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Abstract. Music is art, and art is a form of expression. Of-
ten, when a song is composed or performed, there may
be an intent by the singer/songwriter of expressing some
feeling or emotion through it, and, by the time the music
gets in touch with an audience, a spectrum of emotional
reactions can be provoked. For humans, matching the in-
tended emotion in a musical composition or performance
with the subjective perceptiveness of different listeners can
be quite challenging, in account that this process is highly
intertwined with people’s life experiences and cognitive
capacities. Fortunately, the machine learning approach
for this problem is simpler. Usually, it takes a data-set,
from which features are extracted to present this data to a
model, that will train to predict the highest probability of
an input matching a target. In this paper, we studied the
most common features and models used in recent publica-
tions to tackle music emotion recognition, revealing which
ones are best suited for songs (particularly acapella).

1. Introduction
Music Emotion Recognition (MER) is a sub-field of Mu-
sic Information Retrieval (MIR) that deals with classifica-
tion of music according to affection [1]. The importance
of MER can be justified by the dependency that search
and recommendation engines have on metadata. In sim-
ple terms, metadata is data about data. For example, when
a person takes a picture of a cat using a smartphone, the
picture is the data itself. However, a series of other infor-
mation about that data is also recorded, e. g., the time and
date when the picture was taken, or the geographical co-
ordinates where it was captured. These are all secondary
information about a primary one, that can be used to tag it,
in order to retrieve it in the future, as well as finding other
information that is similar to it.

Song metadata like genre, composer, artist, al-
bum, year of release etc. are commonly used by streaming
services to help users find what they like, and even recom-
mend songs they might like based on their listening history.
However, the mood of a song can also be considered an
interesting metadata that could be used to relate a certain
song to similar content.

This paper studies various recent articles pub-
lished on MER, including papers on song and instrumental
music emotion recognition, and is organized as follows:
Section 2 details our findings on what are the most com-
monly used features for representing music samples in or-
der to present this type of data to a machine learning (ML)
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model, and covers our findings on the most commonly used
model architectures. Section 3 describes our experiment,
which consists in creating a couple of ML models based
on the information retrieved on the previous sections, as
well as the data-set used to test our models. Section 4
shows our results in terms of accuracy, comparing it to pre-
vious works that used the same data-set. Finally, Section 5
draws some conclusions on what are the best combination
of features and models for song emotion recognition that
we found.

2. Features and Models
According to Panda, Malheiro and Paiva, musical dimen-
sions can be related to emotions by a set of high-level fea-
tures, namely: melody, harmony, rhythm, dynamics, tone
color (timbre), expressivity, texture, form, and vocals. On
the other hand, computational features are considered low-
level, because they only provide primitive descriptions by
which individual high-level features may be identified [2].

By reviewing 10 articles on MER published in
2020 alone we have found 47 different low-level com-
putational features being used separately or concatenated,
to represent different aspects of the aforementioned high-
level features [3–12] . All these features are available off-
the-shelf on Python libraries and MATLAB toolboxes, and
6 of them were found to be used on 76.6% of the publica-
tions reviewed:

Spectral roll-off : relates to tone color and indi-
cates the frequency below which approximately 85% of the
magnitude spectrum distribution is concentrated [2]. Was
used in [3], [5], [8–10], and [12].

Zero-crossing rate (ZCR): also relates to tone
color and represents the number of times a waveform
changes sign in a window, indicating change of frequency
and noisiness [2]. Was used in [3], [5], [8–10], and [12].

Spectral centroid: also relates to tone color and
represents the mean of the magnitude spectrum of the
short-time Fourier Transform (STFT) [2]. Was used in
[3–5], [8, 9], and [12].

Mel spectrogram: also relates to tone color and
decomposes an audio signal into a series of frequency
channels inspired by the human cochlea, enabling to study
the signal’s frequency distribution into so-called critical
bands [2]. Was used in [4–8], and [11].

Mel-frequency Cepstral Coefficients (MFCC):
also relates to tone color and measures spectral shape. Can
be derived from a log magnitude Mel spectrogram based
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on the Discrete Fourier Transform (DCT). Typically, only
the first 8 to 13 MFCCs are used for speech representa-
tion [2]. Was used in [3–5], [9, 10], and [12].

Chromagram: relates to harmony and indicates
energy distribution along pitch classes in a 12-dimensional
vector (12 semitones, from A to G#) [2]. Was used in
[4, 5], [8–10], and [12].

As for the other 41 features found (which were
used on only 23.4% of the publication reviwed), 13 of them
are related to rhythm, 10 are related to tone color, 6 are
related to harmony, 5 are related to melody and dynamics
(each), and only 1 is related to texture, form and vocals
(each).

Depending on the architecture of the ML model
used as a classifier for MER, several of the aforementioned
front-end features can be used together, to better represent
the training data. However, not all models allow that. Ac-
cording to de Azevedo and Bressan, what dictates which
and how many features can be used as front-end for an
ML model is the architecture of the model itself [3]. In
our study, 12 different architectures were found to be used,
separately or combined, and 3 of them were found to be
used on 17% of the publications reviewed (each):

Support Vector Machine (SVM): is a binary clas-
sifier that divides the training data into groups by using
hyper-planes. An SVM finds an optimal hyper-plane by
using the dot product functions in feature space using ker-
nel functions. The solution of the optimal hyper-plane can
be written as a combination of a few input points that are
called support vectors [3]. Was used in [3], [6], [8, 9]
and [12].

Multi-Layer Perceptron (MLP): is an artificial
neural network (ANN) that models the relationship be-
tween a set of training data and known targets. Its archi-
tecture is based on a simplified understanding of how the
human brain responds to stimuli from sensory organs and
is best suited to problems where the relation between input
and output data is well understood, yet the process that re-
lates both is extremely complex [3]. Was used in [3], [5],
[8, 9] and [12].

Convolutional Neural Network (CNN): is a type
of ANN based on convolutional operations that can extract
high-level features from 2-dimensional low-level ones,
such as Mel-spectrogram, MFCCs and chromagram. It
deeply extracts underlying features contained in each time
frame, while retaining time-series features in the same di-
rection. After a CNN block, a fully connected MLP block
is often used to predict outputs in classification problems
[4]. Was used in [4], [6, 7], and [11, 12].

As for the other 9 architectures, recurrent neural
networks (RNN) with long-term short-memory (LSTM)
blocks and random forest were found to be used on 10%
of the publications reviewed (each), k-nearest neighbors
was found to be used on 7% of the publications reviewed,
RNN with gated recurrent unit (GRU) blocks, decision tree
(CART and C4.5) and state vector regressor were found to

be used on 4% of the publications reviewed (each) and lo-
gistic regression was found to be used on 3% of the publi-
cations reviewed.

3. Experimental Setup
To experiment with the features and models described in
Section 2, a portion of the Ryerson Audio-Visual Database
of Emotional Speech and Song (RAVDESS) data-set was
chosen. This portion comprises 1,012 audio-only files of
song recordings, performed by 23 actors singing 2 lexically
matched statements in a neutral North American accent.
Song emotions include neutral, calm, happy, sad, angry,
and fearful expressions [13].

Since an MLP model can have an input layer with
as many neurons as necessary, all input features can be
concatenated and flattened into a 1-dimensional input vec-
tor. Therefore, we used the principal component analy-
sis (PCA) technique to reduce the dimensionality of each
of the 6 features presented in Section 2, aiming to visual-
ize the minimum number of variables that keeps the max-
imum amount of information about how the feature data
is distributed, as illustrated in Figure 2. Mel spectrogram
was discarded because it showed the worst clustering and
the highest dimensionality compared to the other features,
moreover we included MFCCs that are already computed
based on it. Hence, we chose to train an MLP model using
the concatenation of the 5 selected features.

Table 1 summarizes the architecture of our MLP
model, which has an input layer with 11,394 neurons,
followed by 2 hidden layers with 1,024 and 128 neu-
rons, respectively, totaling 141,635,084 trainable param-
eters. ReLU was used as an activation function for all lay-
ers, except for the output layer, where Softmax was im-
plemented. For regularization, Dropout was used, which
randomly ignores a percentage of neurons during training.

Table 1: Summary of our MLP model

Layer type Output shape Param. #
Dense (None, 11,394) 129,834,630

Dropout (None, 11,394) 0
Dense (None, 1,024) 11,668,480

Dropout (None, 1,024) 0
Dense (None, 128) 131,200

Dropout (None, 128) 0
Dense (None, 6) 774

For our CNN model, we selected the 2-
dimensional feature that showed the clearest clustering in
the PCA visualization (Figure 2), which was the chroma-
gram. Table 2 summarizes the architecture of our CNN
model, which has an input shape of (12, 422, 1). To obtain
the output for the second convolutional layer, 24 kernels
with a shape of (5, 5) were used, with a stride of (1, 1).
Another typical CNN operation, which is Pooling, was
used to down-sample data and compress information, with
a shape of (2, 4) and a stride of (2, 4). The third convo-
lutional layer used 48 kernels with a shape of (2, 2), fol-
lowed by a Pooling operation, with a shape of (1, 3) and
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a stride of (1, 3). After the last convolutional layer, the
data was flattened into a 1-dimensional vector with 1,536
elements, to be fed into 2 fully connected layers, with 64
and 6 neurons, respectively, totaling 124,822 trainable pa-
rameters. Dropout was used for regularization and ReLU
as activation function for all layers, except for the output
layer, where Softmax was used.

Table 2: Summary of our CNN model

Layer type Output shape Param. #
Conv2D (None, 8, 418, 24) 624

MaxPooling2D (None, 4, 104, 24) 0
Activation (None, 4, 104, 24) 0
Conv2D (None, 3, 103, 48) 4,656

MaxPooling2D (None, 3, 34, 48) 0
Activation (None, 3, 34, 48) 0
Conv2D (None, 1, 32, 48) 20,784

Activation (None, 1, 32, 48) 0
Flatten (None, 1,536) 0

Dropout (None, 1,536) 0
Dense (None, 64) 98,368

Activation (None, 64) 0
Dropout (None, 64) 0

Dense (None, 6) 390
Activation (None, 6) 0

Since we were dealing with a multi-classification
problem, and an SVM is a binary classifier, we opted to
focus on the two architectures already discussed (MLP and
CNN) and do not implement an SVM model.

4. Results and Discussion
To train both our models, the data-set was split into 622
samples for training, 200 for validation and 200 for test.
Both our models were trained for 100 epochs, however,
Figure 1 illustrates that the MLP learning curves begin
to diverge at around epochs 50-55, while the CNN learn-
ing curves begin to diverge at around epochs 25-30. This
shows that the CNN model achieve its best results in less
training epochs, compared to the MLP model.

On the left hand side of Figure 2, PCA plots are
illustrated for the concatenated features (top) and the chro-
magram alone (bottom), both before training, exposing
mixed clusters. On the right hand side, it is shown that
the samples are nicely spaced and grouped together after
the classification performed by our MLP (top) and CNN
(bottom) models. This evinces that the use of ML architec-
tures together with a good feature selection is a favorable
technique for MER.

The overall test accuracy of the MLP model
achieved only 67.7%, while the CNN achieved 80.6%.
Moreover, Figure 4 shows that the MLP test accuracy per
class ranges from 6.8% (happy) to 16.7% (angry), while
the CNN test accuracy per class has a worst-case scenario
of 11.2% (happy) and best-case scenario of 16.7% (fear-
ful).

We resorted to the works of [14–16] to compare
our results with papers that used the same data-set, but not

Figure 1: MLP and CNN learning curves

Figure 2: PCA visualization for MLP and CNN

Figure 3: MLP confusion matrix using 5 features

18th Brazilian Symposium on Computer Music - SBCM 2021 211



Figure 4: CNN confusion matrix using 1 feature

necessarily the same features and model architectures. Ta-
ble 3 summarizes each work’s authors, features and archi-
tectures used, as well as the overall test accuracy obtained.

Table 3: Accuracy comparison with other works

Authors Features Models Acc.

[14]
MATLAB

Audio Analysis
Library

Logistic
Regression

48%

Ours Concatenated
features MLP 67.7%

Ours Chromagram 2D CNN 80.6%
[16] LibROSA HSF RNN (LSTM) 82%

[15] MFCC
1D CNN

+BiLSTM
94%

We also performed a forensic analysis on our
MLP model, to see which features yield the best perfor-
mance. Using only the chromagram, the overall accuracy
achieved was equal to 66.7%, while using only MFCC it
was 45.9%. Spectral roll-off, ZCR and spectral centroid
yielded the worst performances, with 29.6%, 28, 5% and
24.7% overall test accuracy, respectively.

5. Conclusions
Although the most popular computational features for
MER used in recent publications relate to tone color, the
chromagram, which relates to harmony, was found to be
best suited for song emotion recognition, in our experi-
ments. Also, our CNN model performed better than our
MLP model, both in terms of overall test accuracy and ac-
curacy per-class, because our MLP model favored 3 emo-
tions (neutral, calm and angry), while causing more con-
fusions for the predictions of the other 3 emotions (happy,
sad and fearful). Finally, it was evinced by comparison
with the works of [15, 16] that CNN performance can be
further improved with the use of RNN blocks, that can
learn order dependence in sequence prediction problems,
which may be a desired behavior in song emotion recogni-
tion.
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