this model, kd represents the distortion coefficient. Such a
coefficient is directly proportional to the amount of distor-
tion applied.

f(x) =
tan−1(kdx)

kdπ
(2)

A third distortion function is the hard clipper, pre-
sented in Equation 3 [9]. In this model, the parameter a
represents the value at which the input signal is clipped.

f(x) =

{
x, |x| ≤ a
a, otherwise

(3)

A fourth distortion function is the cubic soft clip-
per, described by Equation 4 [10].

f(x) =





− 2
3 , x < −1

x− x3

3 , −1 ≤ x ≤ 1

2
3 , x > 1

(4)

The author in [11] cited the asymmetric clipping
equation, described by Equation 5, as proposed to simulate
triode distortions. In this model, dist is a distortion tun-
ing parameter and Q simulates the operating point of the
triode.

f(x) =
x−Q

1− e−dist(x−Q)
+

Q

1− edist(Q)
,

Q 6= 0, x 6= Q

(5)

The design parameters for the asymmetric distor-
tion simulation are based on the above-mentioned function,
in which no distortion should occur when the input level
is low (the derivative of f(x) should be f ′(0) = 1 and
f(0) = 0).

With a limited sampling rate, a high gain on a sine
input can produce an approximately square wave output,
regardless of the distortion function. All saturating nonlin-
earities approach a hard clipper asymptotically as the gain
increases. There are spectral differences between these dif-
ferent distortion functions, which are subtle but noticeable
at lower gain levels. For high gain levels, the soft clip-
ping and hard clipping functions are very similar in terms
of output spectrum. The arc-tangent function also exhibits
high saturation at large input levels, but the smooth tran-
sition produces a smoother spectral response. Hyperbolic

tangent functions saturate more slowly at large input levels,
thus reducing high-order distortion and aliasing compared
to the arc-tangent function [8]. The asymmetric distortion
function must perform clipping and limiting large negative
input values, while for positive values the behavior is ap-
proximately linear. This equation produces even and odd
order harmonics [11].

3. Distortion Functions Simulation
In this step, the five equations presented in Section 2.1
of this paper was simulated by software. Three of them
(the soft clipper based in hyperbolic tangent, the cubic soft
clipper and the asymmetric clipping function) have been
adapted to make the project more functional when imple-
mented in the microcontroller. In the other two functions
(the soft clipper based on the arc-tangent and the hard clip-
per), no adjustment was needed. In order that, in the soft
clipper based on the hyperbolic tangent, detailed in Equa-
tion 1, a coefficient k was added to modify the amount of
distortion. This, when multiplied at the input x, modifies
the amount of distortion produced by this function. There-
fore, the new function based on this equation is described
by Equation 6:

f(x) = tanh kx (6)

The soft clipper based on the arc-tangent, de-
tailed in Equation 2, has a coefficient kd, which controls
the amount of distortion applied to the input signal, in a
directly proportional manner. In the hard-clipping func-
tion, detailed in Equation 3, the coefficient a controls
the amount of distortion applied to the input signal. The
smaller the modulus of a, the more distortion is obtained.
From the cubic soft clipper, detailed in Equation 4, a new
polynomial function was developed, with a coefficient k,
which controls the amount of distortion applied, in an in-
versely proportional manner, as follows:

f(x) = x− xk

k
sgnx, k ∈ N, −1 ≤ x ≤ 1 (7)

The signal function was inserted into the system
because for odd values of k:

{
xk

k < 0, x < 0

xk

k ≥ 0, otherwise

However, for even values of k, xk

k ≥ 0, even for
x < 0. In this way, the original function, detailed in Equa-
tion 4, would not produce the desired effect at the input.
Finally, for the asymmetric clipping function, detailed in
Equation 5, a new function (Equation 8) was developed,
also with a coefficient k, that controls the amount of dis-
tortion applied.

f(x) = 0, 5 + x− e−kx 1

|minx− e−kx| (8)

The software used for the analysis of each of the
models was MATLAB®. The input signal was a sinusoid,

122 18th Brazilian Symposium on Computer Music - SBCM 2021

with unity amplitude and frequency of 110 Hz. The sam-
pling rate used was 8 kHz, the default of the program. In
addition to the output waveforms, the frequency response
of each function was also generated as a function of the
input signal. The method used to obtain the frequency re-
sponse was the Fast Fourier Transform (FFT). It is also
worth noting that after passing through the system, the sig-
nal receives a gain, so that its amplitude is unitary. The am-
plitude and frequency charts of the five functions is shown
in Figures 1 to 5.

Figure 1: Hyperbolic tangent - Time and
frequency domain charts

Figure 2: Arc-tangent - Time and frequency
domain charts

Figure 3: Hard clipper - Time and frequency
domain charts

Figure 4: Polynomial Soft Clipper - Time and
frequency domain charts

Figure 5: Asymmetric clipping - Time and
frequency domain charts

Note that in the models characterized by sym-
metrical clipping (hyperbolic tangent - Figure 1[12], arc-
tangent - Figure 2[12], hard clipper - Figure 3[12] and soft
clipper - Figure 4[12]), there is the presence of only the
odd harmonics, especially the third and fifth harmonics.
Furthermore, it can be observed that the increase in dis-
tortion applied to the signal implies an increase in power
of the higher harmonics. As the function based on the cu-

18th Brazilian Symposium on Computer Music - SBCM 2021 123

bic soft clipper applies a softer distortion, the presence of
these harmonics becomes less evident. It can also be seen
that, except for the asymmetric distortion function (Fig-
ure 5[12]), the output signals of the system have higher
power than the power of the input signal. In the asymmet-
ric distortion function, both odd and even harmonics are
present. The power of the fundamental harmonic decreases
and this power is distributed among the other harmonics.

4. Analog Circuit Development
In this step, the input stage circuit (responsible for acquir-
ing the guitar signal to be processed by the Raspberry Pi)
and the output stage circuit (in which the already processed
signal is prepared for be received by another effect unit, an
amplifier or a soundboard) was simulated and mounted on
a breadboard (Figure 6). These circuits were built based on
the Pedal Pi project, developed by ElectroSmash [13]. This
project was chosen as a basis for the relative simplicity of
the circuit, as well as the ease of obtaining the electronic
components used in the prototype. The software used for
the circuit simulation was the Multisim®.

Figure 6: Distortion effects unit - block diagram

4.1. Input Stage Development

The signal acquisition circuit (Figure 7[12]) consists of an
operational amplifier, in the non-inverting configuration,
followed by a bandpass filter. The signal, which initially
has a voltage level between 100 mV and 2 V, receives a
gain (adjustable between 1 and 20 by a 500 kΩ potentiome-
ter) so that it can be optimized for the analog-to-digital
converter (ADC). In addition, this part of the prototype
is responsible for shifting the offset of the signal, so that
the SPI converter and consequently the Raspberry Pi do
not receive negative voltage values, which would damage
the device. The bandpass filter is composed by two first-
order low-pass filters and two first-order high-pass filters.
The two first-order low-pass filters function is to attenu-
ate higher frequencies, which can generate aliasing. The
two first-order high-pass filters are responsible for remov-
ing the mains voltage noise and the DC component of the
signal.

Figure 7: Signal acquisition circuit

To simulate the frequency response (Figure 8[12])
and the amplitude graph (Figure 9[12]) of this circuit, the

input signal was modeled as a sinusoid, with a voltage of
2 Vpp (0.707 VRMS) and a frequency of 440 Hz. Poten-
tiometer R2 was set so that the voltage gain of the opera-
tional amplifier had its minimum value. This resulted in a
gain of approximately 1.12, or approximately 1 dB. This
causes the curve corresponding to the system output to be
shifted upwards by 1 dB. Therefore, one can consider as
cutoff frequencies of the bandpass filter those whose at-
tenuation is at -2 dB. These frequencies, ω1 and ω2 are
approximately 1.5 Hz and 4.65 kHz. According to the am-
plitude plot, it can be seen that the signal at the output of
the amp-op has a voltage of 2.25 Vpp an offset of approx-
imately 1.6 V.

Figure 8: Signal acquisition circuit - Frequency
response

Figure 9: Signal acquisition circuit - Amplitude
graph

After simulating this stage, the circuit was
mounted on a breadboard and connected to an oscillo-
scope. A sinusoid generated by the oscilloscope was used
as the input signal, with a voltage of 2 Vpp and frequency
of 440 Hz. By adjusting the potentiometer to obtain the
minimum gain value, an output voltage of approximately
2.3 Vpp was obtained. As it was observed in the simu-
lation, the output signal of this stage has an offset of ap-
proximately 1.6 V. With the potentiometer set to obtain the
maximum gain value, the voltage of the input signal re-
duced to 160 mVpp. The measured voltage at the output
of the acquisition stage was 3.2 Vpp. Since the Raspberry
Pi Zero W does not read analog quantities, after the con-
ditioning stage the signal goes through an external analog-
to-digital converter, to then be received by the board. For
this step, the MCP3202 was used, an ADC with 12-bit res-
olution and SPI interface, from Microchip. The reference
voltage adopted in this element was 3.3 V, as this is the
maximum voltage supported by the Raspberry Pi in its I/O
pins. As the MCP3202 has limiting diodes in its internal
circuitry, the use of diodes for microcontroller protection

124 18th Brazilian Symposium on Computer Music - SBCM 2021

is not necessary.

4.2. Output Stage Development

After the signal passes through the acquisition stage and
the microcontroller applies the desired distortion effect,
the signal generated by the Raspberry Pi’s PWM outputs
passes through the output stage. This part of the proto-
type consists of a third-order active filter (of Sallen-Key
topology, shown in Figure 10[12]), a tone control circuit
and an operational amplifier in non-inverting configuration
with variable gain. To illustrate the frequency response of
the Sallen-Key filter, magnitude and phase plots were gen-
erated in MATLAB®software. According to these, shown
in Figure 11[12], the cutoff frequency is approximately 4.9
kHz. This results in the removal of high-order harmonics,
which can generate noise in the desired signal.

Figure 10: Sallen-Key filter circuit

Figure 11: Sallen-Key filter - frequency response

The tone adjustment circuit is composed of the
parallel association between a low-pass filter and a high-
pass filter, where potentiometers selects the bandwidth of
the two filters. One feature that was observed during the
simulation of this part of the circuit is that there is an at-
tenuation of the signal throughout the selected bandwidth
(from 20 to 20 kHz), especially in the region of mid fre-
quencies (around 1 kHz), regardless of the setting of the
potentiometers. This is due to the sum of the responses
of the two filters used in the tone adjustment. To correct
this effect, an operational amplifier was inserted in series
with the filters, in the non-inverting configuration, with a
10 kΩ potentiometer for gain adjustment. The schematic
of this circuit is shown in Figure 12[12]. The frequency re-
sponse of the tone control circuit, shown in Figure 13[12],

was generated in the software Multisim®, with the adjust-
ment potentiometers of the two filters adjusted to expand
the signal passband as much as possible. The potentiome-
ter connected to the operational amplifier was adjusted so
as to obtain a gain of 12 dB.The curve in red represents
the signal at the input of the operational amplifier, while
the curve in blue represents the signal at the output of the
amp-op. With this stage simulation completed, the circuit
was mounted on a breadboard.

Figure 12: Tone and volume adjustment circuit

Figure 13: Tone adjustment circuit - Frequency re-
sponse

5. Raspberry Pi Implementation

Parallel to the study of each system, its characteristics and
its implementation computational feasibility, different pro-
totyping platforms were analyzed (Arduino®DUE Rasp-
berry Pi, BeagleBoard, etc.) and it was defined that the
hardware used would be a Raspberry Pi, Zero W model.
The choice of this hardware was motivated by its low cost,
easy access, processing capacity and memory (it has a
single-core ARM BCM2835 processor with 1GHz clock
and 512 MB RAM), considered sufficient for this study.
The Raspberry Pi Zero W has 40 programmable input and
output pins, called General Purpose Input/Output (GPIO).
The connections of this equipment to the input and output
circuits are made through these pins. The operating sys-
tem used on the board was Raspbian Stretch Lite, a free
software based on the Debian Stretch OS that has only the
command line interface (or Terminal). After the simula-
tion and breadboard assembly of the analog input and out-
put circuits, the algorithms implemented on the Raspberry
Pi relative to each of the five distortion models were devel-
oped. For this step, it was necessary to install the bcm2835
library, a C programming language library that provides
access to the GPIO pins, allowing the reading and configu-
ration of digital inputs and outputs, serial communications
via SPI and I2C interfaces, and access to the system timers.
As the programming language adopted in this stage of the

18th Brazilian Symposium on Computer Music - SBCM 2021 125

project was the Python language, it was the Python 3 pro-
gramming environment had to be installed, as well as the
PyBCM2835 (Python extension of the bcm2835 library)
and NumPy libraries. In addition, the Git version control
system was added to the operating system. It is worth not-
ing the lack of documentation for the PyBCM2835 library,
which made this task difficult. The algorithm that served
as the basis for the elaboration of the codes for each dis-
tortion effect, present in the Pedal Pi project, was devel-
oped in the C programming language. That said the strat-
egy adopted was to transcribe the base code to the Python
language and modify the transcribed code so that it could
implement each effect in an optimized way. The compati-
bility of the data types from the C language to the Python
language was accomplished by means of the ctypes library.
The sequence of instructions of the codes implemented in
the microcontroller can be seen in the flowchart shown in
Figure 14.

Figure 14: Flow chart of distortion algorithms

In this project, the reconstruction of the signal af-
ter applying the mathematical models is done by means
of two PWM signals in parallel. One of the PWM out-
puts is responsible for the D/A conversion of the 6 most
significant bits, while the other output converts the 6 less
significant bits. The sampling rate, bounded by the sup-
ply voltage of the MCP 3202, is approximately 50 kHz
[14]. The clock used for SPI communication was 2 MHz
and the switching frequency of the PWM signals used was
150 kHz. Subsequently, the five distortion algorithms were
hosted via Git in a private repository on the GitHub plat-
form, so that the author could make later modifications re-
motely.

6. Results

The distortion effects unit was tested through the following
experiment: the prototype was assembled according to the
block diagram shown in Figure 6. Initially, the input signal
was modeled as a sinusoid, generated by an oscilloscope,
with a voltage of 2Vpp (0.707 VRMS) and a frequency of
440 Hz. It was observed that the interference caused by
the AC mains hum was very significant, which made it im-
possible to visualize the harmonics added by the distortion
algorithms. Different filtering techniques were adopted in

an attempt to attenuate that interference, but these did not
have the desired effect. The solution adopted to obtain
a better visualization was to change the input signal fre-
quency to 120 Hz.

It can be noticed that, among the symmetric dis-
tortion models, the presence of the odd harmonics is more
evident in the hard clipping function (Figure 19[12] and
Figure 20[12]), in which it is possible to clearly see the
third, fifth and seventh harmonics. In contrast to this func-
tion, the soft clipper (Figure 21[12] and Figure 22[12])
was the function in which the upper harmonics were least
evident. In the other two models (hyperbolic tangent -
Figure 15[12] and Figure 16[12] and arc-tangent - Fig-
ure 17[12] and Figure 18[12]), it is possible to see the third
harmonic more clearly.

In the asymmetric distortion function (Fig-
ure 23[12] and Figure 24[12]), it is possible to notice the
presence of both odd and even harmonics. This demon-
strates that the simulation results and the results obtained
in the tests with the finalized prototype are convergent.

Finally, with the finished prototype, tests were
performed with an electric guitar in order to evaluate the
sound created by each effect, as well as its characteris-
tics in relation to the frequencies of notes and chords of
the instrument. It was possible to notice the presence of
AC mains hum, also influenced by the single-coil pickup
present in the guitar used. The audio sample of each effect
are available on [15].

Figure 15: Hyperbolic tangent - Amplitude graph
(k = 2)

126 18th Brazilian Symposium on Computer Music - SBCM 2021

Figure 16: Hyperbolic tangent - Frequency
response (k = 2)

Figure 17: Arc-tangent - Amplitude graph (kd = 5)

Figure 18: Arc-tangent - Frequency response
(kd = 5)

Figure 19: Hard clipping - Amplitude graph
(a = 500)

Figure 20: Hard clipping - Frequency response
(a = 500)

Figure 21: Soft clipping - Amplitude graph (k = 2)

Figure 22: Soft clipping - Frequency response
(k = 2)

Figure 23: Asymmetric clipping - Amplitude
graph (k = 5)

18th Brazilian Symposium on Computer Music - SBCM 2021 127

Figure 24: Asymmetric clipping - Frequency
response (k = 5)

7. Conclusion

The purpose of this work was to design a microprocessor-
based distortion effects unit for electric guitar. Through the
realization of each step proposed in this study, the overall
goal was completed, which can be seen by analyzing the
results achieved at each stage of development. It was pos-
sible to see the convergence of the theory presented with
the results obtained in practice. From the author’s point
of view, the sound results achieved by each of the algo-
rithms were quite similar to each other. Even though the
performance of the prototype was within expectations, it is
possible to realize that the sound result obtained through
the unit designed in this work falls short of the audio gen-
erated by analog equipment or digital equipment of higher
value.

It is important to note that professional equipment
with the same purpose of this prototype - sound mixers,
pedals and digital amplifiers - use DSP’s with their own
specifications for such activity. In addition, the embedded
software used in these units have complex techniques for
simulating analog effects and noise elimination. Finally,
such devices have electronic components of higher quality
than those used in this project.

References

[1] Nicolau Leal Werneck. Análise da distorção musical de
guitarras elétricas. Dissertação (mestrado), Universidade
Estadual de Campinas - Faculdade de Engenharia Eletrica
e de Computação, 2007.

[2] Neigmar de Souza. Guitarra elétrica: um ı́cone na cultura
pop do Século XX. Revista Vernáculo, 2002.

[3] Thomaz Chaves A. Oliveira, Gilmar Barreto, and Alexan-
der Mattioli Pasqual. Modelagem computacional de efeitos
de distorções não lineares para guitarra elétrica. Revista
Brasileira de Computação Aplicada, pages 69–84, 2013.

[4] John G Proakis. Digital Signal Processing: Principles Al-
gorithms and Applications. Pearson Education India, 2007.

[5] André Wagner França. Uso de processa-
mento digital de áudio na implementação
de efeitos em instrumentos musicais.
Monografia (Bacharelado em Ciência da Computação),
Universidade de Brası́lia, 2015.

[6] Robert A Moog. Distortion sound effects circuit, Decem-
ber 25 1979. US Patent 4,180,707.

[7] Pedro Miguel Cruz and Nuno Borges Carvalho. A compre-
hensive analysis of the clipping effects on signals with dif-
ferent statistical patterns. In 2014 International Workshop
on Integrated Nonlinear Microwave and Millimetre-wave
Circuits (INMMiC), pages 1–3. IEEE, 2014.

[8] David Te-Mao Yeh. Digital implementation of musical dis-
tortion circuits by analysis and simulation. Ph.D thesis),
Stanford University, 2009.

[9] Michel Doidic, Michael Mecca, Marcus Ryle, Curtis
Senffner, et al. Tube modeling programmable digital guitar
amplification system, August 4 1998. US Patent 5,789,689.

[10] Julius Orion Smith. Physical audio signal processing: For
virtual musical instruments and audio effects. W3K pub-
lishing, 2006.

[11] Pierre Dutilleux and Udo Zölzer. Nonlinear processing.
DAFX: Digital Audio Effects, 2004.

[12] Renato Santos Pereira. Projeto de uma unidade
de efeitos de distorção para guitarra elétrica.
TCC (graduação em Engenharia Elétrica), Instituto
Federal de Educação, Ciência e Tecnologia do Espı́rito
Santo, 2020.

[13] Andrew Gregory. Review: ElectroSmash Pedal Pi —
HackSpace Magazine, 2018.

[14] MICROCHIP TECHNOLOGY INC. 2.7V Dual Channel
12-Bit A/D Converter with SPI Serial Interface, 2006.

[15] Renato Santos Pereira. Audio samples: Electric guitar
distortion effects unit using a Raspberry Pi [Album].
https://soundcloud.com/renatostosp/
sets/prototype-audio-samples, 2019.

128 18th Brazilian Symposium on Computer Music - SBCM 2021

