
An open source platform to assist the creation of group playlists
through artificial intelligence algorithms

Flaviano Dias Fontes1*, Giordano Ribeiro Eulalio Cabral1 , Geber Lisboa Ramalho1

1Mustic – Centro de Informática / Universidade Federal de Pernambuco (UFPE)
Av. Jornalista Anibal Fernandes, s/n – 50.740-560 Recife, PE

Abstract. Recommendation systems are a constantly ex-
panding study area, with applications in various fields
such as e-commerce, films, music to promote the user’s
suggestions. When we talk about music, we have more
than 20 years of studies trying to solve the problem of a
good generation of playlists that maximizes the satisfaction
of a larger number of listeners. For automated automatic
playlist generation methods focusing on a user group, we
have the collaborative filter as a more assertive method
to get the user’s not likely, to improve the performance
of group recommendation algorithms we store the prefer-
ences of users Especially I did not like it by placing the
availability of using this data as an algorithm input param-
eter. The platform described in This paper is intended to
facilitate testing between these recommendation systems,
standardizing data entry, and facilitating requests. The use
of GraphQL as a framework associated with Apollo as a
library, greatly facilitates the integration of these APIs, as
the separation of data sources makes it possible to asso-
ciate Spotify data with Deezer or Apple Music data, these
data are stored in the database of the connection, so that in
future requests it will no longer be necessary to consult the
Spotify API, thus facilitating the consumption of data from
the artificial intelligence algorithms, as well as a possible
sharing of songs between services, since all services have
an ISRC code to identify the songs.

1. Introduction

The music market has suffered several changes over the
years and after a recent and long decline in revenues, the
industry has finally managed to rejoice in revenue through
streaming services, becoming the largest source of rev-
enue, taking Spotify as principal service [1].

This way of consuming is based on the availabil-
ity of songs in the order of millions of copies, for stream-
ing services Some user-related variables are taken into ac-
count in the recommendation systems to define their mu-
sical taste, as their level of experience, their location, and
their personality traits, however for user consumption has
only released the songs he likes, a set of songs that the
platform understands that he likes or just the playlists he
created, but is not available what the user does not he likes
[2]. It is easily found in the Application Programming In-
terfaces (API) of the Streaming Services, [3] the methods
for querying playlists but with the limitation of not having
the consultation of the songs that the user does not like.

*Supported by CNPq.

2. Music Recommender Systems
Evolution

Recommendation systems are a set of software and tech-
niques that suggest to the user items to be used for it. Sug-
gestions refer to decision-making processes, such as what
news reads, which product buy or music listen [4].

These systems solve the problem of information
overload and help users choose from the various options in
their daily lives. Recommendations systems capture pre-
vious users’ preferences and generate an available list of
items to meet the user [5].

Recommendation of groups for groups is a sub-
ject that has been studied, an example is the Smart Radio
in 1996 that was a web application in the client-server for-
mat on which it allowed users to automatically filter and
collect the songs, with User dislike capture, another im-
portant point to stand out is the automatic extraction of
features making it possible to improve content-based rec-
ommendation. [6]

In 1998, MusicFX enhanced the capture of infor-
mation to recommend musical genres through collabora-
tive filters, on a scale described by I love (+2), I like (+1),
I do not care (0), I do not like (-1) and I detest (-2), the
algorithm adjusts the recommendations based on the eval-
uation of the genres of users present in the environment,
described in the article as a gymnastics. [7] This approach
to capturing directly does not like the user is a facilitator
but through the main consultations, the APIs are not avail-
able to third parties what creates our need to capture this
information about the user’s dislike [8] [9] [10].

Flytrap in 2002 was a recommendation system
that reproduces songs that users like, through music that
a user plays on their computer it loads the data to the FLY-
TRAP database. Unlike MusicFX, the information sent
are recovered through the playback of the track and these
meta-data are, for example, the genre and the artist stored
this information linked to the user who played. [11]

The JMusicGrouPrecommender merges recom-
mendations from individual users, adds personal evalua-
tions of users, and finally generates group preferences to
generate recommendations. In this work, a fusion tech-
nique, a technique for generating group preferences, four
aggregation techniques, and a hybrid technique including
mixing and aggregation are proposed. Each technique is
evaluated based on the satisfaction of each user who is
within the group. Each song contains some attributes such
as artist, album, language, and gender [12].

166 18th Brazilian Symposium on Computer Music - SBCM 2021



This article it was describing are proposals, a fu-
sion technique, a technique for generating group prefer-
ences, four aggregation techniques, and a hybrid technique
including mixing and aggregation. Each technique is eval-
uated based on the personal satisfaction of all team mem-
bers. Each song contains some attributes, such as artist,
album, language, and gender. These attributes are used to
infer indefinite membership preferences. Among all the
algorithms proposed in this article, it is reported that the
hybrid technique has high rates of individual satisfaction
among the users of a group. Compared to Automatic Con-
sensus Selection, this template offers users the option to
have at first a set of items [13] [5].

The problem when data is spaced is addressed in
group recommendation systems in different ways. It is im-
portant to note that traditional group recommendation tech-
niques do not produce better recommendations when the
user-item relationship is sparse, and your preferences are
unknown. [5]

The possibility of calculating the similarity of the
item-item and computed similarities are used to improve
existing memory-based recommendations techniques. The
degree of similarity is a decimal attribute that is between
0.0 and 1.0, which is added in this template to all pars of
item-item. Initially, the support technique of the Support
Vector Machine (SVM) employed in this model is com-
pared to other regression models, and has been discovered
that SVM surpasses other models. The proposed model
surpasses the latent factor model, which is general consid-
ered the best method to use among memory-based models.
[14]

3. Streaming Available Information
Using as a matrix of characteristics of the Flytrap and JMu-
sicRecommender features we have as a reference for infor-
mation required to create music recommendation systems,
the artist, the album, and the language. If the approach is a
collaborative filter the preferences of users of a particular
item must be stored in a database. [11] [12] For collec-
tion of this information the REST access points of Spo-
tify, Apple Music, and Deezer as an Apollo data source, a
GraphQL implementation that provides a data chart layer
that connects applications to the cloud. [15] [8] [3]

3.1. Spotify

Queries in this API occurs through REST requisitions by
following the URI standard. [16] The consumption of the
Spotify API has the need for a free developer account and
you can see user playlists list more played songs among
other methods. By consulting certain music and recover-
ing a lot of information such as name, platform popularity,
artist, duration in MS, markets that music is available, al-
bum cover, and the International Standard Recording Code
(ISRC). To get the genre only with the artist, but for being
a list for the artist the selection of music can be deficient,
as it is possible for an artist to evolve musically during his
career and not get stuck in a style necessarily. [3].

3.2. Apple Music
Access to the MusicKit API, you need to have an Apple
developer account to be able to make the requisitions, the
account is required so that you can generate the access keys
to the application. [17] As the API is still in beta, some
features are not as ripe as other APIs, but it is possible,
for example, Search music by IRC, by name approach, in
addition to user playlists but user information If a new req-
uisition of access to data is required. The information that
API returns on music are artist name, album name, cover
art and colors, composer name, list of genres that music
has, duration in milliseconds, launch date, and an ID for
easy localization. [8]

3.3. Deezer
The consumption of information through the Deezer API
is due to your API, to access this API requires a developer
account that is free. The API offers the search method by
music name, the return of the track search method contains
information from the album, the artist, gain, bpm, preview
with 30 seconds, ISRC, duration, title plus other informa-
tion related to platform as rank. [9]

4. Proposal
The conception of a playlist for just a minimally accurate
user of the information than he likes and from this infor-
mation recommend what other users who also like that
item consume. However, when we want to recommend for
groups we come across the situation of what a user likes the
other hates and riding a playlist that will be consumed by
all users, for streaming we still have the availability barrier
of particular music on the platform that the user consumes.
To minimize this problem is proposed an open-source plat-
form for group playlists generation through community-
developed algorithms to supply from the lack of informa-
tion between platforms, such as audio characteristics that
are available only in Spotify [3], Or even the search for
similarity available at Deezer [9] and Apple Music [10].

Only the Spotify API returns the user’s most lis-
tened songs, the Deezer API has a list of recommendations
with what the user is interested in, know as Radio, the Ap-
ple Music API has several restrictions, but because being
in beta is expected This behavior [3].

All 3 APIs [8] [9] [3] return to the user the ISRC
information, with the Apple Music API search methods by
ISRC or by the name of the band returning what makes
it easy to build our database. Common information be-
tween all APIs, is the artist name, album name, track name,
ISRC, and duration. In order to be able to use any ma-
chine learning algorithm, more information is required in
the vector of features, this additional information is only
available through the Spotify API being them danceability,
energy, key, loudness, mode, speechiness, acousticness, in-
strumentalness, liveness, valence and tempo. [18]

5. Architecture
It is an open-source client-server platform based on
GraphQL, a query-based query language developed by

18th Brazilian Symposium on Computer Music - SBCM 2021 167



Facebook in 2012 and publicly released in 2016 [19]. An
alternative to the REST architecture, but with the ability
to query REST APIs. The server is responsible for pro-
cessing user requests through queries sent in client appli-
cations. These requests are intended to collect information
from the streamers that the client has.

Figure 1: Architecture

6. Modules

6.1. GraphQL Server

For the GraphQL server, we use the Apollo library, offi-
cially recommended for applications in Node.JS, this mod-
ule is responsible for being the clients’ access point, the
connection with other REST APIs, and the handling of dif-
ferent data sources. Your query is done through queries
executed by the client, returning only what is necessary for
each request made. [15]

6.2. GraphQL Client

Using Apollo as a GraphQL library makes it easy to in-
tegrate with iOS, Android, and Web platforms, as there is
a repository for each client, thus facilitating integration,
even if it is a React.JS application as a native Android or
iOS application, just needing to install the library on the
desired platform. Other services can also consume the API
through the application’s access point using the web client.

6.3. Data Sources

The data sources we use for the platform are Spotify, API
where we get the audio features, Deezer and Apple Music,
where we get tracks similar to that title, to save the relation-
ships between players in the platform’s database, making
it easier the execution of the recommendation algorithms,
making the default input.

6.4. Services

The services are run inside Docker containers in order to
have the necessary isolation, having a playlist as input stan-
dard, but also a certain algorithm can take into account the
mood of the participants, for example, using GraphQL it is

possible to do this request passing the necessary additional
information. For the routing of containers, a web server
is used, such as NGINX, also as an image, for example.
These services, in addition to processing artificial intelli-
gence algorithms, it is also possible to manipulate data be-
tween stream services APIs, such as playlist manipulation.

7. Future perspectives

We will test this platform to validate whether how stan-
dardized data is made available allows for some gain in
music recommendation systems, we will also test whether
the use of the Apollo library brings any improvement in
the consumption of third-party API data compared to direct
consumption through consumption via REST. Test whether
the addition of recommendation models with neural net-
works or deep learning is easily coupled to the platform.

References

[1] Arnt Maasø and Anja Nylund Hagen. Metrics and decision-
making in music streaming. Popular Communication,
18(1):18–31, 2020.

[2] Martijn Millecamp, Nyi Nyi Htun, Yucheng Jin, and Ka-
trien Verbert. Controlling spotify recommendations: ef-
fects of personal characteristics on music recommender
user interfaces. In Proceedings of the 26th Conference on
user modeling, adaptation and personalization, pages 101–
109, 2018.

[3] Spotify web api. https://developer.spotify.
com/documentation/web-api/. Accessed: 2020-
12-22.

[4] Francesco Ricci, Lior Rokach, and Bracha Shapira. In-
troduction to recommender systems handbook. In Recom-
mender systems handbook, pages 1–35. Springer, 2011.

[5] Sriharsha Dara, C Ravindranath Chowdary, and Chintoo
Kumar. A survey on group recommender systems. Journal
of Intelligent Information Systems, 54(2):271–295, 2020.

[6] Conor Hayes, Pádraig Cunningham, Patrick Clerkin, and
Marco Grimaldi. Programme-driven music radio. In Proc.
of the ECAI, volume 2, 1996.

[7] Joseph F McCarthy and Theodore D Anagnost. Musicfx:
an arbiter of group preferences for computer supported col-
laborative workouts. In Proceedings of the 1998 ACM con-
ference on Computer supported cooperative work, pages
363–372, 1998.

[8] Apple Music documentation. https://developer.
apple.com/documentation/applemusicapi/.
Accessed: 2021-05-12.

[9] Deezer api documentation. https://developers.
deezer.com. Accessed: 2021-02-15.

[10] MusicKit documentation. https://developer.
apple.com/documentation/musickitjs/. Ac-
cessed: 2021-05-12.

[11] Andrew Crossen, Jay Budzik, and Kristian J Hammond.
Flytrap: intelligent group music recommendation. In Pro-
ceedings of the 7th international conference on Intelligent
user interfaces, pages 184–185, 2002.

[12] Ingrid A Christensen and Silvia Schiaffino. Entertainment
recommender systems for group of users. Expert systems
with applications, 38(11):14127–14135, 2011.

168 18th Brazilian Symposium on Computer Music - SBCM 2021



[13] Mike Gartrell, Xinyu Xing, Qin Lv, Aaron Beach, Richard
Han, Shivakant Mishra, and Karim Seada. Enhancing
group recommendation by incorporating social relation-
ship interactions. In Proceedings of the 16th ACM inter-
national conference on Supporting group work, pages 97–
106, 2010.

[14] Sarik Ghazarian and Mohammad Ali Nematbakhsh. En-
hancing memory-based collaborative filtering for group
recommender systems. Expert systems with applications,
42(7):3801–3812, 2015.

[15] Apollo framework. https://www.apollographql.
com. Accessed: 2021-06-20.

[16] Wei Zhou, Li Li, Min Luo, and Wu Chou. Rest api design
patterns for sdn northbound api. In 2014 28th international
conference on advanced information networking and appli-
cations workshops, pages 358–365. IEEE, 2014.

[17] Creating an apple music api token for mu-
sickit js. https://leemartin.dev/
creating-an-apple-music-api-token-e0e5067e4281.
Accessed: 2021-06-20.

[18] Audio features object. https://developer.
spotify.com/documentation/web-api/
reference/#object-audiofeaturesobject.
Accessed: 2021-02-15.

[19] Ruben Taelman, Miel Vander Sande, and Ruben Ver-
borgh. Graphql-ld: linked data querying with graphql. In
ISWC2018, the 17th International Semantic Web Confer-
ence, pages 1–4, 2018.

18th Brazilian Symposium on Computer Music - SBCM 2021 169


