
Camomile-ELSE: creating plugins with Pure Data patches and the ELSE library
Astorga, E.M.V., Porres, Alexandre Torres

Núcleo de Pesquisas em Sonologia – Escola de Comunicação e Artes da Universidade de São Paulo
Av. Prof. Lúcio Martins Rodrigues, 443 – 055088-020, São Paulo, SP

EL Locus Solus (independent center) São Paulo, SP

esteban.astorga@usp.br, el.locus.solus@gmail.com

Abstract

Camomile is an open source project that turns
patches made in the Pure Data programming language
into plugins (VST, VST3, LV2 and Audio Unit) so you
can load them in any plugin host on Windows, Linux and
MacOS. We have a fork of this project that embeds the
ELSE library of Pure Data externals into camomile so
you don’t have to only rely on the limited set of native
Pure Data objects.

This paper describes the potential of the
Camomile project, how it makes the creation of plugins
very accessible to people without a background in
computer science and also how this process is improved
by including the extensive ELSE library. We also offer an
overview of similar projects and the technical details of
including the ELSE library into the camomile project.

1. Introduction

Pure data (a.k.a Pd) is an Open Source cross
platform visual programming environment for interactive
computer music and multimedia created by Miller
Puckette in the mid 1990s. Pd is distributed for Linux,
macOS and Windows. Pure Data has also been ported to
iOS (Pd Party) [1] and Android (PdDroidParty) [2]
operating systems thanks to libpd1 [3].

Pure Data offers a very limited set of native
objects, it misses lots of functionalities if compared to
other similar environments such as Csound,
SuperCollider and MAX. The Pd community has always
relied on a large collection of external libraries and this
also promoted forks of Pure Data that include pre-
installed libraries. Nonetheless, you can currently easily
install externals into the original Pure Data distribution
(also known as ‘Pd Vanilla’).

On the other hand, Pure Data for iOS and
android are only ‘Vanilla’ (meaning, no externals). It’s
not that you can’t use externals with libpd, but most of
the projects based on libpd are offered compiled only to
include the native Pd objects. The Camomile project is
yet another project that relies on libpd to embed Pure
Data into an application. By default, it only allows you to
1 LibPd turns Pd into an embeddable audio synthesis

library that can use to create other applications

use Vanilla objects. Actually, not even that as it misses
some objects like [pd~] and the graphical Data Structures
objects.

We have forked Camomile to compile it with
externals from the ELSE library [4], which is a library
that’s still in an early and experimental phase, but with a
huge set of externals. ELSE has been in active
development since the begging of 2017 and a first beta
version was presented in SBCM that year [6]. At the time
of this writing, ELSE is at beta version 42.

2. The breakthrough of Camomile (History)

Bridging Pd with other softwares is not hard via
softwares like jack and MIDI bridges, but this can be
clumsy and limiting when trying to bring Pure Data into
the workflow other softwares that process audio. Hence, a
proper integration like MAX has with MAX4LIVE has
always been and attractive goal. One big advantage is to
render or bounce the project inside your desired software
with your Pd patches as part of the process.

Attempts in that direction start with Radium,
which is a DAW2 with a tracker like interface and has Pd
embedded in its Linux version, allowing us to run pd
patches since 2013. Later, in 2016, we first had the
possibility of running pd patches in any DAW via VST
support with PD Pulp [7], which is basically a VST
plugin (built using JUCE [8] and libpd) that runs Pd
patches. Its interface has 10 knobs that can be assigned to
any parameter in the patch and buttons to manage the
patch loading. PD Pulp’s limitations are the lack of MIDI
support, the impossibility to use more than one instance
of the plugin and the static interface which doesn't allow
any customization by the user. PD Pulp was abandoned
after Camomile was released by Pierre Guillot in 2016
[9].

Camomile solves most of the problems PD Pulp
had and offers more features. In the first public release3,

2 Digital Audio Workstations, a kind of software that
allows multi music production with track recording

3 See:
https://web.archive.org/web/20210711174627/https://
forum.pdpatchrepo.info/topic/9884/camomile-an-
audio-plugin-that-loads-pure-data-patches

18th Brazilian Symposium on Computer Music - SBCM 2021 229

Camomile could already deal with multiple instances of
the plugin with a wrapper written by Pierre Guillot,
because at that time LibPd had this limitation which was
solved after this release4. Camomile also has MIDI
support and provides the ability to create the plugin's
interface. This opened the possibility for developers to
design their own plugins and distribute them without the
need of a Pd patch, and users can be totally unaware it
was implemented with Pure Data.

Camomile is also built with LibPd and JUCE
and can be used to compile and create VST3, AU and
LV2 plugins in Linux, Windows and macOS operating
systems. This covers virtually all the DAWs in use these
days, plus other hosts like sound editors and other
softwares.

Camomile allows the regular Pd user to create
and distribute its own plugin without a background in
computer science. However, the process of compiling
isn't an obvious thing to all Pd users. The way Camomile
compiles plugins is simple enough because knowledge
about the JUCE environments isn't required and can be
done with a minimum set of instructions, provided by
tutorials available in the Wiki session of the official
Camomile’s repository. Compiling scripts are provided
for Linux and MacOS, but Windows compilation, at the
moment, needs this set of instructions (which is also valid
for all operating systems).

In short, Camomile provides support for multiple
instances, basic Pd GUI objects (toggle, slider, radio,
comment, numbox and array graph), up to 64
automatable parameters with automatic recognition
(name, label, range, minimum, maximum, etc.), MIDI in
and out, play head position, BPM and up to 16 audio
channels.

One current limitation is the lack of support for
externals, forcing developers to work with the limited set
of Vanilla objects. So we have developed a version of
Camomile that includes objects from the ELSE library,
which makes the process of creating plugins much easier
and friendlier.

3. The ELSE library

The ELSE library [4] is a huge collection of
externals and provides many ready made building blocks
of computer and electronic music, such as filters,
oscillators, noise generators, envelopes, sequencers,
random generators, tools for algorithmic composition,
etcetera…

While most of these could be implemented with
Vanilla objects, the amount of work would be quite huge
and you’d need a deep knowledge of Digital Signal
4 See:

https://web.archive.org/web/20210711174255/https://
github.com/libpd/libpd/issues/13

Processing and Pure Data. Not only that, but ELSE also
provides things you cannot have with only Pd Vanilla.

ELSE makes the patching process much easier
and accessible to the general public. Since Camomile’s
main selling point is that it allows people without a
background in computer science to develop plugins, the
ELSE library takes this premise to a whole new level,
where you don’t have to be a Pd expert and you can more
intuitively program and create instruments, effects, MIDI
processors and controllers.

ELSE has a structure that resembles the one of
modular synthesizers and also has many ready made
effects (chorus~, flanger~ and phaser~ for instance), plus
advanced algorithmic composition tools like markov
chain.

Originally, ELSE also comes with a vast
computer music tutorial, with over 430 examples that
covers a wide range of synthesis, algorithmic
composition and DSP techniques. All of it just has a
single dependency of ELSE externals, so you can easily
create plugins with all that is provided in this tutorial.

4. Technical Details

In order to provide a version of Camomile-ELSE
[5], Camomile with support for ELSE externals we had to
recompile Camomile with the externals’ code embedded
into Camomile’s source code. Camomile’s main
dependencies are JUCE and LibPd. JUCE provides
classes to manage audio I/O, audio processing, media
reading and writing and the hooks to compile plugins
VST, LV2 (for Linux, Windows and MacOS) and AU
plugins (MacOS only). All our compiling tests are done
using a MacOS machine, a Virtual Machine with Ubuntu
12.04 LTS and another old notebook running Windows
10.

The process of setting Camomile to be compiled
with ELSE externals is documented in Camomile
repository5, it consists in adding the externals from ELSE
into LibPd and then set JUCE to compile Camomile with
these dependencies. Some modifications to the original
code of ELSE were necessary in order to conform with
limitations and conflicts with the Windows compiler.

The ELSE library consists in a collection of
externals that are binaries (compiled from C code) and
abstractions (Pd patches, where many use objects from
the ELSE library). The binaries are compiled with LibPd
and this procedure makes Pd see the ELSE externals from
ELSE as if they were Pd native objects. This means you
cannot load the externals with namespaces (as in
else/sine~), but originally all the abstractions from ELSE
that has externals from ELSE use namespaces in order to
5 See:

https://github.com/pierreguillot/Camomile/issues/214
#issuecomment-704670696

230 18th Brazilian Symposium on Computer Music - SBCM 2021

force loading the correct object. So we have a specially
modified abstraction folder without namespaces and use
the [declare] object (as in: [declare -path else]). This
allows Camomile to find the abstractions inside the
provided modified else folder, that you also need to
include in your compilation project.

This allows support for all objects in the ELSE
library (both binaries and abstractions) but most GUI
objects aren’t functional because of a limitation from
Camomile. Objects from the ELSE library that are
binaries needed to be ported like the native Pd GUIs
were, and many GUI abstractions use data structures,
which are also not implemented in Camomile. The
discussion related can be found in Camomile repository6

and the difficulty consists in reimplementing Pd's Data
Structure drawing features in the JUCE interface. So we
are looking for other workarounds to provide better GUI
support in Camomile.

Camomile-ELSE is compiled on the last stable
version of Camomile, 1.0.7. There is already available a
beta version 1.0.8 that supports the pd~ object. This
object makes it possible something like open Pd inside
Pd, it was created to allow open and control different
DSP chains in different threads controlled by operational
system. On the last beta version of Camomile, the pd~
object can used to open the Pd application and the patch
once you call the plugin. This can be great for Pd users
but is not an ideal situation for the distribution of a plugin
for non Pd users as it basically just opens Pd inside your
plugin host and exposes the inner workings. On the other
hand, this process allows you to run Pd with any
externals that it can load, because now we're not
compiling the externals in camomile anymore, just
opening a Pd binary with its included external binaries.
Nonetheless, this new camomile feature does a good job
by not requiring the user to install Pd, the externals and
the patch, because all of this is embedded in the generated
plugin.

 Besides the non optimal plugin design that just
cannot hide Pd as the regular way of compiling plugins
with externals, we still need to test and measure if this
process has also some technical disadvantages, such as
quantifying the increase in latency that this way of
loading externals into camomile causes7. But one way or
another, the possibility to have any externals available
like that is very promising and exciting.

6 See:
https://web.archive.org/web/20210711175310/https://
github.com/pierreguillot/Camomile/discussions/256

7 See:
https://web.archive.org/web/20210711175710/https://
github.com/pierreguillot/Camomile/discussions/233

One disadvantage with this workaround is the
increase of the generated plugins' memory size, once each
plugin needs to have a copy of Pure Data and the
externals needed embedded in the plugin. To mitigate this
issue, it is possible to install Pd and the externals
manually on the machine in order to use the plugins. But
then, this includes yet more steps and it is defnitely not
something you want for a regular plugin user that never
heard of Pd. Though it is an option for the Pd enthusiasts.

But since the amount memory we're talking
about is not that significant these days, the first
workaround can be the usual way to easily include
externals into camomile without doing what we're
providing here with camomile-else.

5. Conclusion

Pure Data is a cross platform visual
programming environment for interactive computer
music and multimedia with a friendly visual paradigm
that is well suited for artists and non programmers. For
this reason, it made the world of computer music more
accessible and increased the range of users capable of
buildings sounds and compose music with computers.

Pd also provides support to create smartphone
apps, create strange devices and installations with
microcomputers like Raspberry Pi, new instruments with
devices like Bela and so on. Its portability and
accessibility is unparalleled. The integration of Pd and
any plugin host is now also a reality, which brings the Pd
world into the workflow of DAWs and sound editors.

This is true for either the Pd enthusiast that can
now easily also work with Pd inside plugin hosts but it
also a way for non programmers to design and distribute
plugins with Pd patches (without a background in
programming or computer science). This opens the doors
for the commercialization of open source plugins and a
fertile terrain to explore and research computer music and
experimental techniques in for yet a broader range of
users.

This is where our work with Camomile-ELSE
has a big contribution as it allows users to design plugins
with an extensive set of externals provided by the ELSE
library, as well as the extensive examples available in its
included tutorial.

This development effort also opened us to new
aims like provide better accessibility in the creation of
mobile apps by also compiling ELSE into other libpd
projects such as PdDroidParty and PdParty.

Another development from this work would be a
basis for other projects to also include other external
libraries.

18th Brazilian Symposium on Computer Music - SBCM 2021 231

References

[1] PdParty see:
https://web.archive.org/web/20210711154116/ht
tp://danomatika.com/code/pdparty

[2] PdDroidParty see:
https://web.archive.org/web/20210410181502/h
ttps://droidparty.net/

[3] LibPd see:
https://web.archive.org/web/20201125151522/h
ttps://github.com/libpd/libpd

[4] ELSE Library see:
https://web.archive.org/web/20210711155857/h
ttps://github.com/porres/pd-else

[5] Camomile-ELSE see:
https://web.archive.org/web/20210711180229/h

ttps://github.com/emviveros/Camomile-ELSE

[6] Porres, Alexandre Torres. “ELSE Library for Pure
Data”, 2017, 8. See:
https://web.archive.org/web/20210711160308/h
ttp://compmus.ime.usp.br/sbcm/2017/papers/
sbcm-2017-6.pdf

[7] PD Pulp see:
https://web.archive.org/web/20201207051840/h
ttps://github.com/logsol/Pd-Pulp

[8] JUCE see:
https://web.archive.org/web/20210708055657/h
ttps://juce.com/

[9] Camomile see:
https://web.archive.org/web/20210711163045/h
ttps://github.com/pierreguillot/Camomile

232 18th Brazilian Symposium on Computer Music - SBCM 2021

